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Adiabatic expansion for the single-mode laser
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We carry out a systematic adiabatic elimination of the atomic degrees of freedom from
the quantum-mechanical master equation for the single-mode laser. We represent the re-

duced density operator of the field mode by various quasiprobabilities and construct the
respective equations of motion. The generators of infinitesimal time translations are ob-

tained as series in powers of two parameters, the smallness of which defines the adiabatic
limit. Our "adiabatic" expansion treats that part of the atom-field interaction as a zeroth-
order effect which describes the action of the field on the atoms, while the reaction of the
atoms is treated perturbatively. The adiabatic equilibrium thus assigned to the atomic vari-

ables at all times is a conditional one, contingent on the current state of the field mode. As
a result, saturation effects in the atoms are fully accounted for in low orders of our expan-
sion. In second order, especially, we obtain a Fokker-Planck equation for the Wigner func-
tion of the field mode which is valid for arbitrary pump strengths below, near, and above
threshold. We compare our results with those of previous theories.

I. INTRODUCTION

Nonlinear irreversible processes are, even though
ubiquitous and of considerable interest, notoriously
difficult to treat. It is quite typical of these difficul-
ties that the literature on adiabatic elimination of
fast degrees of fraxiom for even rather simply sys-
tems {such as the single-mode laser and optically bi-
stable devices) contains numerous results which are
inconsistent with one another. ' In some cases, such
elimination procedures have even involved nonsys-
tematic ad hoc assumptions.

We here describe a scheme for eliminating fast
variables which yields a systematic perturbation ex-
pansion for the generator of infinitesimal time
translation for the slow variables, the expansion
parameter being the ratio of the respective time
scales. The method has already been employed by
one of us in the context of classical Brownian
motion and will here be extended to quantum sys-
tems, the single-mode laser serving as an example.

Starting from the well-known master equation for
the single-mode laser, we derive an equation of
motion for the reduced density operator of the field
mode. After an initial transient has died out in a
time typical of the free atomic relaxation, the field
mode appears to undergo a Markov process. It is
the generator 1 of infinitesimal time translations for
that process which we calculate through a double
perturbation series. The two expansion parameters,
which are considered to have the same degree of
smallness, are given in terms of the damping con-
stants of the field mode {~), the atomic polarization

(y j ) and inversion (y
~ ~

), and the atom-field coupling
constant (g) as

g /y and g/y,
where y may stand for either y~ or yll.

It is convenient to represent the field density
operator by a quasiprobability density since the gen-
erator 1 then takes the form of a differential opera-
tor with respect to a complex field amplitude P. To
first order in the perturbation expansion mentioned,
1 contains only first-order derivatives, and thus de-
scribes a deterministic drift of the field amplitude.
In second order, diffusion effects manifest them-
selves by the appearance of second-order derivatives;
third- and higher-order derivatives arise only in
third and higher orders of the perturbation series.

Even though the atom-field coupling constant g
enters one of the parameters (1.1), our expansion is
not (a bare) one involving powers of the whole
atom-field interaction. For the expansion to be use-
ful it is necessary to treat part of that interaction as
a zeroth-order effect. In the generator L of infini-
tesimal time translations for the combined system of
atoms and field, the atom-field interaction can be
split into a contribution describing the action of the
field on the atoms, and one representing the reaction
of the atoms on the field. The first of these must be
included in the zeroth-order part Lp of L together
with all terms describing the relaxation and the
pumping of the atoms. Such a choice for Lp imple-
ments the qualitative idea that the atoms, starting
from whatever initial state is imposed, relax quickly
toward a conditional equilibrium contingent on the
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initial value of the field, and from then on stay in
such conditional equilibrium states as the field
changes its value slowly.

The "adiabatic" expansion of / just discussed con-
tains, in any finite order, infinite partial sums of the
bare expansion which excludes the whole atom-field
interaction from L0. The drift and diffusion coeffi-
cients we obtain up to second order contain the full
effect of atomic saturation even for strongly
pumped lasers. Only for lasers operated close to
threshold do our drift and diffusion coefficients
reduce to the simpler ones characteristic of the
well-known van der Pol oscillator which can be ob-
tained in fourth order of the bare expansion.

Our results for /, i.e., for the drift and diffusion
coefficients, depend on the choice we make for the
quasiprobability. %e consider a continuous class of

I

quasiprobabilities p, (P,P, r), labeled by a positive
parameter e. The definition involves the diagonal
element of the field density operator p with respect
to a coherent state ~P ),

(1.2)

and reads

Q(P, P», t) = J d a exp( —
) P—a

)
'le)

xp, (a,a», t) .

Expectation values of normally ordered products of
the annihilation and creation operators of photons
can be calculated with the help of the quasiprobabil-

ityp, as

n

(bt"b ) = J d p p»+(I —e) p+(I —e) p, (p, p*,r) .

Well-known special cases of p, are the so-called Q
function (1.2) itself (e=O), Glauber's weight func-
tion in a diagonal representation of the density
operator with respect to coherent states (a=1),"
and the %igner function (e= —,). "

Our results for the diffusion matrix coincide, for
1

the special cases e=O, —,, and 1 with the ones re-

cently given by t.ugiato, Casagrande, and Pizzutto. '

However, these authors obtain a drift coefficient
lacking the second-order part. As we shall see in
Sec. V, the discrepancy between our results and
those of Lugiato et a/. ' is, for typical lasers, more
interesting from a fundamental point of view than
from a practical one.

The generator /, pertaining to the quasiprobability

p, is not, to second order, a Fokker-Planck differen-
tial operator in all cases since the diffusion matrix
turns out not to be positive for all values of e. %e
shall see, however, that the diffusion matrix is posi-
tive for values of e in some interval around e= —,.

%e shall also show that the adiabatic elimination
of the atomic variables leads, in second order, to the
same result for /, if, instead of the exact laser master
equation for the full density operator for the atoms
and the field, certain approximate versions of that
equation are used as a starting point. Especially, the
full density operator may be represented by
quasiprobabilities with five independent variables
referring to the field amplitudes P and P», the atom-
ic polarization, and the atomic inversion. ' If the
respective equations of motion were taken in the dif-
fuse approximation and if the atomic variables were
then eliminated, the resulting /, would become non-

I

systematic in third order in the parameters (1.1)
only. Interestingly enough, our second-order result
is reproduced even if the 5)&5 diffusion matrix is
nonposltive, i.e., even if the diffusion approximation
does not admit well-defined solutions for the
quasiprobability distribution of the five variables
mentioned.

II. LASER MASTER EQUATION

[s~,s„+]=+5„„s„+,
[sq+,s„]=25q~„, ,

(2.1)

while the annihilation and creation operators of pho-
tons have the Bose commutator

[b,b ]=1. (2.2)

The density operator 8' of the atoms and the field
obeys a master equation of the form '

Z+'(t) =L~(t)=(~„+AF+L~F )~(t) . (2.3)

The interaction part L&F of the generator L involves

The simplest possible laser model accounts for X
two-level atoms interacting with a single mode of
the electromagnetic field as well as for suitable heat
reservoirs providing the pump and loss mechanisms.
The dynamics of the pth atom can be described by
means of a triple of operators, two of which, s&+,
represent the polarization while the third one s&„
represents the inversion between the two energy lev-
els. These operators obey the angular momentum
commutation relations
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Hgp ——i'(b S —bS+),
where the operators

(2.4)

the commutator with the interaction Hamiltonian represent the global polarization of the atoms. The
other two terms in L describe the irreversible effect
of the heat reservoirs on the atoms and the field
mode. They read, if the reservoir providing the field
damping is taken to be at zero temperature

ApW=a([b, b W]+[bW, bt]+2[b, [W,b ]j)

Ag W= gA~W,

AqW= , y~((1 ——2oa)([s„,Ws„~]+[s„Ws„~j)+—,y(((1+2o0)([s„+,Wsq ]+[s„+W,s„])
1+ (yj ——,y(( )([s„„Ws„,]+[s„,W,s„,] ) .

Herc 20'o is thc unsaturated inversion Rn individual
atom would take on if exposed to the heat reservoir
but not to the field. Obviously, oo must lie in the re-

I
gion 0'o Q 2 ~

If the density operator 8' is represented by a @-

number quasiprobability density for the field mode
but is left intact as a density operator for the atoms,
the generators AF and L&F become differential
operators with respect to complex field amplitudes p
and p . Especially, for quasiprobabilities W, de-
fined as in Eq. (1.2), we have

L„FW, =g[p*S —pS+, W, ]

+g [—eW,S++(e—1)S+W, ],
gpss

e +

The expressions are quite well known ' for the spe-
Cial CRSCS E=O» 2 s Rnd 1. ThC gCnCrallzatiOn frOm

e=o to arbitrary positive values of e is easily ob-
tained by using the definition (1.2) or, equivalently,
recently derived convolution identities.

%'e would like to point out that the commutator
term in Eq. (2.8) describes the motion of the atoms
in an electric field of fixed complex amplitude P.
The remaining terms in (2.8) involve derivatives
with respect to P and P* and thus represent the in-
fluence of the atoms on the field mode.

III. FORMAL ELIMINATION
OF THE ATOMIC VARIABLES

%'e may represent the state of the atoms and the
field by a quantity W, (p,p, t) which is a quasipro-
bability defined as in (1.2) for the field mode but a
density operator with respect to the atoms. The
field mode alone can then be described by the re-
duced quasiprobability

p, (p, p', t)=tr, W, (p,p*,r) . (3.1)

p, (p,p'. r) = U(r)p, (p, p*,o),
provided the initial state of the combined system is
given by W(P, P~, O).

The generator /, (r) can now be expressed as the
product of the time derivative of U(t) with the in-
verse of U(t) as

1,(t) =U(t) U '(t) . (3.5)

%e shall see that I,(t) approaches a time-

An equation of motion for p, (p, p*,t) can be con-
structed so as to have the form '

p, (p,p*,r) =I,(r)p, (p, p', r)

with 8 certain, in general time-dependent generator
I,(t).

In order to construct I,(t), we must, in order to
avoid irrelevant existence problems, require an ini-
tial condition such that p, (p, p*,O) is nonzero
throughout the complex p plane. We then define a
time-evolution operator for the field mode as

U(r)=tr„eL'W, (p, p*,O)p, '(p, p*,O), (3.3)

where I. is the generator defined in Eqs. (2.3), (2.8),
and (2.9). Obviously, U(I, ) transforms the initial dis-
tribution into thc onc Rt thc current time
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independent limit after a time of the order of the
smaller one of the atomic relaxation times yz

' and

y
~

'. On the much longer time scale characteristic
o the motion of the field varibles, 1,(t) can be re-
placed by its limit

1,= lim U(t)U '(t) . (3.6)

4 2

o', =oo I+ P~P
y&ytl

o=(2g ~ri)po,

=(2gooh'l )P I+ p'P4g 2

(4.3)

IV. PERTURBATION EXPANSION
FOR THE GENERATOR I,

In order to generate an expansion of 1,(t) in
powers of the parameters (1 ~ 1) we split the operator
L into a zeroth-order part Lo, with

Ld'=A~+g lO'S 'PS+ f—] (4.1)

and a remainder. Obviously, Lo describes a relaxa-
tion process of the atomic system in the presence of
the pump and loss mechanisms as well as of an
external electric field with the complex amplitude P.
The relaxation takes place with the damping con-
stants yz and

y~~
and tends to lead the atoms into a

conditional equilibrium characterized parametrically
by the field strength P. That equilibrium is
described by a density operator A, the solution of
LOA=O with trqA = I, which factorizes with respect
to all atoms and reads

A= gA„,
@=1

The parameters 0. and cr, are, of course, the expecta-
tion values of, respectively, the operators s& and

s„, in the conditional-equilibrium state A.
The saturation effects manifested in Eqs. (4.3) are

important for a laser operated well above its thresh-
old since in that regime the most probable values of
the field intensity p~p are comparable with or even
exceed the so-called saturation photon number

n. =yiy~~~4g .2 (4.4)

It is for this reason that we must include in Lo the
parts of LzF proportional to the field amplitude. It
is interesting to realize that the saturation effects in-
herent in Eqs. (4.3) have contributions from all or-
ders in the coupling constant g. The zeroth-order
result [(4.2) and (4.3)] contains, in other words, in-
finite partial sums of a "bare" perturbation expan-
sion which excludes the whole atom-field interaction
LzF from Lo.

We shall now expand the right-hand side in Eq.
(3.6) in powers of L —Lo. To that end we first note
the zeroth-order version of the time-evolution opera-
tor (3.3) to be the unit operator

U' '(t)=tr„e ' 8;(P,P', 0)p, '(P, P",0)

A& ———, +mrs&++cr*s& +O.,s&,

with

(4.2)
(4 5)

There is thus no zeroth-order contribution to I, .
The first-order part is given by

I,"'= lim U, (t)= lim trq(L Lo)e ' W, (—P,P,O)p, '(P,P,O) .
t —+co t-+ oo

Since Lo has the unique stationary state (4.2) we immediately find

I, = —g tr„(S A+, tr„S+A +AF(iI Q & ()

(4.6)

a a= ap" ap*p' '- 2&~or'~yi ()2
2)c(1—e ),

I+(4g'/yJ y~~ )p*p dp "r)p'
(4.7)

which obviously is a Fokker-Planck differential
operator with respect to all quasiprobabilities with
e(1.

We now proceed to the second-order term

I,"'= lim [U"'(t)—U'"(t) U'"(t)] . (4.8)

[

It is possible to show that 1,' ', as well as 1,"' and all
higher-order contributions, is independent of the ini-
tial state W(P, P~,O). In the interest of brevity we
forgo the proof of that independence and choose
special initial states which minimize the labor in-
volved in evaluating 1,' '. These turn out to be
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W, (P,P~, O) =A p, (P,Pi, O), (4.9)

X IL —Lo)~, (4.10)

which is manifestly finite since A tr& is just the
time-independent part of the spectral decomposition
of exp(Lot).

By inserting L —Lo from Eqs. (2.3), (2.8}, and
(2.9) we find

i.e., states of zeroth-order adiabatic equihbrium of
the atoms and arbitrary field distributions. We then
immediately have the expression

I,' '= lim f dr' tr„(L —Lc)(e ' —A tr„)

[2) ' ~ ~0~
/, =—g lim tr&S (e —A tr& )(L —Lo)At~ aa BP

+c.c. (4.11)

and are thus led to the problem of constructing the
time dependence of the quantity

f (r)=trS e 'X, {4.12)

in which X is an arbitrary operator. We differen-
tiate f (t} with respect to t, and find this quantity
coupled to similarly defined ones f+(t) and f,(t), in
which S is replaced by S+ and S,. The corre-
sponding three equations of motion are easily solved
with the result

00 I ot ~ 1 4gf drtr„S (e ' —A tr„)X= 1+ p p
yx yj.y)~

1 y tr„S X— P'tr„S+X2g

yxy~[ yxy()

2g 2y]
P tr&S,X N 1 + — cr tr„X

yll
(4.13)

The remaining steps in the construction of /,
' ' re-

quire the evaluation of bilinear expectation values
like tr&S+S A, and present no difficulty.

In writing our result for /, =/,'"+/,' ' we save
space and gain physical transparency by using the
rescaled field

u =PM n, =P2g ~V'yiy~~ . (4.14)

This is a physically appropriate scaling since it gives
to all terms in Lo the same "order, " i.e., coefficient
proportional to either y~ or y~(, or Qy~y~~. Each
term in the perturbation expansion of /, in powers
of L—Lo then displays its order as the number of

+
g g y QQ

with the drift coefficient

(4.15)

I

factors x and g /y it contains. Note that, in this
sense, the second-order derivative term in Eq. (4.7}
now appears as of second order. We may therefore
say that to first order in the expansion parameters
(1.1) the generator /, is purely deterministic in char-
acter. To second order, /, takes the form

u u QQ~ Qu

2ooNg'lyg 2croNg ~lr/yj 2y~
K — + 1+ QQ —1

1+Q*u (1+urdu) y~~

4&g'~,'Zy,' Xg'Zy,'y~~

~ [N(1 —u*u) —2u~u]y
(1+uu ~) (1+u*u)

X [ SooNu~—u+4oo(l u*u) (1——2e)(8o—o)(1+u*u)~(3+urdu)(1+urdu) ] '

and the diffusion coefficients

D„„i= {1—e)Sg sr

yD]j

2&g'~y ~y )(+ 3 4oo 1+ u—~u+(1+urdu)[(1+urdu)(2+urdu) —(1—2e)(4o'o)]
(1~u*u) y~~

Du~ =—
2 3 4oo 1+ +(1+urdu)[1 —(1—2e)(4oo)+u*u]Xg u 2 'Vz

yqy)~ (1~Q u) y)~

(4.17)
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It is, of course, not due to fortuitous cancellations
that no derivatives of order higher than second ap-
pear in Eq. (4.15). By inspecting the structure of I.
as given by Eqs. (2.3), (2.8), and (2.9) and the scaling
{4.14) it becomes obvious that, in nth order with

respect to the expansion parameters ~/y and g /y,
derivatives up to the nth order can appear in t, .

The result (4.17) for the diffusion matrix has also
been obtained by Lugiato, Casagrande, and Pizzuto'

1

(LCP) for the special cases e=O, —,, and 1. The
drift coefficient given in Ref. 1 lacks, however, the
second-order contribution. %e have already argued
in a previous paper that neglecting the second-order
drift while keeping the second-order diffusion des-

troys the consistency of the expansion with the
quantum-mechanical commutation rule (2.2) ~

The generator I, we find is a Fokker-Planck dif-
ferential operator only if the diffusion matrix is pos-
itive. By using polar coordinates in the complex p
plane we see that this is the case if the following
third-order polynomial in z =1/(1+ u*u}:

f(z) =az +[4oo(ze —1)—a]z
2Kfy

+(1—4o.os+ 2o0)z + (1—e )
Xg

(4.18)

[with o. =4oo(1+yl/y~~)], is positive for 0&z& l.
The positivity off(z) is guaranteed if either

a g2 and O~e &1,

u )2 and
~

pro(2e —1)
~

& 4 [a(4—a )]'
(4.19b)

0(6' Q 1

a &2 and
~
oo(2e —1)

~
~ —,[u(4 —a)]'~ (4.19c)

but with f(z) positive at the points where f'(z)=0
and with 0&a g1. The %igner function (e= —,) as
well as the quasiprobabilities p, with e sufficiently

I
close to —, are thus found to obey Fokker-Planck
equations.

It is interesting to realize that our second-order
results for I, could also be obtained by rewriting the
master equation (2.3) as a c-number equation of
motion for a quasiprobability W, ( ,s*s, sp, p~, r)
which associates c-number variables, s,s*,s„with
the operators S,S+,S„respectively, ' and by
neglecting, in that equation, all derivatives of higher
than second order. ' This diffusion approximation
would lead to erroneous results for I, in third and
higher orders of the perturbation expansion only.
The reason for the partial usefulness of the diffusion
approximation for the five-variable quasiprobability
is easy to understand; if we choose, e.g., a quasipro-
bability 8', which has as its atomic moments the ex-
pectation values of the fully symmetrized products
of the corresponding atomic operators, the diffusion
approximaton for I. reads"

Bp
(harp

—gs)+ —(yes —2gps, )+c.c. + [y~~(s, ¹ro)+—g(ps~+p*s)]
Bs Sz

8
()pBp* 8 () * s 4

(4.20)

Here the variables s, s~, and s, are associated with

the operators S, S+, and S„respectively. The
construction of I, from the c-number L (4.20)
proceeds in complete analogy with the one given

above, all quantum operators being replaced by their
c-number counterparts and the trace operation
meaning an integral over the whole complex phase
with respect to the "polarization" s and over the
whole real axis with respect to the "inversion" s, .
We must now only note that the drift and diffusion
coefficients in the c-number L contain no nonlinear
terms with respect to the atomic variables. The first
and second moments of atomic variables entering
(4.7) and (4.11) are thus not influenced at all by the
third- and higher-order derivatives not included in
(4.20).

V. STATIONARY SOLUTION

%'e shall here discuss the stationary signer func-

tion, i.e., the stationary eigenfunctions of the
Fokker-Planck differential operator I&&2. That dis-

tribution function turns out to be independent of the

phase of the field amplitude u and can thus be

represented as a function of the squared modulus of
u,

pi~2(u, u*,t~ ao )= 8'(z), z =u*u .

It is convenient to express W(z) in terms of three
auxlllary fllllctlolls f (z), g(z), and ll (z). The flls't of
these is a combination of the diffusion coefficients
(4.17) and reads
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o, =]cyj /2' (5.3)

f(z) = , cr—,+1—z (1+zi
n 0'

—4oo 1+ z(1+z)2 ~ll

i5.2i

where n, is the saturation photon number defined in

Eq. (4.4) while o, denotes the parameter

According to Eq. (4.7) o., is a measure of the
"threshold pump strength, " i.e., the value of oo re-
quired to ensure self-sustained oscillations in the
laser; note that the drift coefficient in Eq. (4.7) de-

scribes, if saturation is neglected, an amplification
process for o.op+, . The other two auxiliary func-
tions

g (z) =2 1 — (1+z)

(5.4)

h (z) =g (z) 2 1+ z — (1+z) +oo VII XII 3 1

I
~e 2'Vx 27j. 8nsoc

(3+z}(1+z) +4m (1—z) —8 o-~ (1+z)

represent the first- and second-order drift coeffi-
cients, respectively. The stationary %igner function
now reads

W(z) =M exp —f dz'1 z g (z')+h (z')

izi iz')

(5.5)

where .W is a normalization constant defined by

f dz Wiz)=1.
In a first application of our result (5.5) we would

like to represent the deviation of the threshold value

O,t„of oo from the parameter o, . %e define o,q, by
requiring that the random variable z cease to have
its most probable value at zero as oo increases
through the threshold, i.e., by the condition'

TABLE I. Mean intensity (5.9) vs oo/o, . First column

gives the result calculated from Eq. (5.5); second column

is obtained with h(z) =0; third column contains numbers

given in Ref. 1, obtained with a Gaussian fit to Eq. (5.5)
with h (z)=0.

A series expansion of O.,q, in powers of our expan-
sion coefficients (1.1) is easily deduced from this
condition and reads, to within corrections of second
order,

1
Otxr=oe ' 1+

Sngv~
1 —4o., 1+ 2~II

(5.7}

TABLE II. Second-order correlation (5.10) vs o.o/o, .
Columns differ from one another as in Table I.

For typical lasers the first-order term in the expan-
sion (5.7) amounts to a few percent of the zeroth-
order contribution a, . It is interesting to observe
that the nonsystematic result of Ref. 1, which corre-
sponds to neglecting the function h (z) in the station-

ary distribution (5.5), yields a rather different
threshold shift,

0.8
0.9
1.00
1.02
1.04
1.06
1.08
1.1
1.2
1.3
1.4

2.09x 10-'
3.18x 10-'
5.58 x 10-'
6.35x 10
7.27 X 10
8.33x 10
9.56x 10-'
0.110
0.198
0.298
0.398

2.14x 10-'
3.29x 10-'
5.84 x 10-'
6.66 x 10-'
7.63 x 10-'
8.75x10 2

10.03 x 10-'
0.115
0.205
0.304
0.404

2.10x 10-'
3.21 x 10-'
5.67 x 10-'
6.46 x 10-'
7.39x 10
8.48 x 10-'
9.73 x10
0.111
0.202
0.300
0.400

0.8
0.9
1.00
1.02
1.04
1.06
1.08
1.1
1.2
1.3
1.4

1.878
1.774
1.578
1.527
1.473
1.418
1.362
1.311
1.126
1.057
1.032

1.872
1.763
1.559
1.507
1.453
1.397
1.344
1.293
1.118
1.055
1.031

1.876
1.770
1.572
1.520
1.466
1.411
1.356
1.304
1.123
1.056
1.032
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TABLE III. Mean intensity and second-order intensity correlation according to the adia-
batic expansion [Eqs. (5.9) and (5.4)] and to the fourth-order expansion [Eqs. (5.9) and (5.11)].

(b b )In, (b b bb)l(b b)'
adiabatic bare adiabatic bare0

0.8
0.9
1.0
1.02
1.04
1.06
1.08
1.1
1.2
1.3
1.4
1.5
2.0
2.5

2.086x 10-'
3.177y 10-'
5.577' 10-'
6.354' 10-'
7.267' 10-'
8.334' 10-'
9.564x 10-'
0.1096
0.1981
0.297S
0.397S
0.4975
0.9975
1.4975

2.165y 10-'
3300y10 '
5.665 g 10
6.384' 10-'
7.206' 10-'
8.133X 10-'
9.165y 10-'
0.1029
0.16?6
0.2307
0.2857
0.3333
0.4995
0.5999

1.878
1.774
1.578
1.527
1.473
1.418
1.363
1.311
1.126
1.057
1.032
1.021
1.005
1.002

1.891
1.778
1.572
1.521
1.468
1.415
1.364
1.316
1.144
1.073
1.044
1.030
1.010
1.006

[(trth. —&. )«.]Lcp

[1+4cr,(1+y~~/yt)] . (5.8)
2ng0~

Similarly significant differences exist between the
mean values calculated from our distribution (5.5)
and from the one obtained by setting b (z) =0. We
illustrate these differences for the mean intensity

(b b) =n, f dz z — W(z) (5.9)
2n,

in Table I and for the second-order correlation
f(z)=f(0),

g (z) =2[1—(~o«. )(1—z) l,
(5.11)

the small differences between our results and those
of Ref. 1 one may conclude that the latter, even

though nonsystematic, are useful in practice.
Finally, in Table III we demonstrate that satura-

tion effects become increasingly important as 00
grows. Here we compare our results for the intensi-

ty (b b) and the second-order correlation (5.10)
with the ones obtained by Risken's approximation. '

To obtain Risken s stationary distributions, the fol-
lowing replacements are necessary:

= (b b ) f dz(z z/n, )—W(z) (5.10)

in Table II. The calculations are based on the
parameter values o.,h,

——0.5X10,n, =10,

)i/2Xg
——1 .

As is obvious from Table I, our intensities are
smaller than the ones obtained with the approach of
Ref. 1, i.e., with h(z)=0. This discrepancy can be
understood with the help of our above discussion of
the threshold shift. While our shift given in Eq.
(5.7) is positive, the one obtained with h(z)=0, i.e.,
in Eq. (5.8), is negative. The same argument ex-
plains why we obtain intensity fluctuations which
are slightly larger than the ones corresponding to
h (z)=0 (see Table II). The relative differences men-
tioned amount to a few percent near threshold and
decrease as the pump strength oo grows. In view of

h (z)=0 .

The considerable saturation effects displayed in
Table III are, of course, the common motivations of
Rll efforts to perform the adiabatic elimination of
the atomic var1ables ln a systematic way.
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