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A linear algebraic method, based on an integral equations formulation, is applied to the

excitation of atoms and molecules by electron impact. Various schemes are devised for
treating the one-electron terms that sometimes cause instabilities when directly incorporated

into the solution matrix. These include introducing Lagrange undetermined multipliers and

correlation terms. Good agreement between the method and other computational tech-

niques is obtained for electron scattering for hydrogenic and Li-like atomic ions and for
H2+ in two- to five-state close-coupling calculations.

I. INTRODUCTION

In a recent set of papers, ' we have developed a
linear algebraic (LA) method, based on the integral
equations formulation, for solving the large sets of
coupled integro-differential equations that common-

ly arise in the description of electron collisions with
atoms and molecules. The basic idea underlying the
LA approach is the conversion of a set of coupled
integral equations to a set of LA equations by im-

posing a discrete quadrature on the integrals. The
resulting set of matrix equations can then be han-

dled by standard linear systems methods. The ad-
vantages of such an approach arise from its numeri-
cal stability, its simplicity and efficiency in incor-
porating nonlocal terms, and its compatability with
the design strategy of the new vector computers.
We have applied the technique' at the static-
exchange (SE} level to a number of molecular sys-

tems, including Hz, N2, CO&, LiH, and LiF, employ-
ing both conventional and separable forms of the ex-

change terms. In addition, the method has been ex-
tended by means of an effective optical potential to
treat polarization effects in low-energy e-H2 col-
lisions. In this paper, we further explore the LA
method by investigating electronic excitations of
atoms and molecules. We develop the method along
traditional lines in terms of a single-center coupled-
states expansion. In this prescription, a set of cou-
pled integro-differential equations for the scattering
electron are derived by expanding the total system
wave function in terms of a complete set of target
states. The close-coupling (CC} approximation, by
which the expansion is truncated at a finite number
of terms, is invoked to yield a set of equations of
finite order.

As a first test of the LA method for excitation
processes, we apply it to electron collisions with hy-
drogenic and Li-like ions. This choice is particular-

ly appropriate since numerous test cases ' exist
with which to compare and since the bound atomic
wave functions are accurately known, so that
discrepancies that may arise between the computa-
tional methods can be attributed to the collisional
calculations, and not to differences in the bound

basis. The literature on electron-atom collisions is
massive and has been effectively reviewed by several

authors. We wish to emphasize here the other
CC methods which have been applied to the
electron-impact phenomenon. The four principal
approaches are (I) the atomic R-matrix method, 9 (2}
a linear algebraic approach (IMFAcT) based on the
differential equation, ' (3) a noniterative integral
equations method (NIEM), " and (4) a matrix varia-

tional scheme. ' The second approach' is similar to
the one developed here; the differences arise primari-

ly from the choice of the form (integral or differen-

tial) of the scattering equations. In Sec. III, we

make comparisons between the integral LA ap-
proach and those above-mentioned schemes for
specific atomic systems.

For molecular excitation by electron impact the
literature is much less extensive. ' ' Until quite
recently, the principal source for theoretical excita-
tion cross sections was the Born approximation, ' al-
though very-low-energy collisions with H2+ had
been investigated by the polarized-orbital
method. ' " Over the past few years, an impact-
parameter method' ' ' as well as a distorted-wave
method' have been applied to several molecular sys-
tems including H2, N2, Fq, and CO. In addition,
noniterative and iterative ' close-coupling pro-
cedures have been developed along with a mul-

tichannel variational scheme. Still, the systems for
which CC techniques have been applied are limited
to Hz+, Hz, and Nz. We apply the LA method to
electron collisions with H2+ and examine the
resonant structure below the 1'„ threshold as well
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as the excitation cross section in both two- and
four-state CC schemes.

We organize the paper along the following lines:
Section II is devoted to the formulation of the exci-
tation problem, Sec. III contains the results of calcu-
lations for e-atom and -molecule collisions as well as
a discussion of these results, and Sec. IV gives a
brief summary of our findings.

II. FORMULATION

In this section, we develop the basic formalism for
describing electronic excitations of atoms and mole-
cules by electron impact. We attempt to keep the
presentation general and relegate to the Appendix
the details of the specific forms of the scattering
equations. We also draw extensively from our ear-
lier paper (referred to as paper I) on SE collisions
and refer the reader, where appropriate, to more de-
tailed discussions of the numerical procedures
presented there.

A. Scattering equations

The Schrodinger equation, which describes the
collision of an electron with an ¹lectron target
system, has the form

{H,+Hr E}%{rl, .—. . , rlv~l)=0,

parity p of the state, and a spin s (a =pQ p s ).
We reduce this many-particle equation to one in-

volving only the continuum electron by {I)expand-
ing the total system wave function in a complete set
of target states [4Q I as

%l(r l, . . . , r~+l) =A g F (rN+l )

X@ (rl, . . . , rN), (4)

and (2) integrating over the coordinates of the target
d r l, . . . , d rz. In Eq. (4), F represents the contin-
uum orbital, and the symbol A signifies that the to-
tal wave function is antisymmetric with respect to
pair interchanges. The resulting set of coupled
equations, whose solution is FN, has the form

[h (R)—kQ /2]F (R)

= g f V (R
~

R')F (R')dR', (5)
a'

where kQ =2(E E) and—
V (RI R )= V~'(R)5(R —R'}+IV' '(R~R')

+IV'"(R~R ) . (6)

The general form of the terms in Eq. (6) are as fol-
lows:

where

N

H, =h(N+I)+ ggN+, ,

h(i)= ——,V; —g Z,g;, ,

(2a)

(2b)

(7a)

(7b)

(7c}

V..(R) ~ fe.(r)gl24 (r)dr,
IV '(R~ R') Q:4,(R)lP (R'}gl2,

IVQQ (R~R')Q:(E E —E )—4 (R)4Q(R'),

and

N N

Hr gh (i)+ g——g J (2c)
i=1 i )J

with g,z
—

~
r; —rj

~

' and with the sum in Eq. (2b)
running over the number of nuclei. The first term
H, contains the kinetic energy operator for the in-
cident electron and the electrostatic interaction of
the incident electron with the target. The second
term HT represents the Hamiltonian for the target
which possesses an eigenvalue spectrum [E J with
eigenfunctions [4 ) satisfying

(HT E)4 (r;, . . . , rN)=0—,

where a represents a set of target quantum numbers.
The states (a) for atoms are usually labeled by a
principal quantum number n, an orbital angular
momentum quantum number p, and a spin s
(a=np s ), while for a linear molecule they are
designated by the projection p~ of the total orbital
angular momentum on the internuclear axis, the

lP (r)= gP~ z (r)Y& „(r)r
PN

{8b)

and (2) integrating over the angular coordinates of
the continuum electron dR. The resulting set of

where g&2
——

~
R—R'

~

. The first term represents
the static or direct interaction and depends only on
the target-state wave functions. The second two
terms, with the integral in Eq. (5) implicitly as-
sumed, represent two- and one-electron exchange
terms, respectively. In Eq. (7), the symbol r or R,
when associated with a bound orbital, represents all
coordinates of the target systeln (r = r,, . . . , rz).

We now convert Eq. (5) to a set of coupled, radial
integro-differential equations by (1) expanding the
bound and continuum orbitals in a single-center ex-
pansion as

F (R)= gf & (R)Yl (R)R ', (8a)
a

and
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coupled equations has the form

l-„f~,(R)= g f l~(R ~R')f„„,(R')dR',
y'

jection of I. on the internuclear axis A =m~+p .
Again, the close-coupled equations (9}are block di-

agonal in a basis which consists of eigenfunctions of
S,S„and I.,

B. Linear algebraic method

I-„=d /dR — +k~,
R2

&rr(R ~R')= V (R)5(R R')+—W' '(R ~R')

+W"!(R ~R ),

(9')

(9")

If we expand 4 in a basis of eigenfunctions of I. ,
I.„S,and S„then the coupled equations (9}will be
block diagonal in I. and S. The appropriate basis is
usually constructed from products of the target
eigenfunctions and the angular and spin components
of the continuum function E~. In the molecular
case, S is still a good quantum number as is the pro-

and y is a channel label of the form y =(u, l,m ),
where Ia is the orbital angular momentum of the in-
cident electron and m is the projection of total or-
bital angular momentum of the incident electron on
the internuclear axis; the extra label yo on f desig-
nates a specific linearly independent solution. The
particular forms of V, 8'2', and 8""are given by
Percival and Seaton for hydrogenic ions, by Burke
and Taylor for I.i-like ions, and in the Appendix
for H2+. While the sums in Eqs. (4) and (8) run to
infinity, this is not a practical limit for calculations.
We, thus, invoke the close-coupling (CC} approxi-
mation and truncate Eq. (8a} at n, terms, Eq. {8b}at
ns terms, and Eq. (4) at n, states. The total number
of channels N, included in Eq. (9) is therefore given

by n, &(n, One mo. re point is in order —Eq. (9) is
referred to the body-fixed frame and derived within
the fixed-nuclei approximation' for the molecular
case.

Since our primary purpose to this juncture has
been a general description of the excitation process,
we have been somewhat insouciant about invoking
symmetry constraints on the system wave function.
While we can proceed with the solution of Eq. (9)
without using symmetry, we would be rather foolish
to ignore constraints that can simplify the computa-
tion. In the atomic cases we are considering, the to-
tal orbital I. and spin S angular momenta the system
are good quantum numbers. They are formed by
vector coupling the orbital and spin angular momen-
ta of the target (p, s) and the continuum electron
( l, s, ) as

L= 1+p,
S=s+s, .

We convert Eq. (9} to an integral equation by us-

ing the free-particle Green's function G„(R
~

R') to
obtain

f~,(R)=j( (k~R)

+ y fG'„(R
~
R)f V~(R

~

R )f,„,(R )

(10)

where j~ (n~ } is the Ricatti-Bessel (-Neumann}

function of order / for neutral targets and the regu-
lar (irregular) Coulomb function for ions. We intro-
duce a quadrature of N~ points for the integrals,
place the functions on a discrete mesh, and rear-
range Eq. (10) to give

g (5g5~ —M~ r k)fr r,(k) =J'r(i)5~ (1 la)
y'k

M„r k = y Gr(i
~j ) v~ (j ~

k)NJ lak, (1 lb)

with (R;,w;} representing the set of points and

weights for the quadratures, and A (i ) A(R; )—
Equation (11}is just a matrix equation that can be
written in the following compact notation:

Mf=j,
where M is a matrix of order N~ &(N, ( =0 ), and f
and G' are matrices of size 0 XNz. We solve for f
by standard linear systems routines. In fact, Eq.
(11) remarkably resembles Eq. (I.10) with / replaced

by y. All of the powerful procedures and arcane
lore developed in the context of the SE equations
can be transferred directly to the solution of Eq.
(12).

As noted in paper I, a more judicious choice of
solution to Eq. (11) is the general R matrix

g~(R ~R, ) definedby

f~ (R)= gg~{R ~R, )

and determined by applying logarithmic boundary
conditions on the solution at R, . The advantage of
this approach is that radial space can be divided into
two regions. In the inner region (R &R, ), where ex-
change and static interactions are strong, the LA ap-
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proach is used, while in the outer region (R &R, ),
where the potential is weak and local (usually just a
multipolar farm), we use a standard propagation
scheme such as the R-matrix propagator.

From the solution in the asymptotic region, we
can extract the E or T matrix, and from either con-
struct the cross section. Asymptotically, the solu-
tion of Eq. (11)must become

f~ {R) —ji (k R)5~
1/2

ao
ng (k R)E~, ,

a

where M=L (atoms) or A (molecules). At some
very large distance from the target {R ), we match
the solution of Eq. (11) to this form and extract the
E matrix. The cross section for excitation from
state a to a' for an electron scattering from a target
with a single electron in the valence orbital is given
by

(14)

Q =gQ.".
LS

for atoms and

Q = g g(2 —4o)Q"'
ibad =0 s

for molecules, where

cs i + (2L+1)(2S+1)
(2p +1}

Q I, I
' y (25'+1)

~

T

{15a)

(15b)

where p is the orbital angular momentum associat-
ed with the atomic state a.

C. One-electron terms

In examining the form of the two types of ex-

change terms in Eq. (9}, one might be tempted to
suspect that the two-electron terms W' ' would be
the most difficult to handle numerically. Actually,
these terms can be treated quite accurately and effi-
ciently through conventional' or separable' ' pro-
cedures. Curiously, it is the one-electron terms W"'
that pose the most difficulty to obtaining an accu-
rate, stable solution to Eq. (11).427 To understand
this, we must investigate the form of the one-
electron terms in more detail. In order to accom-
plish this, we rearrange Eq. (11) by transferring to
the left-hand side (lhs) all terms except the ones in-
volving W'" and defining the new lhs as L~fr.
The resulting equation has the form

gL~ fr„,(R)= g f W~ (R
~

R')

Xfr r, (R')dR' .

We now consider a representative form for W'"
(see, e.g., the Appendix) and perform the integral
over dR' to obtain

L~f~r (R) g C~~ @~i (R}
a'I'

x&(@,.f, ),
where we have dropped the symmetry labels p and
rn for convenience. In Eq. (16), C ~ is a constant,
usually depending on energy, and

A(AB) =fA (r)B(r)dr .

There are four possible approaches to evaluating the
effects of these one-electron terms on the solution:
(1) delete them entirely, (2} include them directly in
M [as in Eq. (11)], (3) replace them with Lagrange
undetermined multipliers (LUM}, or (4) replace
them with correlation terms.

The first method is certainly the simplest, if
perhaps not the wisest. We can demonstrate its
shortcomings by considering e-H collisions at the SE
level. For S scattering, the bound and continuum
electrons have their spins aligned. Therefore, the
Pauli principle demands that the electrons occupy
different spatial regions, and h(4F) is formally
zero. Dropping the one-electron term for S scatter-
ing does not change the solution of the differential
equations. However, for 'S scattering, there is no
such orthogonality restriction on h{4F} In fact, .
the one-electron term must be retained in order to
obtain the correct solution as has been demonstrated

by Rescigno. ' ' Although dropping the one-
electron terms entirely would be the simplest cure, it
would lead to scattering equations of the wrong
form. Thus we must continue our search for a
method to treat these terms and embrace Hume's
dictum that one must endeavor to palliate what he
cannot cure.

The second method, to include the one-electron
terms directly in M, is quite attractive since it in-
volves introducing no new formalism. In fact, this
procedure works quite well for electron-atom and
-ion collisions. However, for e-molecule scattering
in some symmetries, we observe an erratic behavior
in the convergence of the cross section with number
of channels. By including a large number of chan-
nels, this behavior can be damped, and convergence
to the correct result observed. However, sometimes,
more channels must be included to guarantee this
damping than are actually needed to converge the
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cross section by other prescriptions. Thus we must
seek a more general procedure for handhng these
terms.

In the third method, which we use to produce
most of the e-H2+ results, we replace the one-
electron terms by LUM's. We rewrite Eq. (16) in
the following form:

introduction of Lagrangian undetermined multi-
pliers much as in the previous discussion. For those
scattering symmetries for which this is not true (e.g.,
e-O'S}, we must augment the total system wave
function with a correlation term that represents this
omitted case. The form of the total system wave
function then becomes [see Eq. (4)]

QL~f&„,(R)= gc, e., (Rg„', (17a) q (rl ~ ~ . riv4-1} ~ gF (rN+I}@ (r! " rN}

where

A,r, ——gh(({}i, f,i, ) .
+ g Cn~n(r1~ ~ rN+1} ~

(20)

f~,(R)=f~0, (R)+ QPr (R)V„ (18a)

We can readily demonstrate that Eq. (17a) is solved
by a solution of the form

where h(4 F )=0 for all a, and 7„ is an antisym-
metric %+1 electron function composed of the N-
electron target functions 4 (lWX„X„}=5„„).For
'S e-H scattering in the SE approximation, %' would
have the form

such that

and

(18b)

%(12)= [F(1)$is(2)+F(2)/is(1)]
1

2

+Ck is(1)4 is(» .

gi.ryder =Caa-~' -i. ~

y'
(18c}

The LUM can be determined by substituting Eq.
(18a) into (17b) to find

g (5 g)CIP }7
tl c D(XQ
~O ~0 (19)

where

Dcc gQ(P f0
)

It

D' = g~(4ar~r )

Equation (19) can then be solved simultaneously for
the A, terms, and the new solution determined by Eq.
(18a). This procedure is quite similar to ones
developed in the context of an iterative method by
Robb and Collins at the SE level and by Robb '

for excitation. Difficulties in this procedure can
arise when several of the multipliers are equal. In
this case the matrix in Eq. (19) can be singular, and
no solution is found. To correct this, we simply
solve for only the unique k terms. Such cases are
rather easy to spot for e-H2+, but may prove more
subtle to detect for more complex systems.

The fourth method, to employ correlation terms
instead of W'", is the usual procedure employed in
most e-atom collisional codes. We start with the
supposition that the bound and continuum orbitals
are orthogonal. In the standard electron-ion col-
lision codes, ' this constraint is enforced by the

We have two basic unknowns —the continuum orbi-
tal I'~ and the constants C„multiplying the correla-
tion functions. We derive a set of simultaneous
equations for F and C„by (1} multiplying Eq. (1)
with qt given by Eq. (20) by 4, and integrating over
the target coordinates, and (2}by multiplying Eq. (1)
by X„and integrating over ul/ coordinates. The re-
sulting set of coupled equations for e-H2+ collisions
can be expressed as

[h (R)—k, /2]F (R)

—y f V' (R
~

R')F (R')dR'

+ X U „(E„I
R}C„=0 (2la}

n

g f U (O.~„R )F. '(R )dR'+g'e„„.C„=0,
a' n'

where

U~„(E„~R}~[E„5„+V„(R)]4„(R), (22a)

H„„a:E„5„„+f4„(R)V„„(R)qt„(R)dR,
(22b)

V ~ is given by Eq. (6) with W"'=0,

X„(12)~[gp(1)gp(2)+( —1) Pp(2)gs(1)],
and E„=(Ep+Ep —E). The standard procedure
for solving this set of equations is to eliminate C„
from Eq. (21a) by using Eq. (21b). We note that
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both terms in Eq. (22) depend on known
functions —the energy, the target eigenfunctions,
and the interaction potential.

We have implemented this procedure for e-H&+
collisions and found results in excellent agreement
with the LUM approach. In its present form, the
only drawback of the correlation-function technique
is its computational inefficiency. Most of these dif-
ficulties can be circumvented by incorporating these
terms into the separable optical-potential method we
have already developed for treating exchange and
polarization. Since the offending terms all involve
bound-state orbitals, they are of finite range and can
be calculated with well-developed techniques from
quantum chemistry.

III. RESULTS AND DISCUSSION

Before proceeding to an exposition of our results
for electron scattering from several atomic and
molecular systems, we collect the relevant nomencla-
ture introduced in Sec. II. We have made the fol-
lowing definitians:

(1} n, is the number of states included in the CC
expansion [Eq. (4)].

(2) n, is the number of continuum partial waves
per state [Eq. (Sa)].

(3} nb is the number of bound partial waves per
state [Eq. (Sb)].

(4) n, is the number of continuum partial waves
per state included in the exchange term.

(5) R, is the radius at which the logarithmic
boundary conditions are imposed.

(6}R is the asymptotic matching radius.

We use the notation n, CC to designate an n, -state
clase-coupling calculation.

In the case of electron scattering from hydrogenic
and Li-like ions, some of these parameters are
redundant. Since a give i atomic state has only one
associated particle wave (p }, we have nb= l. The
set of coupled equatians is determined by the num-
ber of states, the value of L—the total orbital
angular momentum, and the value of S—the total
spin angular momentum. For a given state and
values of L and S, we include all continuum partial
waves consistent with the triangular rule
~L —p~ ~

&l~ & ~L+p
~

and include all of these
channels in the evaluation of the exchange term
(n, =n, ). For e-molecule collisions, all of these
parameters are needed to specify a collisional calcu-
lation. The set of coupled equations to be solved are
now determined by the number of states, the value
of A, the projection of the total orbital angular

momentum on the internuclear axis, and the value
of S. For a given value of n„we systematically in-
crease n„nb, and n, until a canverged cross section
is obtained. We then increase n, and repeat the con-
vergence method in partial-wave parameters. This
procedure is continued until the cross section con-
verges in n„n„nb, and n, .

A. Electron-atom (-ion) scattering

In order to test the LA method, we have calculat-
ed excitation cross sections for electron collisions
with hydrogenic and Li-like ions. Our three-state
close-coupling calculations (ls-2s-2p) for e-H and
He+ are in excellent agreement with those of other
authors. ' ' For Be+ scattering, our 2 CC
(ls 2s, ls 2p) and 5CC (ls~2s, 2p, 3s, 3p, 3d) results
for the 2s-2p excitation cross section agreed well
with those produced by the atomic R matrix, by
IMpAcT, and by a direct numerical propagation
method. Similarly, for e-0 +, we produce excita-
tion crass sections in excellent agreement with those
of Bhadra and Henry for a 5CC case. For the
Li-like ions, we have used the Hartree-Fock target
wave functians of Weiss.

In order to demonstrate the level of agreement be-
tween the results obtained with the present LA
method and various other techniques, we present in
Table I selected E-matrix elements at k =1.0 Ry
for e-Li collisions in a 2CC approximation. The
agreement between the LA results and those of
atomic R-matrix code and those of the NIEM
approach is quite good. However, in same cases
there are quite substantial differences with the E-
matrix elements of Burke and Taylor for L &2.
For higher symmetries, all methods produce basical-
ly the same results. Norcross has shown that the
very-low-energy (k & 0.06 Ry) results in the 3S sym-
metry of Burke and Taylor are in error due to the
"nonuniqueness" of their scattering solution. We
have perfarmed LA calculations at these energies
and obtain excellent agreement with Norcross in all
symmetries including the S. While it is difficult to
determine the source of the other discrepancies be-
tween Burke and Taylor and the ather methods, it is
curious that these differences arise in precisely those
symmetries that contain one-electron terms. These
errors in the low-symmetry results of Burke and
Taylor only slightly effect the value of the 2s-2p ex-
citation cross section. Since this transition is apti-
cally allowed, the principal contribution to the cross
section comes fram higher symmetries. Fram these
examples, we are encouraged to believe that the LA
method is quite capable of handling a variety of
atomic excitation prablems.
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TABLE I. Selected K-matrix elements for e-Li scattering at k ~=1.0 Ry in the 2 CC (2s, 2p)
approximation.

LS Ki, (L iL}'

0.0760
0.0725'
0 0753
0.0735'

K)2(L,L —1)

0.2944
0.2950
0.2966
0.2949

K22(L —1,L —1)

0.3535
0.3630
0.3530
0.3564

1.8029
1.8025
1.8033
1.8310

0.5205
0.5183
0.5210
0.4782

0.1209
0.1115
0.1208
0.1698

21 0.5574
0.5563
0.5569
0.5644

0.3981
0.3978
0.3992
0.5110

3.0730
3.0214
3.0820
4.5137

'
~ EJ

~
presented; for L =0, L + 1 instead of L —l.

LAM R =20.000 R = 1000.000 100-pt. mesh (25 pts. in each rcglon: 0.0—0.1 0.1—0.5
0.5—1.5, 1.5—10.0, 10.—20.(klp).
'R matrix (Refs. 35 and 9).
NIEM (Refs. 36 and 11).

'NDEM (Ref. 24).

B. e-Hz+ collisions

We have performed calculations for excitation of
Hi+ by electron impact in both two-state (les, lo„)
and four-state (los, lo„,ln„+, le„) close-coupling
approximations. The target states were represented

by the linear combination of atomic orbitals-
molecular orbital —self-consistent-field (LCAO-MO-
SCF) wave functions determined by Cohen and

Bardsley. Each wave function employed a 1s 2s 2p
STO basis with full variation of the linear and ex-

ponential coefficients. The energies calculated from
this basis agree quite well with those of the exact
H2+ wave function. This basis gave a threshold

energy of 0.868 Ry for excitation of the 1e„state
and 1.34 Ry for the l~„state. We found that a
Gauss-Legendre quadrature mesh of 45 points, dis-
tributed as follows: (I} 5 points, 0.0—0.5; (2} 20
points, 0.5—1.5; (3) 10 points, 1.5—3.0; and (4) 10
points, 3.0—10.0ao, gave highly converged collision-
al parameters. We selected R, = 10.0@0 and
R =100.0ao. At R, we matched to regular and
irregular Coulomb functions. As noted before, all
H2+ calculations were performed with the LUM
representation of the one-electron terms. In Table
II (a), we present a convergence study for the
1crz —lo„excitation cross section at two energies
above the 1'„ threshold at the equilibrium distance
of 2.Gao. A similar convergence trend is observed
for the resonant parameters below the 1o„ thresh-

old. We note, as in the SE case, that the exchange
terms converge in fewer partial waves than the solu-

tion to the coupled equations. The introduction of
the ~„states changes the excitation cross section by
less than 10%. However, between the lo„and 1+„
thresholds, there will be resonances due to the closed
1m„channels. Thus the 10% change at 0.9 Ry due
to the m„states is the enhancement of the back-
ground. In addition, we present in Table II(b} the
results at a few selected symmetries of employing
the correlation-term formulation; the agreement
with the LUM results is excellent.

In Table III, we present the values for the posi-
tions (E„) and widths (I') of selected resonances
below the 10„ threshold. These parameters were
determined by fitting a Breit-Wigner plus quadratic
background form to the eigenphase sums calculated

by the LA method. We compare with the calcula-
tions of Hazi, who used a Stieltjes-moment-theory

procedure, of Takagi and Nakamura, who used a
Kahn variational scheme, and with Bottcher and
Docken, who used a projection-operator technique
which represents the target by a configuration-
interaction (CI) wave function and the incident elec-
tron by a Coulomb wave. In general the agreement
is quite good. Particularly encouraging are the re-
sults for the '~„resonance, since adding the 1m.„
states brings the width into much better agreement
with Hazi. In Figs. 1 and 2 we present the width as
a function of internuclear separation R for the 'Xg
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TABLE II. (a) Convergence study of the excitation cross section Q ( 1crs, lo „)as a function of number of states and par-

tial waves at R, =2.Gao for e-H2+ collisions. (b) Comparison of the LUM and correlation-term (COR)- approaches for

2 CC e-H2+ scattering for the excitation cross section 1'~lcd„at 0.9 Ry.

Q "s( lcrs, lo„) (ao)
States

Channels
k~ (Ry)

0.90
1y
3g
ly
3g

'rIg

0.406
0.002
0.719
0.432

2CC

0.432
0.040
0.730
0.454
0.555

0.434
0.040
0.731
0.455

(a)

4(3)

0.433
0.040
0.731
0.456

5(3)

0.434
0.040
0.731
0.456

0.438
0.002
0.709
0.451
0.499

4CC

0.465
0.040
0.720
0.474
0.496

2.00
'Xg
3g
lg
3g

0.139
0.014
0.309
0.183

0.192
0.124
0.337
0.251
0.199

0.202
0.151
0.343
0.265

0.201
0.152
0.343
0.265

0.204
0.159
0.344
0.269

0.147
0.015
0.288
0.178
0.182

0.198
0.125
0.316
0.247
0.191

2lg

71c

11e

lip

Symmetry

ng/n,

LUM

Q (a(') )

COR
H))'

3g

2/2
2/3

2/2
2/3

0.406
0.432

0.0016
0.0397

0.410
0.440

0.0016
0.0397

—0.895
—0.891

—0.270
—0.269

3g

2/2
2/3

2/2
2/3

0.710
0.730

0.432
0.454

0.712
0.729

0.435
0.454

—0.020
—0.023

—0.269
—0.269

'Equation (22b) with E removed from E„.

and 'X„symmetries, respectively. Again, our re-

sults with a 4CC calculation are in good agreement
with those of other CC-like calculations. The
greater differences between the LAM and Kohn
variational results away from equilibrium can prob-
ably be attributed to differences in the representa-
tions of the bound Hz+ states. The differences be-

tween the LAM and the Stieltjes method are some-
what more difficult to explain. The Stieltjes ap-
proach incorporates more correlation while the

LAM includes a better representation of the channel

coupling. We are in the process of extending the
optical-potential formulation to H2+ collisions in

hopes of resolving this disparity. We also note that
the width changes by as much as 20%%uo between the
2CC and 4CC calculations away from equilibrium.

The rather stunning disagreement for 'Xg scattering
with the Bottcher and Docken results can probably
be attributed to their rather crude approximation to
the continuum wave function. Finally, in Table IV



27 LINEAR ALGEBRAIC APPROACH TO ELECTRONIC. . .

TABLE III. Resonances below the lo„ threshold for
e-H2+ scattering at R, =2.Gao.

Description E (Ry) I' (Ry) O

a
b
c
d
a
b
c
d
e
b
c
e
c

'LAM, n, =2, n, =n, =nb ——3.
LAM, n, =2, n, =n, =nb ——4.

'LAM, n, =4, n, =n, =nb ——3.
4Takagi and Nakamura (Ref. 22).
'Hazi (Ref. 39).

0.4438
0.4420
0.4321
0.402
0.6245
0.6255
0.6228
0.6273
0.623
0.7590
0.758
0.759
0.6255

0.102
0.104
0.114
0.118
0.048
0.049
0.049
0.052
0.054
7.7( —4)
8.7( —4)
9.0( —4)
0.038

O

O
O

O

1.0 12 1.4
I 1 I I 1

1.8 1.8 2.0 2.2 2.4 2g}

R (a,)

IV. SUMMARY

FIG. 2. Resonant width as a function of internuclear
distance for lowest 'X„resonance in e-H2+ scattering.
Curves labeled same as in Fig. 1.

we present the total 1og —10„excitation cross sec-
tions as a function of energy for e-Hz+ collisions at
R=2.0ao. The results from the LA methad for ex-
citation of Hz+ are indeed encouraging and warrant
the extension of the method to more complex sys-
tems.

CI

~O

tO
O
O

We have extended a LA method to treat excita-
tion of atoms and molecules by electron impact.
The development is performed along traditional
lines of obtaining a set of radial, coupled integro-
differential equations for the scattering electron by
making a single-center expansion of the system wave
functions in terms of bound target states. This set
of coupled equations is converted to an integral
form which in turn is transformed to a set af linear
algebraic equations whose solution is the continuum
orbital at discrete values of the radial variable. This
set of matrix equations is solved by standard linear
systems routine. The method is particularly effi-
cient in treating the nonlocal exchange terms and is
well suited to the new vector computers. We find
that we can transfer most of our lore at the SE level,
such as choice of quadrature and distribution af
meshes, directly to the excitation case. The ane-
electron terms, which provided no complications at
the SE level or for atomic excitation, in certain
cases, gave rise to instabilities in the e-molecule exci-

O
O (

2.41.4
I I I I I I

1.2 1.8 1.8 2.0 2 2 2.8
R (aO)

FIG. 1. Resonant width as a function of internuclear
distance for the lowest 'X~ resonance in e-H2+ scattering.
Curves are labeled as follows: solid line (circle), present
results (4 CC); chain dash (square), Kohn variational (Ref.
22); chain dot (cross), Stieltjes moment (Ref. 39); dot (tri-
angle), projection operator (Ref. 40). Symbols represent
the calculated points.

k2

1.00
1.20
1.40
1.60
1.80
2.00

Q(1(rg~ 1n„)(a )'0

4.61
4.51
4.23
3.96
3.74
3.56

n, =2, n, =4, n, =3, nb ——3, R =100.0, A,„=5.

TABLE IV. Total excitation cross section 1cr~~lo„
e-Hq+ scattering.
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tation solution. This problem was circumvented by
using Lagrange multipliers or correlation terms.
Comparisons with some other calculations for exci-
tations of hydrogenic and Li-like ions and of H2
were quite encouraging since they showed remark-

ably good agreement. We are currently engaged in

merging the coupled-states LA method with the ef-
fective optical-potential approach. On completion,
this composite approach should allow for a sys-

tematic scheme for including the effects of high-

lying states with little increase in storage in the col-
lisional code.
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APPENDIX: e-H2+ SCATTERING
EQUATION

We present the details of the form of the scatter-
ing equations for e-H2 collisions in the single-
center expansion. For e-H2+ collisions, we have a
two-electron system and therefore the total system
wave function must be either singlet or triplet. The
form of the wave function in Eq. (4) is

%(12}= g [F (l)4 (2}
2

+(—1)'F (2)& (1)]. (Al)

where S=O (1) for singlet (triplet) symmetry. The
close-coupling equations (9), then have the form

L„f„(R)=g J[V~(R)+W~'{R ~R')

+ W~'(R
~
R')]f r(R')dR', (A2)

where

V~(R)=[V~ (R)+ V~. (R)]5(R R'),
Vr/(R) = g C(l' l]l )5 vx(R),

(A3)

v], (R}=—4(p /p ) p

Vrr'(R)=2+C(l'l{l }v]v {R}
Ae

vx {R}=X C{p )]p }{—I)"yi(0 {{} IR),
PaPa'

W~{R ~R'}=2(—1}s

x g g C(p~Al~)C(l~l]pa)
A,g PaPa'

Xg (R ~R'), (A4)

g (R
~

R') =P~ (R)P~{R')(r& /r &
)~r

&
',

W~'(R ~R')=2( —1) (E~+E~ E)—
with

XP. (R)P.(R'), (AS)

yx(&B ~R)= fA(r)B(r)(r /r )"r

r & (r & )=min(max)[r, R],
p&(p&) =min(max)[R, R~].

The term C is a product of Clebsch-Gordan coef-
ficients of the form

C(l] 1213 )= (21]+ 1/213+ 1)'

(l]l2l3
~

r]] ]m2]]]3)

&(C(l]lgl3
~

000) .

The tenn y =(al~ m~ ) labels a channel and
a=(p p } labels a state. The total symmetry
A=rn +p, is a constant. The symbol P (r) is

used to represent the radial expansion term P ] (r)
in Eqs. (A2)—(A5).
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