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A method for determining complementary energy functionals within a density-functional
framework is derived. In particular, if H[P] is defined as a functional of the density equal
to an energy functlonal Ey[P] less a Coulomb energy term (v/2)
X |x—y | ~'P(x)P(y)d’y d*x with va posmve constant, then the functional
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with N[P]= f |R3P(x)d 3x is complementary to Ey[P] whenever the second variation of
H[P] is positive. Explicit forms of E;[P] for the Thomas-Fermi and the Thomas-
Fermi—Dirac—von Weizsacker theories are given and used to obtain both lower and upper
bounds to the atomic energies of these theories. A discussion on the corresponding

Hohenberg-Kohn complementary functional is also presented.

I. INTRODUCTION

Much effort has been expended in the search for
an energy functional of the density which yields
both good atomic energies and accurate atomic den-
sities.!~7 The early theory of Thomas' and Fermi?
in its unmodified form, although exact for infinitely
dense systems, has been found to be inappropriate
for atoms. In 1935, von Weizsicker’ suggested a
correction to the Thomas-Fermi kinetic energy
which remedied three major defects of atomic TF
(Thomas-Fermi) theory; in TFW (Thomas-Fermi—
von Weizsicker) theory (i) the density is finite at the
nuclei, (ii) negative ions exist, and (iii) the density
falls off exponentially extending out to infinity.
Other corrections such as Dirac’s exchange term*
and Scott’s inner-shell contribution® also have been
of fundamental importance.6 Recently, attempts
have been made to refine the energy functional such
that shell structure can be obtained.’

Generally, solving for atomic densities and ener-
gies becomes a more difficult problem each time the
energy functional is improved. Typically, an Euler-
Lagrange integro-differential equation must be
solved for varying values of the chemical potential,
the Lagrange multiplier, until the value is found
which yields a density that integrates to the correct
number of electrons. When molecules are being
studied, the calculations are even more involved and
often impractical since spherical symmetry is lost.

For a given N-electron system, the energy of a
known functional can be determined alternatively by
searching for the N-electron density that minimizes
the functional. The obvious flaw with this approach
is that in practice only an upper bound to the energy
is obtained. In the present work, standard variation-
al methods are combined with Poisson’s equation to
give a complementary energy functional. Assuming
certain specified conditions hold, the new comple-
mentary functional will have a local maximum at
each local minimum of the old energy functional
and the value of the functionals will be identical at
these extrema. Thus, one can obtain both upper and
lower bounds on the energy of a system by evaluat-
ing the original energy functional and its comple-
ment at trial densities, and one can make the differ-
ence in these bounds arbitrarily small simply by im-
proving the trial densities.

II. THEORY

The basic approach in the theory of complemen-
tary variational principles is to find two functionals
which are equal at extrema but whose second varia-
tions are opposite in sign.® This is accomplished by
first introducing a general functional which has a
domain consisting of function pairs and then obtain-
ing the desired complementary functionals by en-
forcing “complementary” restrictions on the domain
functions.

Let L, be a subspace of a Lebesgue space consist-
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ing of functions in 1R", real n-dimensional space.
Define T to be a linear operator on L, onto a func-
tion space Lg with adjoint T*: Lg¢—Ly, where Ly
is the dual of L, and T* is defined such that

(6,Tp)= fV (T*0)(x)p(x)d"x +[6,7p]  (2.1a)
= [, (T*0)x)p(x)d"x
+ [y, (r*0)x)plx)d" ~'x (2.1)

for all pEL,, 6 ELg; here V, is the domain of p,
aV, is the boundary of Vas (, ) is an inner product
on Lg XLg, and [ , ] is a boundary term with 7:
L,—Lg being a linear operator and 7*: Lg —-»L:, its
adjoint.

Consider the canonical functional

116,0]= [, (T*0)(x)p(x)d"x — W [6,p] (2.2a)
=(6,Tp)—W[6,p]

— [, (T*0) x)p(x)d"'x (2.2b)

defined on LgXL, with W[6,p] assumed to be
twice differentiable. Expanding I[60+en,p+€]
about (6,p) gives

I[0+en,p+e£]=1[6,p]+61
+8 +0(€?), 2.3)
where the first variation 81 is

(T*60)(x)— 22 |anx

81=fV"e§(x) 5000)

SW
- faV (7*en )(x)p(x)d™ ~'x (2.4)

and the second variation 82/ is

2
2 - —_— __8__61 n __ n
8 =< fV £(x) 5 55 || f §(x) 51 & |
—fi<’fl > £_< §>—€—2 f (T*n)(x)E(x)d™ 'x . (2.5)
"0 /T2 8 86 2 Jav, .

For (0,p) to be a stationary point of I[6,P], 8]
must be zero, implying

T =%ﬁﬁl in v, , (2.62)

T*0 = —W[iﬂl (2.6b)
and

7p=0 on dV, . (2.6¢c)

To determine the first of the complementary
functionals, it is assumed that © =6 + €7 can be ob-
tained as an explicit functional of P =p + €& by solv-
ing the equation

7p = SWIO.P @7
56
and then defining J[P] to be I[O[P],P]. Expand-
ing J[P] about P =p gives
J[P]=I[6,p]+8% +0(€?), (2.8)

where 8J =0 at P =p and 827 =8%I[O[P],P]. The
first variation of Eq. (2.7) leads to the additional
equation

kN 8w
5 80 &= 211+0(e) 2.9

[

Substituting this relationship into the expression for
821, Eq. (2.5) gives the result

——f £ |2

€? 8w
2 <’7’ 562 ")

—e? faV (7*n)(x)E(x)d™ " x . (2.10)

& l(x)d™

The complement of J[P] is found by sblving

SW[6,P]
5P

Conventional methods dictate determining P as a
functional of ©, but P[6] cannot be expressed in
closed form when cons1dermg most energy function-
als of interest; however, using Ponssons equation,
Eq. (2.11) can be inverted to give O[P]. Defining
the complementary functional G[P] as I[©[P],P]
and expanding about the stationary point p yields

G[P]=I[0,p]1+8%G +0(€?), (2.12)

where 8G =0 at P=p and 8G =84[6][P],P].
Following similar logic to that used in determining
82J, the first variation of Eq. (2.11) leads to the re-
sult

T*6 = (2.11)
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The crucial theorem has now been proved.

2
lT,__S_Q‘I_’ PO V:’ +0(e), (2.13) Let (6,p) be a solution to Eqgs. (2.6) and suppose
56 dp dp that it is possible to obtain solutions to Egs. (2.7)
. and (2.11) in the form ©=O[P] and 6=6[P),
which implies respectively. Then for P sufficiently close to p, the
€? upper and lower bounds
2 E° n ~
86=7 Ju, 60| € | GIPI=I[8[P],P1<Gp]
=I[6,p]=J[p]l<I[O[P],P]=J[P] (2.15)
UDrvey 2.14
< ) @14 hold provided that
J
8G =1 f (P—p)x) |2 (x)d" ——(é— ; ‘;gm 0)} (2.16a)
8"G: rore; n=34,... (2.16b)
where » represents negligible and ¢ represents vanishes and
=1 [, P—p)o) |2 (wd* +5(0-s, 502 T e-0)
— [4 [7*(©@=0)]x)(P —p)(x)d"~'x >0, (2.17a)
8" : » or &y n=3,4,... . (2.17b)

If all the inequalities in Egs. (2.15), (2.16), and (2.17) are reversed, the modified equations remain true.
III. APPLICATION

In density-functional theory, the energy E of an atomic or molecular system consisting of N electrons is de-
fined as the infimum of an energy functional Ey[P] over a set of N-electron densities,

Lay=|PEL: flRJP(x)d3x=N

where L is a function space chosen to ensure Ey[P] will be finite. Here it will be convenient to choose L to be
a Lebesgue subspace of densities P for which lim ,|_,, {8H[P]/8P(x)} equals a constant independent of
direction,

H[P]EEU[P]—%II |x —y | "'P(y)P(x)d’y d’x

and v a positive constant (the standard value of v is one). The extremum densities must satisfy an Euler-
Lagrange equation which is found by taking the functional derivative of Ey[P] over the set L with the number
of electrons N[P]= f 1RJP(x)d 3x restricted to be constant by a Lagrange multiplier equal to the chemical po-

tential p-

0= SP( 7 (Ev[P1=pNIPD|p=p
8Ey[P]
-2 . 3.1

P=p

To determine the complementary energy functionals, the stationary point equations from Sec. I1, Eqgs. (2.6a),
(2.6b), and (2.6c) must be made equivalent to the above Euler-Lagrange equation. This is accomplished by
making the following set of assignments:

V.=1R% L,=L, (3.2a)
plx)=p(x), 6(x)=(To)(x), cEL , (3.2b)
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(T*Tp)(x)= VfR’Tx&(z;—I_ds’ r=0=1*,

Tp= ——[-—-Blu;(;‘a; To, T*(To)= —-[——E]'W;’;a’

The densities are assumed to be defined over all
space, and the variation is performed within the set
L. In Egs. (3.2b) the canonical functions are as-
signed; notice that 0 is defined as the T image of an
element in L. Since the operator (Kp)(x)
=v f &3 |x —y | ~'p(y)d? is linear, symmetric,
and positive definite, K can be decomposed as in Eq.
(3.2c). Finally, W[To,p] is defined through Egs.
(3.2d).

The form of I[6,P] can now be derived. Let
TS =To+eTw and P=p+e€f, where € is a small
positive number and both S and P are elements of L.
Integrating Egs. (3.2d) implies

W|TS,P]= 7(TS,TS)—H[P]
3
+ [ P (3.3)
From Eq. (2.2a) one obtains
ITS,Pl= [ _,(T*TS)x)P(x)d’x — (TS, TS)
3
+H[P]—p [ s P (3.4)
Requiring TS = TP leads to the J functional:
J[P]=I[TP,P] (3.52)
= [ s (T*TPYx)P(x)d*x — (TP, TP)

(3.2¢0)
B Hlpl+uNIp]= —S—Igp—lw . (3.2d)
r
_v P(x)P(y) 3 3
T2 1R3f1R3 [x—y | dydx
_ 3
+H[P]—p [ s PO (3.5¢)
=Ey[P]—uN|[P] . (3.5d)
G [P] is determined by solving
SH[P
* = .
T*(TS) 5P +u (3.6)
for TS. Using Poisson’s equation
V2 _SG) s
fR3 =y ————d’y = —47S(x) (3.7
results in the expression
1 o2
=——TV? |-
s 4mv v
__1 rv2|8H[P]
= 41rv TV SP ,l,p ’ (3.8)

where pp, defined by the limit

_ . SH[P]
pp= lIm o P(x) (3.9

is included to ensure that the boundary terms below
will vanish. Substituting the expression for TS into

+H[P]—p [ P(x)d (3.55)  Eq. (3.4), the G functional is found
GIPl=I le TV %’;([5)] —up |,P (3.10a)
= W [ [sm e P(x)d’x +H[P]—p fm,P(x)d%c
321:21'2( _8%[%1—” g ,Tvz{?}{(f’ —he ) (-100)
=H[P]+j4l; fm3v2 6P(x) fm3—|;}ly_}):_|—d3 3x ,ufmsP(x)d3x
B 321lrzv fm’ %_1;{([5)1_#" [fm’ |~y |7V 88};()}:) ke |y |dx . (3.100)

After multiple integrations by parts as well as repeated use of Poisson’s equation, the following form of G[P]

is obtained:
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ctri=HPl- B pat— o= [ |V _8%([%1 x4 ) [ P
- 8717"’3. aIR? v 88—}}{(16[_)1_”" —S_P_([x_)l_m’ 2x+#ﬁ- 1IR3 v 881;(1}:) —Hr
- L T e
32:r v_’ 31R3 v %1;{(:) Blald fma |x—y|~'V? %%g)l—up d |d*x
3211r2vﬁ' 2R %I;(:) —He V’fm,|x-y|—lv2 %’;(; —pp | [d%x . (3.10d)
All the boundary terms vanish leaving only single integrals, and G [P] simplifies to
G[P]=H[P]- fl 33?([—31” )d3x —Ffms *_SF([_;l d’x +p—p) fmaP""da"- (3.10¢)

It must now be verified that the extrema of J[P] are necessarily extrema of G [P] and that G [p]=J[p] at each
extremum p. The Euler-Lagrange equation associated with J[P] implies p will be an extremum of J[P] when-
ever

_yip
8P(x) |p

—n. (3.11)

— Py 3
vfm3 |x—y | dy+ 8P (x)

This guarantees that p is an extremum of G[P] since

5G[P]| _ 8 _ H[P ]_ )
8P(x) |,_,~ 8P(x) H{P] fms 5P(y) MP Py —p [P
1 SH[P] SH[P] _ 3
+ 5y Juws [ 8P(y) “"]V 2 |7, (3.122)
_ SH[P 8H[P] _ B 82H[P] Sup
~ P(x) sPx) 7|, S |Pesp ) ~ 501 | |p P
1 8’H([P] Spp .| | SH[P .
— 1t e 8P(x)8P(y) _ OP(x) sPy) M7, 4y (3.12b)
= 1 8’H[P] dpp 2| 8J[P] ,
= ko=t 3 Jis | 5P P ) ~ 5P 5P(x) |5, )|”” (3.12¢)
=0- (3.12d)
The fact that G [p] equals J [p] follows upon substituting Eq. (3.11) into Eq. (3.10e) as shown:
2
= _pPY) 43 1 )
G[p]—H[p]+f,Ra fms x—y | &’y —p |px)dx —— | o TE T dx

+(pp—p) [ P00 (3.132)
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_ v (x)py) ;3. .3 3
=H[pl+7 f1R3f1R3£—L|x Ty —p [ P00 (3.13b)
=J[p] . (3.13¢)

The final condition that must be satisfied if J[P] and G [P] are to be complementary functionals is that their
second variations be opposite in sign. Assuming J[P] is truly a minimum, then

(P —p)(x)(P —p)(y)

2JIP —pl=~ — _ 3, .Y 3 13
SUIP—pl=7 [ \P—plh[P—pld’x+ [ [ . ey dxdy (3.14)
will be positive for P sufficiently close to p, where
82H[P] 3
h[P —p](x)= Y= = (P—p)(y)d . (3.15)
P=pl0= [, SPxIPY) |5, ¢ 7

Thus, G[P] will be the complement of J[P] at P =p only if

SZG[P—p]=—%fle(P—p)(x)h[P—p](x)d3x _Z—IV 1R3|€h[P—p](x)|2d3x

(P —p)(x)d3x (3.16)

dup
+ (P —p)(y)d® =
fo® =Py [, 8P(x) |5

is negative.
Under what condmon is 8%G indeed negative? Restricting the search over trial densities to Ly so that
(P —p)(y)d3y =0, it would be more than sufficient if

2H[P —pl=7% fle(P —p)(x)h [P —pl(x)d’x (3.17

were greater than zero for all trial functions near p. This result also follows from the general theorem® which
states that if W[TS,P] is convex in TS and concave in P, then the inequalities

G[P1<I[Tp,p]<J[P] (3.18)

are satisifed. (In addition, it should be noted that if the concave-convex behavior of W[TS,P] is strictly
obeyed, then the extremum densnty p is unique.) Since the kernel |x —y | ! in Eq (3.2¢) is positive defin-
ite, W[TS,P] is strictly convex in TS. It therefore suffices to show that W[TS,P] is concave in P. The term
m f IR 3P(x)dx is linear, thus convexity of H[P] will guarantee the complementary nature of G[P] and J[P).
Unfortunately, H[P] is not always of a convex form in energy density functionals. For specific theories which
yield an H[P] that is not convex, it will simply be assumed in this paper that Eq. (3.18) is valid.

When J[P] and G[P] are indeed complementary functionals, then G[P] obtains a maximum at the ex-
tremum p. This implies that the chemical potential in Eq. (3.10e) plays the role of a Lagrange multiplier on
the number of electrons. Therefore, the energy E of an atomic or molecular system consisting of N electrons is
simply the supremum of E; [ P] over the set Ly where
_sH[P] |

_ _ SH[P] 3, 1
E [P]=H[P] fle 5P (x )P( x)d x 87v flR’ v S5P(x)

3 3
d’x +pup flR3P(x)d X . (3.19)
Henceforth E; [ P] will be referred to as the Poisson complementary functional.

IV. EXAMPLES

In this section the form of the Poisson complementary functional is derived for the TF, the TFDW
(Thomas-Fermi—Dirac—von Weizsicker), and the HK (Hohenberg-Kohn) functionals. The function space
over which the supremum of the Poisson complement equals the energy is discussed for each theory. Trial
functions are then used to obtain lower and upper bounds on the TF and TFDW atomic energies as well as es-
timates to the true TF and TFDW densities.
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A. Thomas-Fermi theory (Ref. 9)

In atomic TF theory, the energy functional of the density is the sum of a Coulomb term, a kinetic energy
term, and a nuclear electronic term
TFrpy_ ! P(x)P(y) ,3. ;3 3 5/3 3 P(x) .3
Pl=~+ Bl 2 - 22X )
EFPI=1 [ s [ s ey Ay v [ PP -Z [ MLEE @.1)
where y=(372)*3/2 in atomic units is the kinetic energy coefficient and Z >0 is the nuclear charge.
Remembering that the H functional is the energy functional less the Coulomb term, Eq. (4.1) implies

TFrpy_ 3 5/3 3, M 3
H [P]—,yflR3P dx—-Z [ |x|dx 4.2)
Therefore, Poisson’s functional, Eq. (3.19), in TF theory has the form
2
TF p|__2 /313 _ b s op23 oy Z || g3, ,TF 3
EfF|P|=—5y [ PP0d% —o— [ |V [vP?) PR IERE [ P>, @3
where
TF_ 1| 2/3 Z
l“LP = llm YP (x)— . (4-4)
|x|—oc0 |x |

To ensure that Eg [P] and E{ " [P] are truly complementary functionals, it suffices to show that 82H™F[P —p]
is positive; this is easily demonstrated:
2

PX) | axso0. (4.5)

2gTFIp _ ,1—L+ 5/3
SHTP—pl=37 [ 0" |

1

Bounds on atomic TF energies can be determined by substituting a trial function into Egs. (4.1) and (4.3).
Noting that the gradient term in Eq. (4.3) is integrable only if yp**(x)=Z/|x | near |x | =0, the following
function was selected:

z
Y
here a equals (32/105)(35/3m2)!/*ZN ~2/* to ensure normalization

[ Px)d*x=N. @.7)
IR

1
|x [(1+a x|’

P¥Y3(x)= (4.6)

This trial function not only satisfies the “TF cusp condition” but also falls off as |x | ~® as in the exact case.
Furthermore, the chosen form of P(x) can easily be integrated analytically and yields the result

1/3 /3
EFFNG) 16 [ 35 sz, 3z| EFWNZ) __ 135 5056 567N
Z2NV3 35 | 3gp? 429 "IN |= Z2N'Y2 T 35 | 342 143  56Z
EJF(N,Z)
In the neutral case these inequalities imply
—0.7840Z7 <E™(Z,Z) < —0.7622Z7/* ; (4.9)

the exact expression is ETF(Z,Z)=—0.7687Z7/%. Using the TF functional along with its Poisson complement
the zero-parameter trial function chosen here bounds the neutral TF energy to within better than 1.4%.
B. Thomas-Fermi—Dirac—von Weizsacker theory

For atomic calculations, the TFDW theory is more appropriate than the TF theory because the TFDW func-
tional includes a gradient correction to the kinetic energy as well as an exchange term:
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TFDWr p1__ i TF| w T pl/2 2 3 4/3 3
EFPV[PI=EJTP]+ fm3|vp (x)|%d* —3C, fmsp (x)dx . (4.10)

Often w and C, are left as parameters in the theory, but it will be convenient in this subsection to assign these
coefficients their standard values of 1° and (3/7)!/3,* respectively. Continuing as above,

H™Y[Pl= 3 [, | VP20 |’ dx+ 53 [ P/ (x)dx
1/3

N R BV

T

3

4

P(x)

3
x| d’x 4.11)

which implies
1/3

TFDWrp1_ 12 21273 53073y o 1|3 4/3(\ 73 TFDW 3
E[FPV[Pl=—3G3m?P7 [ PPdx + J o PPdx PV [ PG
173 2

1 g VZPI/Z(X) VA (3772)2/3 2/3 3 173 3

il — P x] + 5 P (x)— - Px)||dx, (4.12)
where
1/3
TFDW _ v2Pl/2(x) 4 (3,”.2)2/3 2/3 3 13

EV= im |- Tty P W= | P 4.13)

One hopes to be able to prove that for each extremum & the second variation of
JTFPW| p]=ETFP¥[P]—uN[P] is positive and the second variation of GT*PY[P]=E["PY[P]—uN[P] is neg-
ative whenever P is “near” p. Unfortunately, the addition of Dirac’s exchange term makes it difficult to deter-
mine the sign of the second variations in general (see Lieb’s discussion of TFDW theory'?). Direct computa-
tion gives

2 1/3 2
2 —pl= L g |Px) 3,113 4/3 Plx) 3
[P —pl=5 fmsp(x)'v %) 1| d>x—~ '7 l fuﬂp (x) o0x) 1|dx
(3223 N I ’
e fm,p (x) e d’x
1 pxp) [P |[Pw) .5
*3 fm’ fm3 [x =y | [ p(x) ply) Hdyd'x “.19)
and
dolpm L) 13 ]” P |
2 =_1 o | £\x) 3., 4 |3 4/3 Pix) 3
8?G[P —p]= 8j'map(x)lv petd | Char e Al C) ) 1]dx
2
(3m2)?3 P(x) _
= [P0 ;)(—;‘)——1 dx—5 [, | Vh[P—plx)|%d’
3 Ouir P d? (4.15)
+ [ PPy [ o) f=,,( —p)x)dx :

where h [P —p](x) is defined in Eq. (3.15). Although the exchange term in each of these expressions does not
have the desired sign, the integrand of these exchange terms is dominated by the integrand of the TF kinetic
energy for all x such that p(x) > (373)~ . It is assumed in this work that the N-electron trial functions P(x) do
indeed satisfy the condition that §2/T'P¥[P —p]> 0> 82GTFPY[P —p]; however, it is important to note that
this necessary conjecture has not been proved.

The following form was chosen for the TFDW trial functions:

32 . n—1 . 1—-k 2
p(x)=_Z;TQ le-zm su;;lfxT —(=1"S D, |- su;ghfxr ] ] . 0<B<Z (4.16)
K=1
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FIG. 1. Curves bounding the exact TFDW atomic en-
ergies (in hartrees). The dashed curve of energies divided
by nuclear charge raised to the -;— power results from
two-parameter functions being substituted into the
TFDW functional. The three lower curves were derived
using Poisson’s complementary functional with two-,
four-, and six-parameter functions.

with C? chosen to ensure normalization
[ Px)d’x=N. 4.17)
IR3

The exponential part of this function guarantees the
cusp condition will be satisfied and the first term in
the square brackets gives the correct long-range
behavior for a TFDW density with the additional
terms tending to refine the density’s behavior near
the atomic center.

Convergence to a good upper bound on the neu-
tral TFDW atomic energies requires use of only the
first two terms in the expression for P(x):

P(x)=£3c—2 e—Z1x| iil_lh_BJLL_Dl
T Blx |
(4.18)

TABLE I. For five neutral atomic systems, the TFDW
energy (hartrees) is given along with the upper and lower
bounds obtained from two- and six-parameter functions
when applied to the TFDW functional and its Poisson
complement, respectively.

Z EfFPV/Z73 (n =2) ET™Y/Z77 E[®Y/Z77 (n =6)

1 —0.26172 —0.26183 —0.26337
4 —0.33403 —0.33436 —0.33921
7 —0.37197 —0.37242 —0.38004
10 —0.39743 —0.39794 —0.408 33
18 —0.44007 —0.44063 —0.457 66

©

D N @

RADIAL DENSITY 4mixiZp(x)
N W N O

00 05 10 15 20 25 30 35 40

RADIAL DISTANCE IxI

FIG. 2. Exact TFDW radial density (a.u.) for the neu-
tral neon atom—solid curve. The dashed curve arises
from the six-parameter lower bound radial density and
the dotted curve arises from the two-parameter upper
bound radial density.

Upon optimizing B and D, the results of Table I
and Fig. 1 are obtained. The table indicates that the
absolute percent error in EZFPY increases with Z,
but even for argon, Z =18, the error resulting from
the two-term function is less than 0.13%.

To obtain reasonable lower bounds to the TFDW
energies, a six-parameter function was used. As
seen in Table I, the lower bound energies are not as
close to the exact values as are the upper bound en-
ergies (the error in E™®V¥ for argon is 3.86%).
However, the convergence to the exact energy is
surprisingly rapid as can be seen in Fig. 1 where the
lower bound curves are plotted for N =2, 4, and 6.

One might expect that the Poisson complementa-
ry functional would more easily yield better densities
than the TFDW functional, because obtaining a
given degree of accuracy in the energy requires the
lower bound to use a function with more parameters
than the corresponding upper bound function; this
turns out to be the case. In Fig. 2, the neon densities
that give the energies of Table I are plotted. The ra-
dial density that results from the Poisson functional
predicts the position of the true maximum quite ac-
curately and follows the exact curve more closely
than the corresponding upper bound curve. Furth-
ermore, the value of the density at the nucleus
predicted by the lower bound curve is 168.19 in er-
ror less than 0.75% from the true value of 169.46;
the upper bound curve gives p(0)=186.39. These
results strongly attest to the validity of using com-
plementary variational methods in studying TFDW
theory.
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C. Hohenberg and Kohn theory

In 1964, Hohenberg and Kohn'! proved the electronic energy of a molecular system with potential V(x) is a

universal functional of the density

PP=T1P+1 [, [, POPG) g3y 4% K [P [, VxP(x)ds (4.19)

R [x—y|

where T[P] and K[P] are the kinetic energy and exchange energy functionals, respectively. Furthermore,
Hohenberg and Kohn showed that their functional satisfies a variational principle obtalmng a minimum at the
true ground-state density. Using the theory from Sec. III, the Poisson complement of EXX[P] can be derived

EF<{P1=T[P]- [, BT[P] p(y)i3x +K[P]—

R3 8P(x)
s 7 | STLP] | 8K[P]
87 Y IR3 8P(x)  &P(x)
where
ppo= hm 5P(x)+ ( ) )

In practice, the functional E

tlon of G

8’GHX[P—p]=—7

+ [ P—p)dy [
with

82
HK —
RHK[p —p](x)—fl

R® 3P (x)5P(y)

it is observed that the space of density differences
(P —p)(x) is independent of V(x) and thus univer-
sal. The third term in Eq. (4.22) vanishes when only
N-electron densities are considered, and, as above, it
suffices to prove that

82H[P—p]l=1+ flRJ(P —p) ()R TE[P —p](x)d>x

is positive. This term is simply the sum of the
second variation of the kinetic energy functional and
the second variation of the exchange energy func-
tional. With the explicit form of these functionals
unknown, it is difficult (and maybe impossible) to
determine a function space over which 82 H [P —p]
is positive. Here, it must be assumed that such a
function space can be found.

One final observation can be made concerning the
HK Poisson functional. Whenever V(x) is Coulom-
bic, the gradient integral in Eq. (4.20) is unbounded
unless

Spp(x)
1R® §P(x)

(T[P1+K[P]) |5

_K_[ﬂp(x)d3x +M§K flR3P(X)d3x

R3 8P(x)

d’x , (4.20)

(4.21)

HK[ P] will only be of interest in a function space over which the supremum of
EFX[P) e%xals the electronic energy This space consists of those densities P(x) for which the second varia-
[P]= E{"([P] —uN[P] about the extremum density p is negative. Writing

fl (P —p)x)h X[ P —p](x)d* -—f | VRHEK[P —p](x) | 2d°x

(P —p)(x)d>x 4.22)
P=p
—p(P—p)¥)d’y , (4.23)
|
—T[ﬂ SK[P] _ =V(x) (4.24)

8P(x) 8P (x)

at each nucleus. This implies that only trial densi-
ties that satisfy the cusp condition yield finite lower
bounds to the true energy of a system and that the
search for a nontrivial lower bound should be re-
stricted accordingly.

V. CONCLUSIONS

This work has produced a new method for deter-
mining the energy of an atomic or molecular system
within a density-functional framework. Using com-
plementary variational principles, complementary
energy functionals of the density have been derived
which sandwiched the true energy of a system be-
tween upper and lower bounds. Calculations were
performed on atomic TF and TFDW systems.
Values for the energies and analytic densities were
obtained for these systems and then shown to be ac-
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curate when compared to the exact values. This ver-
ified the validity of using complementary variational
methods in the study of atomic systems.

As a more severe test, attempts should be made to
use the complementary functional methods to deter-
mine energies and densities of systems for which
solving the Euler-Lagrange equation has failed to be
profitable. Presently, the author is pursuing work
on diatomic systems using the TFDW functional
along with its Poisson complement.
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