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A method for determining complementary energy functionals within a density-functional
framework is derived. In particular, if H [P] is defined as a functional of the density equal
to an energy functional Eo[P] less a Coulomb energy term (v/2) f, fX

~
x —y (

'P(x)P(y)d y d x with v a positive constant, then the functional
2

Et, [P]=H[P] f — P(x)d'x — f V d'x+N[P] li»' ~~(&) 8~ l~' 5P(x) ~» ] 5P(X)

with N[P]= P(x)de is complementary to Eo[P] whenever the second variation of
1R

H[P] is positive. Explicit forms of EL[P] for the Thomas-Fermi and the Thomas-
Fermi —Dirac —von Weizsacker theories are given and used to obtain both lower and upper
bounds to the atomic energies of these theories. A discussion on the corresponding
Hohenberg-Kohn complementary functional is also presented.

I. INTRODUCTION

Much effort has been expended in the search for
an energy functional of the density which yields
both good atomic energies and accurate atomic den-
sities. ' The early theory of Thomas' and Fermi
in its unmodified form, although exact for infinitely
dense systems, has been found to be inappropriate
for atoms. In 1935, von Weizsacker suggested a
correction to the Thomas-Fermi kinetic energy
which remedied three major defects of atomic TF
(Thomas-Fermi} theory; in TFW (Thomas-Fermi-
von Weizsacker) theory (i) the density is finite at the
nuclei, (ii) negative ions exist, and (iii} the density
falls off exponentially extending out to infinity.
Other corrections such as Dirac's exchange term
and Scott's inner-shell contribution also have been
of fundamental importance. Recently, attempts
have been made to refine the energy functional such
that shell structure can be obtained.

Generally, solving for atomic densities and ener-
gies becomes a more difficult problem each time the
energy functional is improved. Typically, an Euler-
Lagrange integro-differential equation must be
solved for varying values of the chemical potential,
the Lagrange multiplier, until the value is found
which yields a density that integrates to the correct
number of electrons. When molecules are being
studied, the calculations are even more involved and
often impractical since spherical symmetry is lost.
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For a given N-electron system, the energy of a
known functional can be determined alternatively by
searching for the ¹lectron density that minimizes
the functional. The obvious flaw with this approach
is that in practice only an upper bound to the energy
is obtained. In the present work, standard variation-
al methods are combined with Poisson's equation to
give a complementary energy functional. Assuming
certain specified conditions hold, the new comple-
mentary functional will have a local maximum at
each local minimum of the old energy functional
and the value of the functionals will be identical at
thee extrema. Thus, one can obtain both upper and
lower bounds on the energy of a system by evaluat-
ing the original energy functional and its comple-
ment at trial densities, and one can make the differ-
ence in these bounds arbitrarily small simply by im-
proving the trial densities.

II. THEORY

The basic approach in the theory of complemen-
tary variational principles is to find two functionals
which are equal at extrema but whose second varia-
tions are opposite in sign. This is accomplished by
first introducing a general functional which has a
domain consisting of function pairs and then obtain-
ing the desired complementary functionals by en-
forcing "complementary" restrictions on the domain
functions.

Let Lz be a subspace of a Lebesgue space consist-
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ing of functions in 1R, real n-dimensional space.
Define T to be a linear operator on Lz onto a func-
tion space Lg with adjoint T*: LO~L&, where Lz
is the dual of L& and T» is defined such that

(H, Tp) = f„(T»8)(x}p(x)d"x+[8,rp] (2.1a)

= f„(T»8)(x)p(x)d"x

+f (r»8)(x}p(x)d" 'x (2.1b)
n

for all pEL&, 8 EL~, here V„ is the domain of p,
5 V„ is the boundary of V„, (, ) is an inner product
on Ls XLs, and [, ] is a boundary term with r:
L&~L~ being a linear operator and r»: L~~L& its
adjoint.

Consider the canonical functional

I[8+erl,p+ eg] = I [H,p]+5I

+5 I+O(e ),
where the first variation 5I is

5I= f eg(x) (T»8)(x) —d"x
5$'

Vn 5p(x}

5$'
+ eg, Tp—

(2.3)

—fs„(r»8 )(x)p(x)d" 'x (2.2b)

defined on LsXL& with W[H,p] assumed to be
twice differentiable. Expanding I[8+eel, p+ eg]
about (H,p) gives

I[8,p] = f„(T—»8)(x)p(x)d'x —W[H,p]
n

= (H, Tp) —W[H,p]

(2.2a)
—f (r»erl)(x)p(x)d" 'x

and the second variation 5 I is

(2.4)

r

2 5 58' „e 5 W
5 I= —f g(x) T» — i) (x)d"x ——f g(x) g (x)d"x

V» 58 5p

2 52K E2 5 5' 62
0 +—rl, T —g ——f (r»i))(x)g(x)d" 'x .

582 2 5p 58 2
(2.5)

(2.6b)

~p=0 on BV„. (2.6c)

To determine the first of the complementary
functionals, it is assumed that 8=8+ay can be ob-
tained as an explicit functional of P =p+ eg by solv-
ing the equation

5w[e p]
se (2.7)

and then defining J[P] to be I[8[P],P]. Expand-
ing J[P]about P =p gives

J[P]=I[8,p]+5 J+O(e ), (2.8)

where 5J=0 at P =p and 5' =5iI[B[P],P]. The
first variation of Eq. (2.7) leads to the additional
equation

5 5e 52m
T — g'= i rl+O(e) .

5p 58 582
(2.9)

For (H,p} to be a stationary point of I[B,P], 5I
must be zero, implying

Tp= ' in V„,5W[8,p] (2.6a)

T»8 5W[8 p]
5p 52$'

+
2 ~' 582 "

fs (r»rl)(xg(x)d" 'x .

The complement of J[P] is found by solving

5w[e p]
5P

(2.10)

(2.11)

Conventional methods dictate determining P as a
functional of 8, but P[8] cannot be expressed in
closed form when considering most energy function-
als of interest; however, using Poisson's equation,
Eq. (2.11) can be inverted to give 8[P]. Defining
the complementary functional G[P] as I[B[P],P]
and expanding about the stationary point p yields

G[P]=I[8,p]+5 G+0( ),e (2.12)

where 5G =0 at P =p and 5 G =5 I[8[P],P].
Following similar logic to that used in determining
5 J, the first variation of Eq. (2.11) leads to the re-
sult

Substituting this relationship into the expression for
5 I, Eq. (2.5) gives the result

g 2 5 8'
5 J=——f„g( x) i g (x)d"x
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55K 5W
$g $ 9

g 2 +

which implies

2 5 8'
5 G= —f g(x) g (x)d'x

8V„gp2
e 5$'

(2.13)

(2.14)

The crucial theorem has now been proved.
Let (e,p} be a solution to Eqs. (2.6} and suppose

that it is possible to obtain solutions to Eqs. (2.7)
and (2.11) in the form 8=8[P] and 8=8[P],
respectively. Then for P sufficiently close to p, the
upper and lower bounds

G [P]—=I[8[P],P] & G [p]

=I[8,p]=J[p]&I[8[P],P]=J[P] (2.15)

hold provided that

5 W 5W-
5 G= —, f (P —p)( ) (P —p) ( )d" ——,

' 8—e, , (8—e) &0,
h $p2

O'6: ~ore', n=3, 4, . . .

where ~ represents negligible and ~ represents vanishes and

5 8' 5 8'
II d= ——, J (P —p)(*) (P —p) (*)d *+—, e"—(), (e—P))Vn

(2.16a)

(2.16b)

—f„[r'(8—8}](x)(P—p)(x)d" 'x &0,

5"J: n ore', n=3, 4, . . . .

If all the inequalities in Eqs. (2.15), (2.16), and (2.17) are reversed, the modified equations remain true.

III. APPLICATION

(2.17a)

(2.17b)

In density-functional theory, the energy E of an atomic or molecular system consisting of N electrons is de-
fined as the infimum of an energy functional Ev [P] over a set of N-electron densities,

LgN= PEL:,P x d x =N

where L is a function space chosen to ensure Ev [P] will be finite. Here it will be convenient to choose L to be
a Lebesgue subspace of densities P for which lim~,

~

„[5H[P]/5P(x)) equals a constant independent of
direction,

H[P]=Ev[P] f f ~x —y—I

—'P(y)P(x)d'y 1'x
2

and v a positive constant (the standard value of v is one}. The extremum densities must satisfy an Euler-
Lagrange equation which is found by taking the functional derivative of Ev [P) aver the set L with the number
of electrans N[P]= P(x)d x restricted to be constant by a Lagrange multiplier equal to the chemical po-

1R3
tential p:

0= (Ev[P) Ii,N[P]) i
p—5

5Ev [P]
5P(x)

(3.1)

To determine the complementary energy functionals, the stationary point equations from Sec. II, Eqs. (2.6a),
(2.6b), and (2.6c) must be made equivalent to the above Euler-Lagrange equation. This is accomplished by
making the following set of assignments:

V„—=1R, Lp-—-L,
p(x) =p{x), 8(x)=(Tcr){x),cr&L,

{3.2a)

(3.2b)
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(T~Tp)(x)=v J p(y) dy, ~=0=r»,
ia3 lx —y l

Tp= ' =T~, T'(T~) — [ 'p] =— ( —H[ ]+„N[ ])=—
5(T~)

— ~' ~
5

—
5 P +P P

5H [p] +p ~

(3.2c)

(3.2d)

I[TSP]= J,(T~TS)(x)P(x}d x ——,(TS,TS)

+H [P] p f,P(x—)d'x . (3 4)

The densities are assumed to be defined over all
space, and the variation is performed within the set
L In .Eqs. (3.2b) the canonical functions are as-
signed; notice that 8 is defined as the T image of an
element in L Si.nce the operator (Kp)(x)
—=v, l

x —y l
'p(y)d y is linear, symmetric,

1R3 .
and positive definite, K can be decomposed as in Eq.
(3.2c). Finally, W[Tcr,p] is defined through Eqs.
(3.2d).

The form of I[8,P] can now be derived. Let
TS =To+@Tao and P =p+eg, where e is a small
positive number and both S and P are elements of L.
Integrating Eqs. (3.2d) implies

W[TS,P]= —,( TS, TS ) H[P]—
+p, J,P(x}d x . (3.3)

From Eq. (2.2a) one obtains

v P(x}P(y) di didpdx

+H[P] pJ—,P(x)d x

=EU[P] p& [P]—.

G [P] is determined by solving

5H [P]
5P

for TS. Using Poisson's equation

V' f, d'y = —4irS(x)

results in the expression

TS= — TV — +p
1 2 5H[P]

4m.v 5P

1 TV2 5H [P]
4+v 5P

(3.5c}

{3.5d)

(3 6)

(3.7)

(3.8)

{3.5a)

= f, (T'TP)(x)P(x)d'x ——,(TP, TP)

+H[P]—p J,P(x)d x (3.5b)

Requiring TS =TP leads to the J functional:

J[P]=I[TP,P]

where pp, defined by the limit

p,p —= 1181
5H [P] (3.9}

/xf~ce 5P x

is included to ensure that the boundary terms below
will vanish. Substituting the expression for TS into
Eq. {3.4), the 6 functional is found

6 [P]=I TV —pp, P1 2 5H[P] (3.10a)

4nrv M' 5P(x}J T'T V' —pp P(x)d'x+H [P] p f P{x)d'x-
1R3

1 TV2 5H [P] TV2 5H [P]
32ir v2 5P(x) ' ' 5P(x)

(3.10b)

1 p 2 5H[P] 5H [P]f, 5p( )
pp ilx-y-l- V, -pp dy d». (3.10c)

After multiple integrations by parts as well as repeated use of Poisson's equation, the following form of G [P]
is obtained:
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2

G[P]=H[P] f—, P(x)d x — f, V d x+(pp —y) f,P(x)d x

5H[P] d3 1 f - 5H[P]

1 BH[P] i 3 5H[P] 3
3

n f,V —pp f, ~x —y~ V
5 pp —dy d»

1
V

5H[P)
8irv sui' 5P(x)

T ~ ~

P(y) d3 dz 1 5H [P] V
P(y} d3

1R3 (x —y (
4~ slR 5P(x} 1R (x —y )

dg dx — n —
IMP V dg dx

J L

(3.10d)

All the boundary terms vanish leaving only single integrals, and G [P] simplifies to
2

G[P]=H[P] f, — P(x)d'x — ' f, V d x+(pp —p) f,P(x)d x . (3.10e)

It must now be verified that the extrema of J[P] are necessarily extrema of G [P] and that G [p]=J[p] at each

extremum p. The Euler-Lagrange equation associated with J[P] implies p will be an extremum of J[P] when-

ever

5J[P] p(y) 3 5H [P]
5P(), "I -yl 5P(}, ,

This guarantees that p is an extremum of G [P] since

H[P] f,— —pp P(y}d'y V f,P(y}—d'y
p=p

(3.11)

1 P 5H [P] V2 5H [P]+
8 ~ J ~ 5P(y) "' 5P(y) P=p

(3.12a)

5H[P] 5H[P) f 5 H[P] 5Pp

5P(x) p 5P(x} p
"»' 5P(x}5P(y} 5P(x} p pP

1 f 5 H[P] 5Pp Vt 5H[P]
4+v "»' 5P(x)5P(y) SP(x) p p 5P(y) P=p

dy (3.12b)

1 f 5 H[P] 5Pp

4~v "iz' 5P(x)5P(y) 5P(x)
Vz 5J[P]

5P(x}
(3.12c)

=0. (3.12d)

The fact that G [p] equals J[p] follows upon substituting Eq. (3.11) into Eq. (3.10e}as shown:

+(yp —p) f,p(x)dix (3.13a)
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(3.13b)

=J[p] (3.13c)

The final condition that inust be satisfied if J[P] and G [P] are to be complementary functionals is that their
second variations be opposite in sign. Assuming J[P] is truly a minimum, then

5 J[P—p]= —, f, (P —p)(x)h[P p]—(x)d'x+ —f,f, " d'xd'y (3.14)

will be positive for P sufficiently close to p, where

h [P —p](x)—= f, — (P p)(y)d-'y
5 H[P]

'"' 5P(x}5P(y) p z

Thus, G [P] will be the complement of J[P] at P =p only if

5 G[P —p]= ——, f, (P p)(x—)h [P p](x—)de — f, i
Vh [P —p](x) i

d x

(3.15)

+ f (P p)(y)d y—f (P p)(x)d—'x
1R3 &ii' 5P(x) p p

(3.16)

is negative.
Under what condition is 5 6 indeed negative? Restricting the search over trial densities to L,~N so that

f (P —p)(y)d y =0, it would be more than sufficient if
1R3

5 H[P —p]= —, f, (P —p)(x)h[P p](x)d'x— (3.17)

were greater than zero for all trial functions near p. This result also follows from the general theorem which
states that if W[TS,P] is convex in TS and concave in P, then the inequalities

G [P]&I[Tp,p] &J[P] (3.1S)

are satisifed. (In addition, it should be noted that if the concave-convex behavior of W[TS,P] is strictly
obeyed, then the extremum density p is unique. } Since the kernel ~x —y ~

in Eq. (3.2c) is positive defin-
ite, W[TS,P] is strictly convex in TS. It therefore suffices to show that W[TS,P] is concave in P. The termp, P(x}dx is linear, thus convexity of H [P] will guarantee the complementary nature of G [P] and J[P].1R3
Unfortunately, H [P] is not always of a convex form in energy density functionals. For specific theories which
yield an H [P] that is not convex, it will simply be assumed in this paper that Eq. (3.18) is valid.

When J[P] and G[P] are indeed complementary functionals, then G[P] obtains a inaximum at the ex-
tremum p. This implies that the chemical potential in Eq. (3.10e) plays the role of a Lagrange multiplier on
the number of electrons. Therefore, the energy E of an atomic or molecular system consisting of N electrons is
simply the supremum of EI.[P] over the set LsN where

2

El.[P)=H[P] f, P(x—)d'x — ' f, V d +xp fi,P(x)d x . (3.19)

Henceforth El [P] will be referred to as the Poisson complementary functional.

IV. EXAMPLES

In this section the form of the Poisson complementary functional is derived for the TF, the TFDW
(Thomas-Fermi —Dirac —von Weizsacker), and the HK (Hohenberg-Kohn) functionals. The function space
over which the supremum of the Poisson complement equals the energy is discussed for each theory. Trial
functions are then used to obtain lower and upper bounds on the TF and TFDW atomic energies as well as es-
timates to the true TF and TFDW densities.
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A. Thomas-Fermi theory (Ref. 9)

EU"[P)= , f—f d yd x+ —,y f P'~'(x)d'x —Z f d x,
~x —y~

' ' iR' ~x~

where y=(3n )
~ /2 in atomic units is the kinetic energy coefficient and Z&0 is the nuclear charge.

Remembering that the H functional is the energy functional less the Coulomb term, Eq. (4.1) implies

(4.1)

In atomic TF theory, the energy functional of the density is the sum of a Coulomb term, a kinetic energy

term, and a nuclear electronic term

H "[P]=, y f —Pi (x)d x —Z f d'x .
iR'

Therefore, Poisson's functional, Eq. (3.19), in TF theory has the form

(4.2)

EL,"~P
~

=——', y f P ~ (x)d x — f 7 yP (x)
iRi

dix+pp~ f,P(x)d'x, (4.3)

where

(4.4)pp~—:lim yP ~ (x)2/3 Z

To ensure that EU [P] and El "[P) are truly complementary functionals, it suffices to show that 6 H "[P—p]
is positive; this is easily demonstrated:

5'H "[P p]= , y f— p'~—'(x) " —1 d'x &0.
1Ri p(x)

(4.5)

Bounds on atomic TF energies can be determined by substituting a trial function into Eqs. (4.1) and (4.3).

Noting that the gradient term in Eq. (4.3} is integrable only if yp
~ (x}=Z/

~

x
~

near
~

x
~

=0, the following

function was selected:

P ~ (x}=23 Z 1

y lx I(1+~ lx I

)' ' (4.6)

(4.8)

here a equals (32/105)(35/3m. i)'~ ZN ~' to ensure normalization

f,P(x)d x =N . (4.7)

This trial function not only satisfies the "TF cusp condition" but also falls off as
~

x
~

as in the exact case.

Furthermore, the chosen form of P (x) can easily be integrated analytically and yields the result

EL"(N,Z) 16 35 512 3Z E "(N,Z} 1 35 5056 567N

Z N' 35 3m 429 7N Z N' 35 3n- 143 56Z

EU"(N, Z)
Z2N ~/3

In the neutral case these inequalities imply

—0.7840Z ~ &E "(Z,Z) & —0.7622Z ~ (4.9)

the exact expression is E "(Z,Z) =—0.7687Z . Using the TF functional along with its Poisson complement

the zero-parameter trial function chosen here bounds the neutral TF energy to within better than 1.4%.

B. Thomas-Fermi —Dirac —von Weizsacker theory

For atomic calculations, the TFDW theory is more appropriate than the TF theory because the TFDW func-

tional includes a gradient correction to the kinetic energy as well as an exchange term:
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EU" [P]=Ep [P]+—f, ~

VP' (x)
~

d x ——C, f,P / (x}d x . (4.10}

Often w and C, are left as parameters in the theory, but it will be convenient in this subsection to assign these
coefficients their standard values of 1' and (3/s )'/', 4 respectively. Continuing as above,

H [P]= —f i
VP'/ (x) i

dix+ —(34r2) /' f P'/'(x)d'x
1R 10 1R3

' 1/3

f P4/3(x)dix —Z f d x (4.11)
4 ~ ia3»3 (x(

which implies
' 1/3

EI" [P]=, ——,(34r } f P (x)d x+—' — f P' '(x)d'x+pp'"" f P(x)d x
1R3 4 1R3

where

V2p1/2(x)
V 2P'" x

2/3
1 /3 2

P (x) ——P'/3(x) d x
[xi 2 m

(4.12)

p, =— hm
(X (-+4N

V P'+(x}
2P'"(x)

2 2/3Z {3s ) p2/3( )
3 pi/3( )

fx/ 2 s
(4.13}

One hopes to be able to prove that for each extremum, the second variation of
J [P]=EU [P] I4N [P] i—s positive and the second variation of G [P]=EL [P]—pN [P] is neg-
ative whenever P is "near" p. Unfortunately, the addition of Dirac's exchange term makes it difficult to deter-
mine the sign of the second variations in general (see Lieb's discussion of TFDW theory' ). Direct computa-
tion gives

2

4/3( }
P(x)

1 d3
»3 p(x)

—1 dyd
p(y)

2 ' 1/3

5 J[p —p]= —, p(x) V —1 d x ——2 1 P(x) 3 1 3
1R3 p(x) 6 m

(3s 2) /3
5/3( )

P(x)
1 d3

~ ~

pxpy P x
»' (x —y ~

p(x)
(4.14)

2 1/3

5 G[P —p]= ——, f p(x) V —1 d x+-1 P(x) 3 1 3
1R3 p(x) 6 m

'2

f p4/3(x) —1 d x
1R3 p(x)

(3~2)2/3 f,p (x) —1 d x ——, f, i
Vh[P —p](x) i

d x

+ f,(P p)(y)d'y f, — (P p)(x)d'x, —
1R' 5P(x) p=

(4.15)

where h [P—p](x) is defined in Eq. (3.15). Although the exchange term in each of these expressions does not
have the desired sign, the integrand of these exchange terms is dominated by the integrand of the TF kinetic

energy for all x such that p{x)&{3m 3} '. It is assumed in this work that the¹lectron trial functions P(x) do
indeed satisfy the condition that 52JT~ [P—p] &0&52Gr"0 [P—p]; however, it is important to note that
this necessary conjecture has not been proved.

The following form was chosen for the TFDW trial functions:
1—k '2

p( )
Z C z (z [

sinhp ] x ] ( 1 ) g D sinhp [ x
Plxl k i

, «13&Z (4.16}
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FIG. 1. Curves bounding the exact TFDW atomic en-

ergies (in hartrees). The dashed curve of energies divided

by nuclear charge raised to the
3 power results from

two-parameter functions being substituted into the
TFDW functional. The three lower curves were derived

using Poisson's complementary functional with two-,
four-, and six-parameter functions.

RADIAL DISTANCE Ixl

FIG. 2. Exact TFDW radial density (a.u.) for the neu-

tral neon atom —solid curve. The dashed curve arises

from the six-parameter lower bound radial density and

the dotted curve arises from the two-parameter upper
bound radial density.

with C chosen to ensure normalization

f P(x)d'x =N .
1R3

(4.17)

TABLE I. For five neutral atomic systems, the TFDW
energy (hartrees) is given along with the upper and lower

bounds obtained from two- and six-parameter functions
when applied to the TFDW functional and its Poisson

complement, respectively.

Z E" /Z (n=2)E" /Z E" /Z (n=6)

1

4
7

10
18

—0.261 72
—0.33403
—0.371 97
—0.39743
—0.44007

—0.261 83
—0.33436
—0.372 42
—0.39794
—0.44063

—0.263 37
—0.33921
—0.38004
—0.408 33
—0.457 66

The exponential part of this function guarantees the

cusp condition will be satisfied and the first term in

the square brackets gives the correct long-range
behavior for a TFDW density with the additional

terms tending to refine the density's behavior near

the atomic center.
Convergence to a good upper bound on the neu-

tral TFDW atomic energies requires use of only the
first two terms in the expression for P (x):

Z g zi„i sinhP lx [P(x)=
Plx l

e 1

(4.18)

Upon optimizing P and D„ the results of Table I
and Fig. 1 are obtained. The table indicates that the
absolute percent error in EU increases with Z,
but even for argon, Z =18, the error resulting from
the two-term function is less than 0.13%.

To obtain reasonable lower bounds to the TFDW
energies, a six-parameter function was used. As
seen in Table I, the lower bound energies are not as
close to the exact values as are the upper bound en-

ergies (the error in EL" for argon is 3.86%).
However, the convergence to the exact energy is
surprisingly rapid as can be seen in Fig. 1 where the
lower bound curves are plotted for N =2, 4, and 6.

One might expect that the Poisson complementa-

ry functional would more easily yield better densities
than the TFDW functional, because obtaining a
given degree of accuracy in the energy requires the
lower bound to use a function with more parameters
than the corresponding upper bound function; this
turns out to be the case. In Fig. 2, the neon densities
that give the energies of Table I are plotted. The ra-
dial density that results from the Poisson functional
predicts the position of the true maximum quite ac-
curately and follows the exact curve more closely
than the corresponding upper bound curve. Furth-
ermore, the value of the density at the nucleus

predicted by the lower bound curve is 168.19 in er-

ror less than 0.75% from the true value of 169.46;
the upper bound curve gives p(0)=186.39. These
results strongly attest to the validity of using com-

plementary variational methods in studying TFDW
theory.
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C. Hohenberg and Kohn theory

In 1964, Hohenberg and Kohn" proved the electronic energy of a molecular system with potential V(x) is a
universal functional of the density

(4.20)

EU [P]=T[P]+-,' f,f, " d yd x+K[P] f—V(x)P(x)d~x, (4.19)

where T[P] and K[P] are the kinetic energy and exchange energy functionals, respectively. Furthermore,

Hohenberg and Kohn showed that their functional satisfies a variational principle obtaining a minimum at the
true ground-state density. Using the theory from Sec. III, the Poisson complement of EU [P] can be derived

EI. [P]= T[P] f,— P(x)d x+K[P] f—, P(x}d x+pp f,P(x }d sx

2
1 { - 5T[P] 5K[P]

gm "»' 5P{x} 5P(x}

where

pp =— lim + —V(x)
5T[P] 5K [P] (4.21)

[x [ ~ 5P(x) 5P(x)

In practice, the functional EL [P] will only be of interest in a function space over which the supremum of
EI" [P] equals the electronic energy. This space consists of those densities P(x) for which the second varia-

tion of G [PJ:Er, [P] —pN [P] abo—ut the extremum density p is negative. Writing

5 G""[P—p]= ——,
' f,(P —p){x)h""[P—p](x)d'x ——, f, ~

Vh" [P—p](x)
~

d'x

with

5yp(x)
+ f, (P —p)(y)d'y f, (P —p)(x)d'x

1R3 »' 5P(x) p p

(4.22)

2

h [P p](x)=—f, (T[P]~K[P])
~ p (P —p)(y)d y,»' 5P(x)5P(y)

(4.23}

it is observed that the space of density differences
(P —p)(x) is independent of V(x} and thus univer-
sal. The third term in Eq. (4.22) vanishes when only
¹lectron densities are considered, and, as above, it
suffices to prove that

5 H[P —p]= , f, (P —p)—(x}h [P p](x}d x—

5T[P] 5K [P]
5P(x) SP(x)

(4.24}

at each nucleus. This implies that only trial densi-
ties that satisfy the cusp condition yield finite lower
bounds to the true energy of a system and that the
search for a nontrivial lower bound should be re-
stricted accordingly.

is positive. This term is simply the sum of the
second variation of the kinetic energy functional and
the second variation of the exchange energy func-
tional. With the explicit form of these functionals
unknown, it is difficult (and maybe impossible) to
determine a function space over which 5 H [P—p]
is positive. Here, it must be assumed that such a
function space can be found.

One final observation can be made concerning the
HK Poisson functional. Whenever V(x) is Coulom-
bic, the gradient integral in Eq. (4.20) is unbounded
unless

V. CONCLUSIONS

This work has produced a new method for deter-
mining the energy of an atomic or molecular system
within a density-functional framework. Using com-
plementary variational principles, complementary
energy functionals of the density have been derived
which sandwiched the true energy of a system be-

tween upper and lower bounds. Calculations were
performed on atomic TF and TFDW systems.
Values for the energies and analytic densities were
obtained for these systems and then shown to be ac-
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curate when compared to the exact values. This ver-
ified the validity of using complementary variational
methods in the study of atomic systems.

As a more severe test, attempts should be made to
use the complementary functional methods to deter-
mine energies and densities of systems for which
solving the Euler-Lagrange equation has failed to be
profitable. Presently, the author is pursuing work
on diatomic systems using the TFDW functional
along with its Poisson complement.
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