
PHYSICAL REVIEW A VOLUME 26, NUMBER 2 AUGUST 1982

Light scattering by a fluid in a nonequilibrium steady state.
II. Large gradients

T. R. Kirkpatrick* and E. G. D. Cohen
The Rockefeller University, 1Vew York, Yew York 10021

J. R. Dorfman
Institute for Physical Science and Technology, University ofMaryland,

College Park, Maryland 20742
(Received 24 February 1982)

The equations derived in the first paper of this series for the correlation functions of
mass, momentum, and energy densities are solved for a fluid subject to a large temperature
gradient. The shape and intensity of the Rayleigh line show deviations from equilibrium
that are proportional to the square of the temperature gradient. The deviations of the in-

tensity of each Brillouin line from its equilibrium value as a function of the temperature
gradient is obtained for the optimal scattering geometry. The intensity of one of these two
Brillouin lines shows a maximum or minimum as a function of the temperature gradient,
depending on the sign of the temperature derivatives of the coefficient of sound attenuation
and thermal conductivity and on the orientation of the momentum transfer between fluid
and light with respect to the temperature gradient. Further, the difference in intensity of
the two Brillouin lines is found to be about three times smaller than predicted by the linear
theory, consistent with the experiments of Beysens et al. Since all these results are due to
mode-coupling effects, an experimental verification would constitute the first observation
of mode-coupling effects away from criticality. The connection between (a) the mode-
coupling effects responsible for the changes in the intensities of the Rayleigh and Brillouin
lines, (b) the long-time tail contributions to the transport coefficients, and (c) the nonex-
istence of a virial expansion of the transport coefficients is discussed.

I. INTRODUCTION

As pointed out in the previous paper, ' hereafter
denoted by II, the spectrum of the light scattered
from a Quid in a nonequilibrium steady state due to
a temperature gradient, exhibits an asymmetry of
the two Brillouin lines. Since this effect is due to
mode coupling, i.e., a coupling of two sound modes
to the heat Aux, it allows one, in principle, to detect
mode-coupling effects in nonequilibrium fluids. In
II, a linear theory was presented which only took
into account small deviations from the equilibrium
theory. In this paper, in order to treat effects large
compared to the equilibrium results, we extend the
calculations of II to fluids with larger thermal gra-
dients. In fact, we are interested in the dynamical
structure factor S(Ro, k, to) and the integrated in-

tensities of the Rayleigh and the Brillouin lines
I

I (Ro, k) and I (Ro, k) (o =+ I; R&& is the center of
the scattering volume) where X = T 'dT/dR„and
the wave number k are such that c

~

X
~
/I, k = l.

We will find that the intensity of the central line
I (Ro, k) is greatly enhanced when compared to its
value I,q(k) in thermal equilibrium, an effect that
should be easily observable. In addition, we will be
able to compare our results for I (Ro, k) with the
experimental data obtained by Beysens et al. , pro-
vided the neglect of finite-size effects due to the
fluid container can be justified (cf. Sec. VI, subsec-
tion 13a).

As in II, we will formulate the calculation of
S(Ro, k, to), I (Ro, k), and I (Ro, k)for large gra-
dients in terms of the hydrodynamic modes associ-
ated with the matrix Ho(R, q). Therefore, in gen-
eral, we write the dynamical structure factor as [cf.
Eqs. (II.2.8) and (II.3.5a))

S(Ro, k, co)=2Re f dRP (R) f dRP2(R) f Pk -[MH~(R, q, to)+M+ (R, q, to)+M a(R, q, co)] .
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In Eq. (1.1) the M,&(R,q, co) (a =H, o =+1) are de-
fined in terms of the M«(R, q, co) (a=p, g, e) by
Eq. (II.3.4). Furthermore, the total integrated in-
tensity of all three spectral lines I(R0, k) is given by
[cf. Eqs. (II.4.4) and (11.4.5)]

I(R0, k)=I (R0, k)+I+(R0, k)+I (RD, k) (1.2)

with
' —2

I'(R0, k)=Re J dRP (R)

&& J dRP (R)

(1.3)

where a =H or o.
In this paper we compute the line shape and the

integrated intensity of the Rayleigh line and the in-

tegrated intensity of each Brillouin line. The shape
of the Brillouin lines will not be computed
inasmuch as the expansion parameters c/I, k L
and L

~

Vc
~

k/I, k are large under the conditions
we consider here. As a consequence, these lines
have a broad, flat shape which is not interesting,
since it is due to the form factor P(R) that de-
scribes the scattering volume, rather than to an in-
trinsic property of the fluid.

The plan of this paper is as follows. In Sec. II we
use an ordering scheme to derive equations for the
unequal- and equal-time correlation functions M«
and D p from the basic equations (II.2.9) and
(II.2.6), respectively, given in paper II. These equa-
tions are then solved to obtain the above-mentioned

quantities in a consistent manner for the case
c ~X

~

/I', k is of O(1). In Sec. III we solve a set
of algebraic equations needed for the calculation of
the shape and intensity of the Rayleigh line. In Sec.
IV the partial differential equation that determines
the intensity of the two Brillouin lines is solved. In
Sec. V the results obtained in this paper are used to
compute SH(R0, k, co), IH{RQ, k), and I {RD,k } for
two fluids: water and liquid argon. In Sec. VI a fi-
nal discussion of the results obtained in this and the
preceding papers is given; in particular, a compar-
ison with the available experimental data is made
and some open questions are mentioned.

II. BASIC EQUATIONS FOR M~ AND D p

In paper II we derived equations for the quanti-
ties M«(R, q, co) and D p(R, q) under the condi-

tions that I,q /cq «1 and c
~

X
~

/I', q &&1. We
now want to consider the case that
c

~

X
~

/I, q =1 but we still require that
I,q /cq « 1 and, therefore, also

~

X
~
/q && 1. As

mentioned in paper II, the condition
I,q /cq =ql « 1 is required so that a hydrodynam-
ic description of the spatial variations of the M«
and the D p is valid. In our analysis of the M
and D p here, we will keep terms of all orders in the
parameter of order unity c

~

X
~
/I, q, but in each

order of X we will consistently neglect terms that
are smaller than the leading term by factors of
I,q /cq. That is, we will only keep terms of order
(cX /I, q )" for all n & 1. Furthermore, we will as-
sign a weight X to each derivative with respect to
the center-of-mass position R=(R&+Rz)/2 and a
weight q to each term of the form q (0/Bq„).

A. Ordering scheme

Hzy( R& q )Dyp( Rs q ) +Hpy( Rp q )D&y( Rs q )

=(5a r5apTS„T)0 -„pX, (2.2)

where Eq. (2.2) is a Fourier transform of Eq.
(II.2.6). Next, we write the full matrix H(R, q)
with all powers of q and X retained as

H(R, q)=H (R,q)+~(R, q) . (2.3)

Here HD(R, q) is the linearized hydrodynamic ma-

Our procedure is to examine the hydrodynamic
equations for the M z(R, q, co) near co=0 for the
shape of the Rayleigh line and those for D p(R, q)
for the intensities of the Rayleigh and Brillouin
lines, retaining at first all orders in q and X . We
examine then the solutions of these equations ob-
tained in the form of expansions in powers of
cX /I", q with coefficients that depend on q and
retain only the leading terms in each power of X as
described above.

To carry out this procedure, we go back to II and
examine the basic hydrodynamic matrix H(R, q)
that a~pears in the equations for M~{R,q, co) and
D p(R, q) ~ From Eqs. (II.2.9) and (II.2.6) these
equations are

—icoM«(R, q, co) =M«(R, q, t =0)

+H (R, q)M (R, q, co)

(2.1)

and'
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trix whose elements are identical to the H~0 de-
fined in Eq. (II.2.12), and ~(R, q )

=H(R, q) —H0(R, q). By examining Eq. (II.2.12),
we see that the matrix elements of H0 are expan-

I

sions in powers of q with coefficients that depend
on the transport coefficients and thermodynamic
quantities at the point R. In Appendix A, we show
that the matrix operator ~(R, q ) has the form

~(R,q)-X [O(1)+O(X /q)+O((X /q) )+ ' ][O(1)+O(lq)+O(lq) + ], (2.4)

where I is a microscopic correlation length, and that
for ~X

~
/q &&1 and l,q2/cq &&1, ~(R, q) need

only be kept to 0 (q X ). To show this, one iterates
Eqs. (2.1) and (2.2) and observes that the terms in

ddsc(R, q) of O(q X ) are responsible for the most
important contributions to D p and to
M~[R, q, co=0(q2)] to every order in XT (for small

q) and properly take into account all terms of
O(1)=O((c ~X

~

/I', q )").
As a result of these considerations, we can re-

place ~(R,q) in Eqs. (2.1), (2.2), and (2.3) by the
matrix LUX](R, q ) whose elements are given by

B. Basic equations for D p and M ~

The basic equations for D p and M~ are derived
using the matrix H](R, q) defined by the Eqs.
(II.2.12) and (2.5). We first derive the equations for
the D~p.

(1) The equations that determine the D~p are

H~y ] (R, q )Dyp(R, q ) +H py ] (Rj —q )D~y( R7 q )

=(5a~r5apTS„T)(& R PX (2.6a)

with

0 ~ 0 0~~]——~~]——~gg ] ——bH,p]
0—~„]—0,

A] ()
gP] 2 ax ~R

1 ~A] a

A2
~ ] 2 ix ~Rx

(2.5a)

(2.5b)

{2.5c)

H p](R, q)=H p0(R, q)+AH p](R, q) .

(2.6b)

As in the previous paper, we find it convenient in
solving these equations to express the D p in terms
of the D,b(R, q ) defined by Eqs. (II.3.15) and
(II.3.16), where both a and b denote elements of the
set (a,H, g;) with a=+1 and i=1,2. To perform
this transformation, we use the hydrodynamic
eigenmodes discussed in Appendix A of II. That is,
we use

D„(R,q)=e. o(R, q)8&'0(R, q)D &(R, q)

(2.7)

kH 6g

1 BA2

2aR '- 'aq
A3

2 BR„

1 BA3

2 BR„~q

(2.5d)

{2.5e)

The quantities A], A2, and A3 in Eq. (2.5) have been

defined below Eq. (II.2.13) and they all depend on
the center-of-mass point R. We remark that
~]{R,q) is identical to the matrix ~](R,q), de-

fined by Eqs. (II.2.13), if one neglects the elements
in ddt](R, q) of O(qX ) and O(q X ) and keeps
only those of O(q X ). q=(qX Qy~CS) {2.8a)

and convert Eq. (2.6) for the D p into a set of equa-
tions for the D,b. As follows from the ordering
scheme, discussed in Appendix A of this paper, it is
sufficient for the solution of Eq. (2.6) to use these
lowest-order eigenfunctions of H0 as given by Eqs.
(II.A7) and (II.A10).

From Eqs. (2.6) and (2.7), algebraic and differen-
tial equations for the D,b(R, q ) can be derived. As
in II, the dominant contributions to the D,b will
come, for small q, from those pairs (a, b) for which
the sum of the eigenvalues co, +cob is of O(q ).
Furthermore, in deriving equations for the D,b it is
convenient to use a coordinate system for q, qz,
qz such that q] =0, e.g.,
~(2) ~(2)
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A2 Q A A A A
( i) ( 'Qy 72 )'Vx 7y 'Vx'Vz )

(
M M)]/2
9y +0z

(2) (0 g gy )
Vl

(
~ ~)]/2qy+q,

(2.8b)

(2.8c)

Using this coordinate system, neglecting the D,b
with co, +cob-O(q), we find, after a long calcula-
tion, that the equations for the D,b break up into
two sets: (1) A coupled set of algebraic equations
for DHH, DHz, , D„,H, and D&,z, and (2) A partial
differential equation for D (o.=+1). The cou-
pled algebraic equations are

2DTq'DHH —caT q~(DH„+D„H) = —(5aH -5aH -S„T)0 ~ pX
x

(v+DT)q'DH„«r — q~'D&, &,
= (5a—H,5„-P.T)o ~PX'

(2.9a)

(2.9b)

(v+DT)q D„,H caT —q~D„,„,=—(5a„NaH -S„T)o ttPX (2.9c)

and

2vq D„„=—(5a Na„P„T)0 -„PX (2.9d)

while the partial differential equation for D is
r

I,q —o q +oq c +oq„cX —oq
2

D = (5a Aa — p„T)0 -„pXaq. " aZ„" "pT aZ„

(2.10)

The mode-coupling amplitudes appearing on the
right-hand side of Eqs. (2.9) and (2.10) can be com-
puted without difficulty and are given by

Hq H —q»)0 R ( g q y —q xT)0 R

(2.11a)

g&, q H, —q»)0, K ( Hq g —q»)0, R

l

As in the case of the D ~, it is convenient to express
the M~ in terms of M,~(R, q, co) defined by Eq.
(II.3.4). Multiplying Eq. (2.12) by g (),'o(R, q)
and using Eq. (II.AI la) yields

[ i~+~, (q—)]M,~{R,q, co) 8, 'o(R, q)—hH «, (R, q)

X,'0(, q)M, &(,q, co)=Ma&(R, q) .

(2.13)

and

r (1)
puTT9

(2.11b)
cp

(2.11c)
pucq„

(& .,q ., q T )0, K =
2c P

Here we have defined M,&(R, q, co) and M, {R, q ) in
terms of M~(R, q, co) and M~(R, q), respectively,
by Eq. (II.A11e) and summation convention has
been used.

From Eq. {2.13) we can then derive equations
that determine

Equations {2.9), (2.10), and (2.11) are a set of alge-
braic and differential equations that determine the
D,b(R, q). From these equations and Eqs. (II.2.4),
(II.3.13), (II.3.15), and (II.3.16) the equal-time corre-
lation functions M,z(R, q) can be obtained. We
next consider equations for the M,z(R, q, co).

(2) From Eq. (2.1), the equations that determine
the M~ in the approximation outlined above are

—icuM (R, q ~ —H~r &( q Map(R q

=M (R, q) . (2. 12)

M~(R, q, co)=MH~{R, q, co)+ g M (R, q, ~)

near m=O. These equations can be greatly simpli-
fied by using the estimates of ( —i co+co, )
~/'~gx( —ice+ Ma ), and 8/Mx( —i~+ boa ) near
m=O given in Appendix IIB. From these esti-
mates, we conclude that M~&(R, q, ~) can be
neglected in Eqs. (1.1) and (2.13) if we are only in-
terested in frequencies co near zero. Then carrying
out the implied sum in Eq. (2.13), using Eqs. (2.5)
and (2.8), we obtain the following coupled equations
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Here

( —ico+vq )M„(R,q, co)=M„(R,q) .

(2.14b)

for MH& and Mz, &.

( —ico+Drq )MH&(R, q, co)

+c q~'Mg p(R q N) MHp(R q)
BR„

(2.14a)

and

III. SHAPE AND INTENSITY
OF THE CENTRAL LINE

In this section we use the results of Sec. II to
compute the shape and intensity of the central line.
From Eqs. (1.1) and (1.2) and that M~&(R, q, co) can
be neglected near co=0, it follows that the line
shape of the central line is given by

SH( k, co) =2 Re f d R P2(R)

&& f dRP'(R) f "q, P'-„-,

XMH&(R, q, ~) .

and

MHp( R q ) =AH~ +DH~ (2.15a)
(3.1)

MH&(R, q, co) is obtained by solving Eqs. (2.9) and
(2.14). The result is

M~ p{R,q) =A~ p+D~ p, (2.15b)

where Az&
——0, AH& is given by Eq. (II.3.8), and

D„& and DH& are determined by Eqs. (II.3.15),

(II.3.16), and (2.9). and

-=2 (y—1)
MHp(R, q ) =p kg TXr

'V

(arq] TX )
+pkg T

Dr(v+Dr )q'
(3.2)

(y —1) (a q TX)
MHp(R, q, n))= p kg TXr +pkg T {—I.co+Drq )

y Dr(v+Dr)q

(q~arTX )'
+pksT 4[( ico+vq )

'——( ir0~Dz—q ) '] .
(v+Dr)(Dr —v)q'

(3.3)

with (k~)~=k~+k, [cf. Eq. (2.8b)]. In Eq. (3.4)
all quantities are to be evaluated at the center of the
scattering volume Ro. The integrated intensity of
the central line is given by

I (Rk)o=MHp(Rk)o

Inserting Eq. (3.3) into Eq. (3.1), we obtain an expression for S ( k, co) where both a center of mass and a q in-
tegral remain to be performed. If kL »1 and L ~X

~

&&1, as is the case in typical experiments, we can ex-
pand MH&(R, q, ro) about MH~(RO, k, co), where Ro is the location of the center of the scattering volume and

Kneglect the corrections. With these approximations the resulting expression for S (Ro, k, co) is

(ark~ TX ) 2Drk
S (Ro, k,co)= p k~TXr +pk~T

Dr(v+Dr)k co +(Drk )

{k~arTX ) 2Drk
+pkg T

(Dr —v) {v+ Dr )k co + (vk ) m + (Drk )

I

Equation {3.5) follows directly from Eq. (3.2) and
the relation

I (Ro, k)= f S (Ro, k, co)

(y —1)=p kgTXr
r

pk&T(ark~ TX )'
+

Dr(v+Dr )k 4
(3.5)

for kL »1 and L ~X
~

&&1. We note that al-

though all orders in X have been considered in the
derivation of (3.5), the correction to the equilibrium
result is only of order (X ) ~ This is to be contrast-
ed with the results for I (Ro, k) for the Brillouin
lines derived in Sec. IV [cf. Eqs. (4.14) and (4.21)],
where all orders of X contribute. We postpone a
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To compute the intensities of the two Brillouin
lines, we return to Eq. (2.10) and introduce the sub-

stitution

P kgTXT
D0 —0(R, q)= B (R, q)

y
(4.1)

which together with Eq. (2.11c) leads to the follow-

ing equation for B:
cr ac

q ——
aR q a

+oqx

+&q„- B (R, q ) = —aq„X" aR„
(4.2)

where we have used the identity XT——y(pc ) '. In
view of the q„dependence of the terms in Eq. (4.2),
it is convenient to introduce a spherical coordinate
system with the x axis as the polar axis, such that

q„=q cosO. Then defining p=cos0, we obtain the
equation

~ ac a ~ ac (1-p') a

pc c aR„ aq c aR„ p ap

+ XT+ Bo'(R ) XT~
Rx

(4.3)

Equation {4.3) is a linear, first-order partial dif-
ferential equation for 8 (R,q,p). Owing to some
subtleties in its solution, to be discussed below, we
have constructed solutions by two different
methods. One method is to obtain an iterated solu-
tion in powers of cX /I", q presumably valid' for
c ~X

~
/I, q &&1, and then extend the solution to

the region where c ~X
~
/I, q =1 by Borel sum-

mation techniques. The other method is to con-
struct an explicit solution of Eq. (4.3) and to use as
a boundary condition that the results of the previ-
ous paper should be recovered for small

~

X
~

. As
each method has certain advantages, and as the
analysis is rather delicate, we will present both
methods, at least in outline. In this section we
describe the differential equation method, while in

Appendix B we outline the Borel summation tech-
nique. Both procedures lead to the same results.

We begin our analysis of Eq. {4.3) by noting that

further discussion of these equations and their
consequences until Secs. V and VI and turn our at-
tention now to the calculation of the integrated in-

tensities of the Brillouin lines I (Ito, k ).

IV. INTENSITIES OF THE BRILLOUIN
LINES

one can easily construct a solution in the form of a
power series in X, by iterating about the zeroth-

order solution

Bp (R„,q,p) =- 0X cp
I,q

(4.4)

A. Case 1: Exponential fit

We shall do this by transforming Eq. {4.3), a par-
tial differential equation, into an ordinary differen-
tial equation. Therefore, we introduce the following
scaled variables:

B (R„,q,p) =F (R,z&,p)/T,
where

(4.Sa)

aT
zl ——I,q c

aR„
(4.5b)

Using the relations

a aT(R„)
A,(T(R„))

x aR
=0, (4.6a)

i.e., Fourier's law, and

a az, a a
aR„

=
aR„ az, aR„

+
explicit

{4.6b)

By iterating Eq. (4.3), one can see that the spatial

variation of only three physical quantities appear:
the sound absorption coefficients I,(T(R„)); the
coefficient of thermal conductivity A, ( T (R„)),
through the dependence of dT/dR„on position [cf.
Eq. (4.6a)], and the velocity of sound c(T(R, )).
Since I, is usually obtained from the sound at-

tenuation coefficient a/f =2ir I,/c3, where f i~

the frequency of the sound wave, we will us&

a(T(R„)) instead of I,(T(R„)). We can express a
A, , and c as functions of temperature alone since any

density dependence can be eliminated by the condi-

tion that Vp=0. Since the spatial variations of a,
A, , and c depend on the particular fluid being stud-

ied, it is convenient to represent the temperature
variation of these quantities at constant pressure in

some general way with specific parameters that
characterize the particular fluid. We shall consider
two possible representations of the variation of a, A, ,

and c with temperature: (1) an exponential fit
m( T Nl2T m3T

where a=aoe, k=kg, and c =coe or (2)

a power-law fit a=alT ', k=k, lT ', and c =clT '.
Here ap A,p Cp m& m2 m3, al A, l Cl, and 5l, 52,

53 are to be chosen to fit the experimental data for
a, A, , and c for a particular fluid over the range of
temperatures of interest here.
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Eq. (4.3) becomes a, a aT 'a
z]+cry(m]+m2)z] —crm3(1 —p )

&
+cry F (R„,,z],p) = —cry .

az, a~ aR„ aR„
explic&t

(4.7)

Notice that all the explicit R„dependence in the operator on the left hand side of Eq. (4.7) is contained in the
term proportional to 8/M„),„p];„,. If we examine the iterated solution of this equation about F = —(cry)/z],
we see that the term proportional to 8/BR„),„p];„,never contributes since it acts on functions of z] only. If
then, the boundary condition also depends only on z] and p and not explicitly on R„,we can solve Eq. (4.7) by
taking F to be a function of z] and JM alone, and set a/aR ) p]' 'tF 0." Thus, we consider the equation

a 2 a
z]+crp(m]+m2)z] —om3(1 p ) F (z] p) — crp

Bz ] Bp
(4.8)

A further simplification of this equation is possible
if we take into account that experiments on Bril-
louin scattering with temperature gradients are
most advantageous when the wave vector of the in-
cident laser beam is perpendicular to the direction
of the temperature gradient, and one looks at
small-angle scattering. Then, if we note that P z
in Eq. (1.3) is sharply peaked about k = q if
kL &y I, and that if t( is the scattering angle, we

have)M =cos8=cos(g/2) (cf. Fig. I), so that for this
geometry 1 —p =sin 0 is very small. ' Then Eq.
(4.8) may be replaced by the equation'

a
z] +op(m ] +m 2)z] F (z],p) = —os .

'Bz ]

(4.9)

Since the quantity m3 no longer appears in Eq.
(4.9), it follows that for the scattering geometry
considered here, the explicit variation of the sound

tectar

I

velocity with temperature is not important.
Equation (4.9) is a first-order ordinary differen-

tial equation whose general solution is

cr(z] —z] )
0

F (z],p) =F (z] )exp
[p(m, +m, )]

1

(m, +m, )

o.(t —z] )X, —exp
t p(m]+m2)

(4.10)

where z] is some point where we know the value of
F . Because of the pole at t=0 in the integrand,
F (z],p) will, in general, be a multivalued function
in the complex z] plane. Therefore, we proceed by
interpreting Eq. (4.9) as a differential equation in
one of the cut complex planes illustrated in Fig. 2,
so as to specify a particular branch of the function.
We then impose the boundary conditions that F
vanishes at zero temperature gradient, i.e., that
F (z&,p) =0 where

i z&
~

= ao and that the iterated
solution of Eq. (4.9) be recovered if an asymptotic
expansion of (4.10) is made for large z] (small tem-

Incident beam

kj, Q)j

. BOY.".': .:::.f': v, .:-'. '
:fluid. ';;: ". .:.::;

Im t

FIG. 1. Light-scattering experiment in the presence
of a heat flux in the x direction. k;, co; and kf, cd are
the wave numbers and frequency of the incident and
scattered light waves, respectively. k = kf —k; and
co —cof co ' are proportional to the momentum and ener-

gy transfer from the fluid to the incident light wave.
is the scattering angle, V the volume of the fluid. V,
the scattering volume; TI and T2 are the temperatures
at the upper and lower walls of the fluid container,
respectively.

Ret / 'L Cb
Ret

(a)

FIG. 2. C, or Cb are two possible paths of integra-
tion for the t integrals in the cut complex t plane for the
evaluation of the Eqs. (4.10) and (4.18) for the integrated
intensities of the Brillouin lines. The latter are indepen-
dent of which path (C, or Cb) is chosen.
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p
cT'z i

p(mi+mp)
(4.11)

perature gradient). Then it follows that z] is given

by

I' (z],p)
1

(m&+m&)

'i dt (7
X 0 exp {t—z) )

JM(m, +m, )

The difference between the value of 8 obtained by

using either of the two contours illustrated in Fig. 2

is purely imaginary, and as only the real part of 8~
is of physical interest this nonuniqueness can be ig-

nored. Thus, we can write

(4.12)

Since only the real part of 8 is needed, and re-

turning to the original variables, we can express
8 (R„,q ) for p = 1, uniquely as

00 creq„X
8, (R„,q)= PJ dt—e

[I,q otcq„(—mi+mal)TX ]
(4.13)

where the subscript "1"denotes that an exponential fit for a and A, has been used and I' denotes the principal

part of the integral. The integrated intensity of the O.-Brillouin line I
& (Rp, k) for this case is obtained by us-

ing Eqs. (1.2) and (1.3) together with Eqs. (4.1) and (4.13), and the relation [cf. Eq. (II.3.20)]

Af p(R q ) A p(R q )+D (R q )

which also holds here since the D,b with co, +cob -O(q) are smaller than the D,b with co, +cob -O(q ) by fac-
tors -I,q /cq. The result is then

k T oek„XI (+,k) =p Xr 1 Pdt e—
[I,k otck„(m—i+m~)TX ]

(4.14}

provided kL »1 and L
~

X
~

&&1, as is the case in typical experiments. As before, all thermodynamic and

hydrodynamic variables are to be evaluated at the center of the scattering volume Rp. This result was first ob-

tained by Kirkpatrick and Cohen' and it will be discussed in more detail in Sec. IV B.

B. Case 2: Power-law fit

An almost identical method can be used to treat the case where a power-law fit for the temperature depen-

dence of a, A, , and c is used. Again we start from Eq. (4.3), introduce a new variable

zz ——I,q /cX =Tz&

to obtain the equation

z~+opz~a —053(1—p ) +op+ T 8& (R„,z~,p) = —crp .a 2 8 Op

Bzp Bp Xr gR

(4.15)

(4.16)

Here a=1+ 5i+5q and the subscript "2" denotes the power-law fit. Using similar arguments as before, we

can eliminate the explicit dependence of Bq on R„,and for small scattering angles or for constant sound velo-

city, we can drop the term proportional to 53(1—p ) on the left-hand side of Eq. (4.16). We then obtain the
ordinary differential equation

a Oz~+opazq +op Bq (zq,p) = —Op,
az2

(4.17)

the solution of which is given by

p 1/a
p

z Q

Bz (z&,p) =Bz (zz)
z2

' 1/a
CT Q 1 '& dt t

exp (zq —zq)
pa a ~,' t z&

0'
exp (t —z, )

pa
(4.18)
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Since the integral on the right-hand side of Eq.
(4.18) may have poles and branch points at t=O,
B2 (z2) will, in general, be a multivalued function in

the complex zz plane. Again we assume that
B2(z2) vanishes at zero temperature gradient and
we pick z2 by a similar requirement as before, lead-

ing to

and hydrodynamic quantities in Eq. (4.2) are to be
evaluated at the center of the scattering volume Rp.
In Sec. V we will apply the results obtained here for
I (Ro, k), I~ (Ro, k), I2(Ro, k), and S(Ro, k,co=0)
to water and liquid argon.

0 pz 2 — QQ

pa
(4.19)

V. RAYLEIGH AND BRILLOUIN LINES
FOR H20 and Ar

Then B2(z2) is given by

1/a
1 '2 dt

82 (zg, p) = ——
a z', t z2

exp (t —z2)
pa

I2(Ro, k)=p 1+ReBz z2 ——

cX

(4.20)
pa

where the path of integration in the t plane around
the branch point at t=O is illustrated in Fig. 2. If
z2 and crpa are both positive so that the integration
does, in fact, go around the point at t=O, then the
phase of t on the positive real axis must be chosen
to be zero in order that the iterated solution of Eq.
(4.17) is recovered for large z2. As in case 1, the
difference between the two contours of integrations
in Fig. 2 is purely imaginary and, therefore, of no
consequence to us here.

The integrated intensity of the O.-Brillouin line is
then given by

In this section we compute the shape and intensi-

ty of the Rayleigh line and the intensity of the Bril-
louin line for two liquids: water and argon, for
several values of k and X . We will compare our
results for the Brillouin lines with the recent experi-
mental results obtained by Beysens, Zalczer, and
Garrabos.

A. Rayleigh line

In paper II we showed that the Rayleigh line is
unaffected by the temperature gradient to linear or-
der in the gradient. However, in Sec. III of this pa-
per we obtained an effect of O((X ) ) when
higher-order terms in the gradient are taken into ac-
count and k is small, so that (cz/T)'

~

X
~

/Drk
is of O(1). A convenient quantity to graph in order
to illustrate the shape of the central line is the re-
duced structure factor, defined by (0=co/Dzk ):

S {Rp,k, co)Dz-k y
s (Rp, k, Q)= (5.1)

(4.21)

if kL »1 and L ~X
~

&&1. All thermodynamic
I

With Eq. (3.4), we find that this quantity is given

by

cp dT (ky +kz ) 2
s (Rp k 0)= 1+

T dRx (v+Dp)Dpk ~ +1

cp dT ( ky +kz ) 2(v/Dg )

T dRx (D~+v)(Dy. —v)k 0 +{v/Dp) 0 +1
(5.2)

where the equilibrium s,q(k, 0) has the form

s q(k, Q)= 0'+1 (5.3)

In derivin~ Ey. (5.2) we have used Xr ——y/pc and
(k~) =k~+k, [cf. Eq. (2.8b)].

In Figs. 3 and 4 we have plotted s (k, Q) for two
different liquids, H20 and Ar, respectively. In Fig.

I

3, we consider water at 1 atm and at a temperature
of 20 C at the center of the scattering volume. s,q
represents the equilibrium value given by Eq. (5.3),
s

&
represents a plot of Eq. (5.2) for the case where

H

~
dT/dR„~ =75K cm ' and k =3)&10 cm

while s 2 represents the case where

~
dT/dR„~ =50Kcm ' and k =2X10 cm '. We

have approximated k„+k, by unity, corresponding



T. R. KIRKPATRICK, E. G. D. COHEN, AND J. R. DORFMAN 26

to the scattering geometry illustrated in Fig. 5(a),
where k is perpendicular to the direction of the
temperature gradient.

In Fig. 4, s (k, O) is plotted for liquid argon at a
pressure of 60 atm, with a temperature of 110 K at
the center of the scattering volume. Again, s&
represents the equilibrium value while s ~ represents
allot of Eq. (5.2) where ~dT/dR„~ =50Kcm
kz+k, =1, and k =3X10 cm

S"(k, Q)
I I--

B. The Brillouin lines

We introduce the reduced integrated intensity of
the O.-Brillouin line i by the equation

1

4
I

—3
I

-2 4Q

Ii 2(Rc, k)
i, 2(Rc, k)=

I,q(RO, k )
(5.4)

i, [o(m~+m2) &0]=1— Ei(y~)
~m)+mq~ T

{5.5a)

Here the subscripts 1 or 2 denote, respectively, the
exponential or power-law fit of the temperature
dependence of a and A, , discussed in Sec. IV;
i, (Ro, k) is given by Eq. (4.14) while iz(R&&, k) by

Eq. (4.21). Furthermore, I q(Rc, k) is given by Eq.
(II.1.5a), with all thermodynamical properties taken
at the position Rc (cf. the discussion at the end of
paper II, Sec. III A. ).

dTIf k„&0, then i i can be easily transformed"dR„
to

FIG. 4. Reduced structure factor of the Rayleigh line
s (Rp, k, O) of Eq. (5.2) as a function of A=co/DTk for
liquid argon at 110 K and 60 atm for two cases: (1) s 1,

~
dT/dR

~

=50 Kcm, k=3000 cm ', (2) s~,
~

dT/dR,
~

=0.

I,k

dTc ~m(+m, ~k„
dRx

(5.6)

and Ei(y&) and E&(y&) are exponential integrals de-
fined by

and

0'e
i, [tr(m, +m2) &0]=1— E, (y, ) .

~m)+m~
I
T

{5.5b)

Herey~ is given by

s (k, Q) y& r

Ei(y, )=P f dt
t

(5.7a)

(0)

$k;

k) k~ 7)T40
f

k kg& k

I

-4 4Q
(b)

,+kt
is

JH -~- - —.- --.'~.'. '-, '. ..'. 7 T
"k

I

k;

k k. VT~0

FIG. 3. Reduced structure factor of the Rayleigh line

s (Rp,k, Q) of Eq. (5.2) as a function of A=co/DTk for
water at 20'C and 1 atm for three cases: (1) s 1,

~
dT/dR

~

=7& Kcm ', k=3000 cm ', (2) s2,
~
dT/dR

~

=50 Kcm ', k=2000 cm ', (3) s~,
~
dT/dR

~

=0.

T2

FIG. 5. Optimal geometry for light-scattering experi-
ments to measure the change due to a temperature gra-
dient (a) in the Rayleigh line and (b) the Brillouin lines.
J H is the heat flux and V T the temperature gradient.
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ae

Ei(yi)= f dt (5.7b)

i~(RQ, k)=1+ReBp(R, k)
I
-„ (5.8)

where 82(R, k)
I a a is given by Eqs. (4.20) and

0

and conveniently tabulated by Abromowitz and
Stegun. '

The reduced integrated intensity i 2 (Ro, k ) is

given by

(4.21), with R=R&& and k„=1. Thus, i2(Ro, k) can
be evaluated when a=1 + 51+52 has been deter-
mined. These parameters 51, 52, a, as well as m1
and m2 needed for i12, were all determined by per-
forming a least-squares fit to the experimental data
for a and A, . The values obtained are listed in Table
I.

In order to determine i2, we have used an abso-

lutely convergent expansion of B2(k), valid for
kzdT'/GfRz & 0 and for a = —6.025, given by'

I k y ( —1) y2= —1 —yte" $c Ia Ik„XT „o
n! n+1—

+y2 l'le 'r 1— (5.9a)

and

B y2 ——
I;k y2= —I+yze

c ~a ~k„XT
n! n+1—

cos V2
l le

In Fig. 6, the i t 2(Ro, k) are plotted for HzQ at 1

atm for a temperature of 40'C at the center of the
scattering volume and for k„(dT/dR„) &0. The
straight line in the figure represents the value
io =1—ock„Xr/I, k given by Eq. (II.4.3a) and is
the result of the linear theory discussed in II. In
Fig. 7 we plot the quantities

61 2 —(l 1,2 l 1,2)/(l 1,2+l 1,2)

for H20 under the conditions listed above and com-
pare these theoretical values with the experimental
values for e=(i+ —i )/(i++i ) found by Beysens
et al. and with eo, the result of the linear theory.

In Fig. 8 we plot i1 and io for liquid Ar at 60

(5.9b)

I

atm and with a temperature of 110 K at the center
of the scattering volume. We do not give i2 since
the power-law fit does not represent the tempera-
ture variation of cz and A, very well.

1.2

b 10

0.9

10'r, 10-'c
(cm/sec) (cm/sec)

5z

H20 2.64 1.53 —0.0254 0.0025 —7.77 0.749

Ar 0.507 0.712 0.0259 —0.0123

TABLE I. Sound damping (I,), sound velocity (c), and
the temperature variation of the sound attenuation and
thermal conductivity in an exponential fit (m &,mz), or a
power-law fit (5~,52) to the experimental data, are listed in

Table I for water at 40'C and 1 atm and liquid argon at
110K and 60 atm.

0.8

I I I

05 IO

K„VT/„~ (IO K cm)

FIG. 6. Variation of the reduced integrated intensity
i of each of the Brillouin lines (can=+1) as a function of
f,V T/k' for water and for the case of an exponential
(1) or a power-law (2) fit to the sound attenuation coeffi-
cient and the thermal conductivity. io is the result of
the linear theory discussed in the previous paper. Here
V T=dT/dR„.
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25

20

15
C4
O

Lu

IO

0 5 10 15

K&VTjKa (IOS K cm)

2.0

FIG. 7. Intensity difference of the two Brillouin lines
e=(i+ i )/—(i++i ) as a function of f VT/k for
water at 40'C. Straight line: linear theory eo, curved
lines: large gradient theory, case l, e~, and case 2, e2,

.
dots: experiment.

VI. DISCUSSION

A number of comments on the results obtained in
this paper will now be given. They are as follows.

1.6

1.5

1.3

b l,0

0.9

0.8

0.7

0.6

0.5

I I I I

0.25 0.5 0.75 .I.0

KKV T/Kc (Ios K cm)

FIG. 8. Variation of the reduced integrated intensity

i of each of the Brillouin lines (o =+1) as function of
k, VT/k for liquid argon for case I, i~, and the linear

theory i 0.

E

(l) The noneguilibrium contributions to the Ray-
leigh line, s (Ro, k, Q) as well as to IH(RI), k) are
both proportional to (ky+kz )(X ) /k Thus,
these corrections will be most important for small k
and for scattering geometries where k is perpendic-
ular to the temperature gradient.

(2) Both the height and the integrated intensity of
the Rayleigh line are substantially increased by the
presence of the temperature gradient. For experi-
mentally realistic values of the temperature gradient
(-75 Kcm ') and for k (-2000 to 3000 cm ')
these effects should be easily observable.

(3) We note that the effects of the thermal gra-
dient on the Rayleigh line in liquid argon is consid-
erably larger than in water. The same is true for
the Brillouin lines. The reason for this is that since
the hydrodynamic modes represent the lowest-lying
excitations of a fluid, their importance increases
when the (average) temperature of the fluid de-
creases.

(4) The integrated intensity of the Rayleigh line is
determined by MHp(R, q), the Fourier transform of
the equal-time correlation function MHp(R, R&2).
The theory presented here for MHp(R, q) breaks
down for sufficiently small q {ie., when

lX l
/q= 1) so that the asymptotic behavior of

M~p(R, R~2) for large R~2 cannot be determined.
However, Eq. (3.5) does imply that for some inter-
mediate range of values of A]2 MHp(R R]2) grows
linearly with 8 &2.

(5) As in the linear theory discussed in paper II,
the intensities of the Brillouin lines, i.e., the B& z,

like the Bo defined by Eq. (4.4) and discussed in pa-

per II, arise from a mode-coupling effect: the cou-

pling of the two sound modes (O., k) and ( —o, —k)
to the heat flux. Similarly, the nonequilibrium con-
tribution to the Rayleigh line -{X ) arises from
the coupling of a viscous and a heat mode to the
heat flux. Experimental verification, therefore, of
either the increased intensity of the Rayleigh line or
the predicted behavior of the Brillouin lines [cf. Ap-
pendix C below] in the presence of a thermal gra-
dient would support the importance of rnode-

coupling effects in fluids not in equilibrium and

away from a critical point.
(6) The extrema in i

& 2 in Figs. 6 and 8 can be un-
derstood by examining, for example, the expression
for i

&
given by the Eqs. (4.14) and (5.4):

o.ck„XT

[l,k' —orck„(m) +m2)TXr]

(6.1)
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Now if m i +m2 & 0, as is the case for water, and if
k„(dT/dR„) &0, then for small gradients, both
i »ip and i»i p as illustrated in Fig. 6. This
can easily be seen by expanding in (6.1) about

( I,k ) '. As the magnitude of the gradient
increases —still with k„(dT/dR„) & 0—i &+ will con-
tinue to increase, but i I will pass through a max-
imum before it will eventually decrease. For the
case of liquid Ar, m i+m2 &0 and then for
k„(dT/dR„)&0, i&+ &ip+, and il &ip, il+ has a
minimum, while i ] continues to increase smoothly
with increasing gradient. This dependence of the
curves for i &- on the sign of m]+m2 should provide
a direct experimental test of the theory presented
here.

(7) Since the integrated intensities of the Brillouin
lines measure the sound-wave contributions to the
equal-time correlation function, the second term in

the denominator in Eq. (6.1) can be interpreted as
an additional damping of this correlation function.
This extra damping is caused by the coupling of
two sound modes, characterized by {cr,k) and

(—o., —k) to the heat flux, thus allowing the tem-

perature gradient to affect the (o., k) sound mode
through the variation of its sound attenuation coef-
ficient a, and the coefficient of thermal conductivi-

ty, A, with temperature. For sufficiently large gra-
dients, this damping considerably reduces the con-
tribution of B to i, so that

~

i
~

is much smaller
than ~io ~.

(8) In Fig. 7 we compared the theoretical results
for water with the experimental data of Beysens
et al. Although their data points are of the same
order of magnitude and have the same sign as our
results, the scattering of their points prevents us
from drawing any firm conclusion other than not-

ing that a simple extrapolation of the small gradient
theory to large gradients yields a result that is much
too large. In addition, it is difficult to assess the
role of boundary effects in the experiments of
Beysens et al. where the cell size is roughly one-
third of the mean-free path of the relevant sound
wave of wave numbers k,c/I, k [see point (13a)
below].

(9) The integrated intensity of the Brillouin lines
is proportional to the Fourier transform of the
equal-time correlation function M &(R,Ri2). As is
the case for MH&(R, Ri2), our theory cannot deter-
mine the asymptotically long-range behavior of
M z(R, Ri2), since M z(R, q) is not known for
q& ~X ~. However, one can use M z(R, q) to
show that for

or R~z &&(I,/ c
~

at'T
~

)' ], M &(R,R~2) is pro-
portional to R ~q'. For R,2 &&[I,/c~ V T(m~
+m2)

~

]' one can obtain an estimate for the
behavior of M &(R,R]2) by ignoring the angular
dependence of q„ in B (R„,q), i.e., by replacing q„
by unity and performing an inverse Fourier
transform of M z(R, q). This leads to a behavior of
M z-R]2', where s is of the order of 3. The corre-
lation length [I,/c

~

V T(m &+m2)
~

]' is of the
order of 2.5X10 cm for H20 at 40 K and

~

V T
~

=75 K cm '. The difference in behavior
for large R i2 of MH&, discussed in point (4), and of
M &, discussed here, reflects the asymmetry intro-
duced into the fluid by the thermal gradient.

{10) We have so far only discussed the case
k„dT/dR„& 0. The values of i and e for
k„dT/dR„&0 can be obtained from the symmetry
relation

dT B ~ k~ dT
"dR„ (6.2)

2
p k8 T7pI (Rp, k;k„«1)=

2y

T 2
9 inc

9 lnT

Equation (6.2) follows from Eq. (4.2) or also direct-
ly from the physics of the light-scattering experi-
ment.

(11) In point (8), and point (13a) below, as well as
in paper II, Appendix C, we discuss the possible ef-
fects of the boundaries on the intensities of the Bril-
louin lines in nonequilibrium fluids. There we note
that for a complete theoretical discussion of the ex-

periments by Beysens et al. one might need to in-

clude explicitly in the calculations the walls of the
fluid container. Here we will suggest some experi-
ments to measure the intensity of the Brillouin lines
where the effects of the boundaries can be expected
a priori to be small.

One possibility is to use the experimental
geometry given in Fig. 5(a) to study the intensities
of the Brillouin lines. In this geometry k =0 so
that the term linear in X in I (Ito, k), vanishes.
However, by iterating Eq. (4.2) for B (R, q) we see
that the term of second order in X does not vanish
as k„~0. If kL &&1 and L ~X

~

&&1 then from
Eqs. (1.3), (II. 3.20), (4.1) and (4.2), the second-order
result for I (Rp, k) for small k is

R~2 &&[I,/c
~
VT(m~+mq)

~

]' (6.3)
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The corrections to Eq. (6.3) near k„=0 are of
0((px /I, k )"), so that this equation can be used

to predict small but detectable deviations from

I,q(RO, k). We note, however, that there is no asym-

metry of the Brillouin lines in Eq. (6.3) but an equal

change in the intensity of both. For this geometry,
the Brillouin lines are produced by sound waves
that travel in a direction perpendicular to the tern-
perature gradient, so that the finite-size effects
should be minimized.

Another experiment that would minimize the ef-
fects of the walls is to use thermal gratings. ' Here
a temperature gradient is produced deep inside a
fluid by the interference of two laser beams. Such
experiments have been successfully carried out in a
variety of systems' and might be useful here as
well.

(12) In the course of this work we have men-
tioned the close connection between the dynamical
processes responsible for the nonequilibrium contri-
butions to the dynamical structure factor and those
responsible for the long-time tails of the time-
correlation functions that determine the transport
coefficients as well as the appearance of logarithmic
terms in the density expansions of the transport
coefficients for moderately dense gases. We will

sketch how these connections can be made in Ap-
pendix C for the case of a moderately dense gas, on
the basis of kinetic theory so that a discussion of
logarithmic terms in the density expansion of the
transport coefficients can be included.

(13) Some open problems related to the research
reported here are the following: (a) In all the calcu-
lations presented in this and the preceding paper,
we have ignored effects due to the walls that sur-
round the fluid. For the shape and intensity of the
Rayleigh line the neglect of the walls can be justi-
fied by a calculation of Kirkpatrick and Cohen, '

where the effects of the walls are explicitly taken
into account. Since the results obtained with or
without walls turn out to be identical, the effect of
the walls can be neglected for the Rayleigh line.

For the Brillouin lines the situation is much less
clear. Satten and Ronis, using fluctuating hydro-
dynamics, have presented a calculation, where they
find an important reduction of the intensity of the
Brillouin lines, when the effects of the fluctuations
of the fluid and the walls are explicitly taken into
account. However, since they only treat the case of
small gradients, i.e., c ~X

~

/I', k &&1, the signifi-
cance of the agreement of their results with the ex-
periments of Beysens et al. is unclear, since in these
experiments c ~X

~

/I', k =1 and a large gradient

theory should be applied. Clearly, a theory that
takes into account both wall effects and large gra-
dients should be developed, but this has not been
done so far. One might expect, though, that in such
a theory the effects of the walls would be greatly re-
duced as compared to in a linear theory because of
the strong extra damping of the sound modes due to
the thermal gradient discussed above under point
(4). This damping is taken into account only in a
large gradient theory and is most effective when

there is a large temperature dependence of a and A, .
(b) In this paper we used an infinite resummation

technique to calculate the integrated intensities of
the Brillouin lines for large thermal gradients. Al-
though these results appear to be physically mean-

ingful, the methods used to derive them could be
criticized. For example, Fourier-transform
methods were used for a spatially inhomogenous
fluid which is unnatural and leads to a differential
equation in wave-number space, without well-

defined boundary conditions. An alternative
method, using Borel summation and sketched in

Appendix B gives results that are not necessarily
unique. Thus, a better method to derive the above-
mentioned results for the Brillouin lines is clearly
indicated.
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APPENDIX A: ORDERING SCHEME
FOR LARGE THERMAL GRADIENTS

I. Equations for the D ~(R, q )

In general, the D p(R, q) satisfy the Eq. (2.2) and
the matrix H(R, q ) in Eq. (2.2) can be written in the
form H(R, q)=HO(R, q)+AH(R, q), where Ho
denotes the linearized hydrodynamic matrix given

by Eq. (II. 2.12)~ The correction term ~ is at least
proportional to X, and one can show by explicit
calculation (see below) that hH has the general
structure of Eq. (2.4):

EH(R, q)=cX [1+O(X /q)+O(X /q) + . ]

X[1+0(lq)+O(l q )+ ] (AI)
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where I is a microscopic length.
To understand the form of Eq. (A1), we proceed

as follows. Before we carry out a Fourier transform
of the equation for D p(RiRq) with respect to their
relative position Ri2 ——Ri —R2, a typical (Euler)
term on the left-hand side of Eq. (II. 2.6) is

a f(R )„)D~p(R),R2),
BR i„

(A2)

where f(R &„) is some thermodynamic function that
I

depends on R~„[e.g., c(R~„)]. To carry out the
Fourier transform of the above expression with
respect to relative coordinates, we expand f(R~„)
around

f(R„)=f( —,(R i„+R2„)) .

Doing this and using 8/M i„——0/BR &2„+—,3/BR„,
we find that the Fourier transform of Eq. (A2) has
the form

~ 1 a
2 BR„

df(R„) 1f«.)+
d —, , + D.,(~q)dR„2 3iq„

=iq„f(R„)D ~(R, q)+X f(R„)[1+O(X /q)+O(X /q) + ]D ~(R, q), (A3)

=(5~ r&~pTs T)p aPX (A4)

In paper II we consistently retained only the contri-
butions to D, proportional to cX /I, q, in our solu-
tion of (A4). Now we wish to consider the solution
to Eq. (2.2) to all orders in X, so we expand the
solution as

D=D, +D, +.-. (AS)

where Di satisfies Eq. (A4) and Dn satisfies the
equation

H y pDyp +Hpy pD y +LaLH yDyp

+~pyD yn i
——0 (A6)

for n )2. By expressing Dn in terms of eigenfunc-
tions of Hp and selecting only combinations where

2
Hay, p yp, n+ py, pDay, n q Dap, n ~

we see that Di ——0(X /q ), and Dn =0((1/q
X~Dn —&) By examining the structure of ~
given by Eq. (Al) we can see that the expansion
(AS) of D in powers of X has the form

where we have used that qd/Bq„= O{q ) and

(1/f)df/dR„=O(X ). Examining Eqs. (Al) and

(A3), we see that we have partially derived the gen-
eral structure of ~(R, q). The remaining terms in
(A1) arise from the Navier-Stokes terms in H(Ri)
and can be obtained by similar arguments.

We next look for a solution of Eq. (2.2) in the
form of an expansion in powers of X . The
lowest-order solution is the one found in paper II
and it satisfies the equation (II. 3.14):

Hay p(R q yp i R' q + py, p(R~ q)Day 1 (R, 1 )

D=(X /q2)[1+O(lq)]

+ (XT/q')'[1+0(lq ) ]+
+(X /q )"[1+O(lq)]+ (A7)

II. Equation for M~p(R, q, co) for large
gradients

In order to determine the equation for the
M~(R, q, ro) when c ~X

~
/l, q =0(1), cq&&I,q,

and co=0(q ) we apply similar arguments as given
above to the equation for M ~(R, q, co) given by Eq.
(2.1). Again, we decompose H into Hp+ bH, where~ has the structure given by Eq. {A1). Since co is
also of order q', the leading contribution to M inIXP

where the leading term in the nth order of X has
the form (X~/q2)", since q is sufficiently small that
Iq « 1. Furthermore, by combining Eqs. (A1),
(A6), and (A7), we can see that the leading term in
each order of X comes from the contribution to
ddt in (Al) that is of order cX . Consequently, if
we restrict ~ to terms of order q X, we will,
upon solving Eq. (2.2), obtain an expression for D
where all orders in X /q have been summed to-
gether.

Finally, we point out that one can consistently
use the lowest-order hydrodynamic modes when
transforming the Eq. (2.6) for the D~p to set of
equations for the D,b. This follows from the fact
that the higher-order hydrodynamic modes lead to
terms -qD p that are of higher order in q than
need be retained. These considerations lead to Eq.
(2.9) for D» and Eq. (2.10) for D
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each order of X~ will be of the form (X /q )", and
AH can again be restricted to the order (q X ).
This argument leads to Eq. (2.14a) for Mz~(R, q, co).

APPENDIX B: SOLUTION OF EQ. (4.3)

BY SOREL SUMMATION

(op)" +'(m, +m2)"

n=0 Z f

—]
op(m &+m2)t

dt 1—
z) z]

(83)

In this appendix we outline the solutions of Eq.
(4.3) for the quantities 8 (R„,q,p) that determine
the integrated intensities of the Brillouin lines, ob-
tained by the technique of Borel summation of a
series. The essential steps of our application of the
Borel summation method are as follows. We con-
struct a solution of Eq. (4.3) as a power series in
eX /I, q . As we shall see, this series is asymptotic
rather than convergent, even if c ~X

~

/l, q
However, this series can be formally summed by the
method of Borel. We then analytically continue the
resummed expression into the region where
c ~X

~

/I, q =1, and take this result to be the
value of B (R„,q,p) for c ~X

~
/I, q =1. The re

suits obtained by this procedure agree with those
presented in Sec. IV, where we constructed solutions
of Eq. (4.3) by quadratures.

For simplicity we consider here only the case of
the exponential fit of the temperature dependence of
a, A., c, and we also make the small angle approxi-
mation that p =cos 0= 1. Then Eq. (4.3) for
8 (R„,q,p) can be transformed to Eq. (4.9) for
J' {z),p), given by

a
z]+op(m ~+m~)z& — F (z],p)= —harp, {81)

()Z f

where 8 (R,q,p)=F (R„,z],p)/T with z~
——I,q

x [c(dT/dR„)] '. We expand the solutions of Eq.
(81) in powers of z], which is equivalent to an ex-
pansion in powers of cX /I, q and find that

(op)n+1(m
& +m& }n

F (z, ,p)= —g „, n! . (B2)
n=0 Z ]

Since a factor of n! appears in the numerator, the
series is asymptotic rather than convergent, for any
value of z]. The 8orel method for summing the
series is to write

n!=I (n+1)= f dt t"e
0

and then to interchange the integration and summa-
tion. That is, we write

To be explicit, we consider the case where the fluid
is H20, for which m~+m2 ———0.023, and we sup-
pose that p(dT/dR )~0. Then, we can write for

—I

B (R„,q,p)= f dte ' 1+—
~m, +m,

~
Ty ~ y

8+(R,q,p) =— e~
dt

~m)+m,
~

T

e~
Ei(y} .

~m, +m,
~

T (B5)

Here E&(y) is defined by Eq. (5.7b). Equation (B5)
is the first result of the Borel summation procedure.
We have summed an alternating asymptotic series
for 8+(R„,q,p) so as to obtain a result, Equation
{85) has an absolutely convergent expansion in
powers of y (Ref. 17) given by

8+(R„,q, p) = 1 e"
~m, +m,

~

T

oo
( 1 }n

X )+!ny+ g n! {86)

where y is Euler's constant.
To obtain 8 (R„,q,p) for the case where y &0,

we can no longer use Eq. (84) since the integrand
on the right-hand side of Eq. (84) has a pole at t =y
if o= —I. Instead, we use Eq. (6.2), and that
8+(R„,q,p) given by Eq. (86), defines a single-
valued analytic function in a cut complex y plane.
Thus, if we place the cut in the third quadrant of
the y plane as illustrated in Fig. 2(b), we can define
B+(R„,q,p) for @&0,

~ p ~

= I, as

(B4)

where y =z&[@
~
m&+m2

~ ] '. The integral on the
right-hand side of Eq. (B4) is only well defined for
o =+1. We first analyze this case and then show
how 8 (R„,q,p) can be obtained by analytic con-
tinuation of the result obtained below for 8+.

For the case where o.=+1, the integral on the
right-hand side of Eq. (B4) can be transformed by
the substitution t =yt' —y, and 8+(R„,q,p) be-
cornes for

~ p ~

= 1:
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B+(R„,q, —
I p I

)= 1
e i)'

I
mi+m2

I
T

x y+»( —

I@I�

)+ g n!

(87)
where we take the principal branch of ln( —

I y I
) as

ln( —
I y I

) =ln
I y I

+in W. e then obtain (
I p,

I
=1):

ReB (R q —I pl )=
Im, +m2 I

T

treated from a single point of view.

The increased intensity of the Rayleigh line as
well as the asymmetry in the intensities of the Bril-
louin lines are due to mode-coupling contributions
to the pair-correlation function Gq(1, 2). The quan-
tities that determine the nonequilibrium part of the
intensities of the Brillouin lines are the D ~(R, q)
that are for low densities given directly in terms of
G&(1,2) by Eq. (I. 3.7b) as

D ~(R, q)= JdRiqe

x y+in
I y I + y n!

X IdV, J dV, a (V, )n~(V2)

XG2(1,2), (C1)

e
—Ixl

Ei(
I y I

)
m, +m

where Ei(y) is defined by Eq. (5.7a). Combining

Eqs. (6.2) and (88), we obtain

eB (R,qp) = Ei(y)
lm, +m, I

T
(89)

for y)0. One can easily check that the results

given by Eqs. (85) and (89) agree with those given

by Eqs. (5.5a) and (5.5b), obtained by quadratures
from the differential equation (4.9). The case where

p(dT/dR„) &0 or where the power-law fit of a, A.,
and c is used, can be treated in a similar manner.

APPENDIX C: CONNECTION
WITH LONG-TIME TAILS
AND VIRIAL EXPANSION

In this appendix we shall demonstrate that the
same mode-coupling effects that give rise to the
enhanced intensity of the Rayleigh line and to the
difference in intensity of the Brillouin lines also ap-
pear in the long-time tail contributions to the trans-
port coefficients. Furthermore, we will show that
these mode-coupling effects and the divergences
that lead to the nonexistence of a virial expansion of
the transport coefficients of a fluid are both related
to the nonequilibrium part of the pair-correlation
function G2(1,2) as defined by Eq. (I. 3.10).

We will discuss these connections on the basis of
kinetic theory since then the light scattering, the
long-time tails, and the nonexistence of a density
expansion of the transport coefficients can all be

l

where the a (Vi) are given by Eqs. (I. 2.9a)
—(I.2.9c).

For low densities and for interparticle separa-
tions, R I2, greater than the range of the forces, i.e.,
for R I2 )o., G2(1,2) satisfies the equation (I. 3.10),

[L(l)+I.(2)]Gp(1,2)=T(12)FI(1)FI(2), (C2)

where T(12) is the binary-collision operator defined

by Eq. (I. 2.13b) and the streaming operators L(i)
(i =1,2) are defined by Eq. (I. 2.34). In paper I,
Sec. III, we showed that the hydrodynamic equa-
tions that determine the D ~(R, q) follow directly
from Eq. (C2) by considering the projection of G2
onto the subspace spanned by products of hydro-
dynamic modes.

The connection between light scattering and the
long-time tails is made by computing the thermal
conductivity A, for a gas in a nonequilibrium steady
state with a constant temperature gradient and
demonstrating that (mode-coupling) contributions
to A, exist that are determined by the D ~. As the
computation of X is rather long and has been car-
ried out in detail by Ernst and Dorfman, ' we mere-

ly outline the main results.
Ernst and Dorfman used Eq. (C2) to close the

first hierarchy equation in the BBGKY hierarchy
of equations for the distribution functions. On
the basis of the resulting equation for the single-

particle distribution function one can obtain an ex-

pression for the thermal conductivity A, . The
correction k~ to the Boltzmann equation result A,z
for A, is then given by

2
dq PmVi S

&z =ka d VI dVg, Vi„—— To(12)[i q Viz —Ai(1)—A((2)1 To(12)
(277) 2 2 AI (1)

Pm Vi
X (1+~12) V1 — FI(1)FI(2)

(C3)
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where A~ and Te(12) in Eq. (C3) are defined by Eq.
(I. 2.22) and by

T(1,2) =5{Rip)Tp(1,2)

respectively. To evaluate A,~, we divide the q in-

tegral in Eq. (C3) into two regions 0(q(qp and

qp (q ( (x) where qp
' is on the order of a mean-

free path I and treat each region separately.
(a) First we consider the region 0(q (qp. For

q in this range we can expand the operator [ ] ' in
terms of the eigenfunctions 0,(+q, V;) and eigen-
values co, (q) of the operators [+i q V; A—~(i)]
One can see immediately on inspection of the
right-hand side of Eq. (C3) that the tnost singular

contribution to the q integral will come from those
combinations of eigenfunctions 8,(q, V&) and
8b( —q, Vz) with [co,(q) +co&(q)]~0 as q ~0
These eigenmodes of +iq V —A(, whose eigen-
values approach zero for q~0, are the kinetic
counterparts of the five hydrodynamic modes dis-
cussed in Appendix A of paper II. For the eigen-
functions we refer to the literature, ' but the corre-
sponding eigenvalues co, (q) are given in paper II by
Eqs. (II. A4b), (II. A7a), and (II. A8a) with all
transport coefficients and thermodynamic quanti-
ties replaced by their low-density values. The con-
tributions of the hydrodynamic modes to A,z, denot-
ed by A,z ', have the form

V2
Z„'"'=i, g'fdV, fdV, f '

q, V,„'—— '
T&&(12)&,(q V&)&b( —q, Vz)

(2m )
" 2 2 A(

XE)(1)F){2)D,(, ](R,q)(X ) (C4)

where the summation over a and b runs only over the above-mentioned five hydrodynamic modes and the in-

tegral over q only over 0 (q (qp as indicated by the primes. The quantity D,(, i(R, q ) is given by

Dgb, ](R,q ) =[~,(q)+~b(q)] f&V~ f&Vqe, ( q»~)i)b( —q V~)To( 12)(1+Fir) Vi~
A((1)

mvi
X Fi(1)F((2)(PX ) . (C5)

dq 1

«(2n) l,q
(C6)

where (I;q )
' in the integrand comes from the

The correspondence in notation between the
D,bi(R, q) defined by Eq. (C5) and the quantity
D,b, (R, q) appearing in Eqs. (II. 3.15) and (II. 3.16)
is not accidental: One can verify that for low densi-
ties the two quantities are identical for a proper
choice of the normalization of the hydrodynamic
eigenfunctions. Therefore, the D,(, i that determine
the integrated intensity of the Brillouin lines in
light-scattering experiments is identical to the D,b &

that determine the mode-coupling contribution to
the thermal conductivity. In order to make the con-
nection with the long-time tail contributions to A, ,
we note that the D,(, ~, in k~ with co, (q)+~q(q)
=O(q ) will give a q dependence in the integrand
of APP' proportional to q [cf. Eqs. (II. 3.17)]. In
particular, we consider the contribution of D to

D determines the asymmetry of' the in-
tensities of the Brillouin lines and also leads to a
contribution to A,z

' of the form

=f
t &(c«)

(C7)

we have

(t) t 3/2 (C8)

That is, the q denominators in A,~ are responsible
for the t contribution, i.e., the long-time tail
contribution to the time-correlation function p~(t).

Thus, the two sound modes (o., q) and ( —o, —q)
that cause the difference in intensity of the two
Brillouin lines in the presence of a temperature gra-
dient, also contribute to the thermal conductivity k
through A,& ', with a =o.,q; b= —o., —q. Physical-

I

combination of eigenvalues co (q)+co (q). In-
tegrals of this form lead directly to the sound-mode
contributions to the long-time tails of the time-
correlation functions p~(t) that determine A,. For,
remembering that A, is a time integral over p~(t),
and writing

dq 1 Qq —I,q~~
dt e

«(277) rq p q «(2m)
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ly, this follows immediately from the fact that the

sound modes moving with the temperature gradient
have larger amplitudes than those moving in the op-
posite direction, since this implies a contribution of
the sound modes to the transport of heat in the
fluid.

We note that the long-time tail contribution to
I

the heat flux involves an integral over all q (q &qp)
of pairs of sound modes, while in a particular
light-scattering experiment only one particular
q = k occurs.

(b) Next we consider the region qp &q. The con-
tribution from this region to kz, denoted by A,z is
given by

2

X exp[ —[iq.V, 2
—At(1) —At(2)]t] To(12)(1+P~q)

Pm V&
~]

2
~l(1)~1{2).

A((l) " 2 2
(C9)

In general, A,~ is extremely difficult to compute
because many of the spectral properties of the
operator [i q V~2 . At(—1)—At(2)] are not known for

q & qp. One possible way to evaluate Eq. (C9) is to
assume that A,~ has a power-series expansion in the
density and expand

exp —[tq V&2 —At(1) —At(2)]t

in powers of [At(1)~A((2)] since At(i) is of 0(n)
[cf. Eqs. (I. 2.19) and (I. 2.22)]. Phase-space esti-
mates and detailed calculations, however, indi-
cate that although the first two terms in this
power-series expansion exist, the remaining terms
are all divergent, with the strength of this diver-

gence increasing with every term. These diver-
gences are due to, for example, recollisions between
the same two particles, where after their first col-
lision each of these particles suffers a number of in-

termediate collisions with other particles before a
second collision between them occurs. Since the
time between the first and second collision of the
two particles can be arbitrarily long, divergent in-

tegrals appear, the first of which is of the form

lim (no ) J, dtlt = lim (no ) lnT/t+~ 00 CT T~ 00

where t is the average time it takes for a particle to
traverse a molecular diameter. As a consequence,
A,z~ does not have a power-series expansion in the
density, i.e., the transport coefficients do not have a
virial expansion. To obtain convergent integrals,
the exponential to Eq. (C9) should not be expanded
in powers of [At(I)+At(2)], but some aspect of
these binary-collision operators must be retained in
order to provide a cutoff for the time integrals,
leading then to a cutoff on the time scale of the
mean-free time r-(no ) '. This in turn itnplies a
nonanalytic expansion of A,z, i.e., of A, in the densi-
ty, since then a contribution of the form

{no ) inc/t -(na ) ln(no. )

will arise. Thus, the nonexistence of a density ex-
pansion of the transport coefficients, the long-time
tails, and the light-scattering phenomena discussed
in these papers are all related to 62(1,2) through the
q integral (C4) occurring in A,~, albeit to different
aspects of this integral.
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