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Light scattering by a fluid in a nonequilibrium steady state. I. Small gradients
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The equations derived in the previous paper for the unequal- and equal-time correlation
functions of the microscopic densities of mass, momentum, and energy are solved and ap-

plied to light scattering for the case of a fluid subject to a small temperature gradient. The
deviations of the dynamical structure factor S(k,co) and the intensities of the Rayleigh and

Brillouin lines from their equilibrium behavior are computed to first order in the tempera-
ture gradient. The shape and intensity of the Rayleigh line remains the same as in equilib-

rium. The shapes and the intensities of the Brillouin lines deviate from their equilibrium

values by terms proportional to the temperature gradient, leading to an asymmetry in the

heights and intensities of the two lines. This asymmetry in the intensities is caused by a
mode-coupling effect: the coupling of two sound modes to the heat flux. Owing to restric-

tions on the theory, the predicted change in the shape of the Brillouin lines is too small to
be detected, but the change in their integrated intensities might be observable.

I. INTRODUCTION

In the previous paper in this series (hereafter
denoted as I), ' we derived a set of hydrodynamiclike
equations for the correlation functions that are
needed for a description of the light scattering by a
fluid in a nonequilibrium steady state. In this and

the following paper we will apply those equations to
determine the spectrum and intensity of the light
scattered by such a fluid.

As mentioned in I, the interest in light scattering

by fluids that are not in equilibrium is due to the
fact that light scattering provides an experimental

technique, whereby one can detect the presence of
long-range correlations between the fluctuations of
the microscopic densities due to nonequilibrium
processes in the fluid. In fact, as we shall see, these
long-range correlations are entirely due to rnode-
coupling effects. Thus, the detection of these long-
range correlations would demonstrate that mode-
coupling not only causes the anomalies in the trans-
port coefficients near a critical point for a phase
transition, but is also responsible for long-range
correlations in nonequilibrium fluids.

To describe the light-scattering spectrum, one

computes the dynamic structure factor S(k,co) de-
fined by

S(k,co)= —f dRP (R)
V

T/2 T/2
X f dRt f dR2f dtt f dt2P(R, )P(R~)

XexpI —i[k (Rt —R2) —co(t, t2)]]—
xM (R, , t, ;R,,t, ).

Here Ak =Pi(kf —k;) is the momentum transferred
from the fluid to a photon whose incident wave vec-
tor is k; and final wave vector is kf,'
fico=A(cof co ) is the energy transferred from the

fluid to the scattered photon, V is the volume of the
system, T is the duration of the experiment, P(R) is
a form factor that describes the fact that only a
small portion of the fluid is both illuminated and
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obesrved by the optics of the system. The form fac-
tor P(R) is on the order of unity inside the scatter-
ing volume and vanishes outside it. The quantity
M~(Ri, t i.,R2, t~) defined by

M~(R)&t) ', R2, t~) = (5p(R)&t) )5p(R2, t~) ),
(1.2)

is the density-density correlation function discussed
in detail in I in which 5p(R;, t;) is the deviation of
the microscopic density at R;,t; from its average
value. The intensity of light scattered with wave-

number and frequency change k and co, respective-
ly, is then proportional to S(k,co).

In 1934 Landau and Placzek calculated S(k,co)
for light scattered by fluids in thermal equilibrium.
In order to obtain M~(Ri, ti,'R2, t2), Landau and
Placzek used the Onsager-regression hypothesis
which assumes that small, long-wavelength fluctua-
tions about equilibrium decay according to the same
linear laws (i.e., the linear hydrodynamic equations)
that govern the decay to equilibrium of macroscop-
ic deviations from equilibrium. Landau and Plac-
zek found that S(k, co) is given by

Scq(k, co)=p ksTXr
2 ~ 2 +(y —1) 2Drk 1 r,k'

y +(D&k~) 2y, (co —ock) +(I,k /2)
(1.3)

I(k) =f S(k, r0) (1.4)

is proportional to the Fourier transform in k of the

Here kz is Boltzmann's constant and p, T, and c are
the equilibrium mass density, temperature, and

adiabatic sound velocity, respectively. Also,
Xq ——p (Bp/Bp)z. is the isothermal compressibility,

p is the pressure, y=cz/c„ is the ratio of specific
heats, Dq ——A, /pc~ is the thermal diffusivity, where
A, is the coefficient of thermal conductivity, and I,
is the sound-damping constant,

I,=(4v/3+ g/p)+(y 1)Dr, —

with v and g the kinematic viscosity and bulk
viscosity, respectively.

Equation (1.3) describes a spectrum with three
Lorentzian lines: one line is centered at co=0 with
a width -Dz-k and a height -(Dqk ) '. This
contribution to S(k,m) is the Rayleigh line and is
due to the decay of entropy fluctuations. The other
two lines are associated with the decay of pressure
fluctuations and are symmetrically located with

respect to the origin, i.e., centered at co=+ck, with
widths -I,k and height -(I,k ) '. These are
the Brillouin lines and their location at co=+ck is
due to Doppler shifts from propagating sound
waves in the fluid. The upshifted line at co=ck is
due to sound waves moving in the k direction,
while the downshifted line at co= —ck is caused by
sound waves moving in the —k direction.

A measure of the range of the correlations in an
equilibrium fluid is provided by the integrated in-

tensity of the light-scattering spectrum, since one
can easily see from an examination of Eq. (1.1) that
the total integrated intensity I ( k) defined by

p kg TXp

2y

while that of the Rayleigh line is

(1.5a)

I~(k)= f p'ksTXr
27T

2Dz-k
X ~2+ (D k 2)2

2 y —1=p kg TXz--
y

(1.5b)

provided that the three spectral lines in S(k,co) are
well separated. It follows from Eq. (1.5a) and (1.5b)
that the total intensity of the scattered light is

I,q(k) =p kgTXy. , (1.5c)

a formula derived for the first time by Einstein.
Note that these integrated intensities are indepen-
dent of k. Physically, this is a consequence of the
fact that the equilibrium equal-time correlation
function has a short range —of the order of the size
of the particles o.—for a fluid away from the gas-

I

equal-time density-density correlation function
M~(R~, t~, Rq, t~). It is convenient to further subdi-
vide I(k) into the contribution from each of the
three characteristic lines. For the o.-Brillouin line
o.=+1, this integrated intensity is given by

2

I,q(k) = Q) p kBT+y.
—~ (2m. ) 2y

I,k2
X

(co —ock) +(I k /2)
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liquid critical point. Since the wavelength A, =2~/k
in a typical light-scattering experiment is much
larger than o., it follows that light scattering cannot
be used to probe these short-range correlations. As
we shall see, this is not the case in a nonequilibrium
fluid where the equal-time correlation functions
have a long range so that the integrated intensity of
the lines in the light scattering spectrum will exhibit
a dependence on k.

As mentioned in the Introduction of paper I, the
theory for light scattering from fluids not in equi-

librium was developed by Procaccia et al. , Kirk-
patrick et al. , Tremblay et al. , Ronis and Putter-
man, and Dufty, and van der Zwan et al. ' All of
the original calculations were done for the case of
small steady gradients; for example, a small but
steady temperature gradient maintained by confin-
ing the fluid between two plates held at constant,
but different temperatures. By using perturbation
theory about a state of total equilibrium all of these
authors found that the analog of Eq. (1.3) for a
fluid with a small temperature gradient is given by

(y 1) 2Drk' 1 1 —oy (k,co)ck. V T/(I, k T)
S(Ro, k, co)=P k~TXr 4- I,k2

co +(D k ) 2'Y =+~ (co —ock) +(l,k /2)
(1.6a)

where

[(I;k /2) —(co —ock) ]
y (k,co)=1+

[(I,k /2) +(co—ock) ]

(1.6b)

Here V T is the temperature gradient, k is a unit
vector in the direction of k, and all hydrodynamic
and thermodynamic quantities are to be evaluated
at the center of the scattering volume Ro. As in
equilibrium, Eq. (1.6) describes three lines. The
central line is unaffected by the small thermal gra-
dient, but the Brillouin lines, although at the same
positions as before (i.e., at co =+ck), are now asym-
metric in that the line caused by sound waves mov-

ing in the direction of the heat flow has a larger
height and intensity than the line caused by sound
waves moving in the direction opposite to the heat
flow. These results for the line shapes are valid
only under rather restrictive conditions on the size
of the scattering volume, and of the temperature
gradients [cf. below Eq. (4.2)].

While the intensity of the Rayleigh line is the
same as in equilibrium [cf. Eq. (1.3)], the intensities
of the Brillouin lines change. They are given by

—+

ltr(R k) P
1

crck V T
2y

(1.7)

That is, the integrated intensities differ from their
equilibrium values by terms proportional to
(k. V T)!k . This k dependence implies that the
equal-time momentum density-mass density corre-
lation function has a long range, since it decays in
configuration space as R i2', at least over a range of

~
R~2 ~. The total intensity of all the lines is still

given by Eq. (1.5c).
Kirkpatrick, Cohen, and Dorfman obtained the

I

Eqs. (1.6) and (1.7) by means of two different
methods. One method valid for dilute gases, used
the kinetic theory of gases to compute S(k,co) and
I (k), while the other method, valid for more gen-
eral fluids, used a hydrodynamic method to com-
pute these quantities. Procaccia et al. and Machta
and Oppenheim" obtained identical results using a
nonequilibrium steady-state (ss) response or rnode-
coupling theory" for calculating fluctuations.
Tremblay et al. , Ronis and Putterman, and van
der Zwan et al. ' have derived Eq. (1.6) using fluc-
tuating hydrodynamics. ' Dufty has derived Eq.
(1.6) by using the explicit form of the N-particle
distribution function given in Igcf. Eq. (1.5.2)] to
obtain an expression for M~(R&, R2, t) that was
then evaluated using kinetic theory.

Finally, we mention that Kirkpatrick' has
presented elsewhere a calculation of the light
scattering for both small and large temperature gra-
dients based purely on the kinetic theory of gases.
Kirkpatrick's method differs from that presented
here in that it is based on an analysis of the
unequal- and equal-time correlation functions in
terms of the so-called hydrodynamic modes of the
kinetic operator L (i) [cf. Eq. (I.2.34)], rather than
on the derivation of hydrodynamiclike equations
that those correlation functions satisfy. Both
methods are completely equivalent and Kirk-
patrick's results for the case of dilute gases are
identical with those obtained here using hydro-
dynamic equations.

In this paper, we will consider the theory for
light scattering from a fluid subject to a small con-
stant temperature gradient. We remark that we
have developed a similar theory to calculate the
light scattering from a fluid subject to a constant
velocity gradient. ' These calculations are not
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given here, however, since the effects due to a typi-
cal velocity gradient are much smaller than those
due to a typical temperature gradient. For example,
in the case of a shear flow given by u(R~) =x~Xy",
where X is the magnitude of the velocity gradient,
crck - V' T/I, k T in Eq. (1.7) is replaced by

kz kyX/I k, where a circumflex denotes a unit
vector. For typical gradients we have the inequality
hack'VT!'r[» fX i.

We will base our calculations on the hydro-

dynamiclike equations for M~(Ri, Rz, t) and for

M~(Ri, R2, t =0) derived in paper I to compute the
dynamic structure factor and the integrated intensi-

ties of the various lines.
The plan of this paper is as follows. In Sec. II we

derive the basic equations for the unequal-time
correlation functions for the case of a small steady
temperature gradient from the general equations
given in paper I. We then expand the M p in a
power series in the temperature gradient and keep
only the zeroth- and first-order terms in the gra-
dients. To complete the calculation of the unequal-
time correlation function to first order in the gra-
dient, we must also compute the equal-time correla-
tion functions to first order in the temperature gra-
dient. This is carried out in Sec. III and we present
the explicit expressions for both the unequal- and
equal-time correlation functions correct to first or-
der in the gradient. In Sec. IV we compute the
dynamical structure factor and the integrated inten-

sities of the Rayleigh and Brillouin lines to first or-
der in the gradient, thereby deriving Eqs. (1.6) and

(1.7), given above. In Sec. V we make some com-
ments on the results obtained in this paper. Finally,
we discuss what effect the finite size of the light-
scattering cell could have on the results of this pa-
per, and we comment on some recent calculations of
Satten and Ronis' on this point.

The quantity needed in particular to compute
S ( k, co) is Mpp(R&, R2, t) the time-dependent
density-density correlation function. In paper I we
showed that Mpp(R] R2 t) is determined by the
solution of a set of five coupled hydrodynamic
equations of the form

( ),R2, t) =H~y(Ri )Myp(R)) R2, t),
Bt

(2.1)

where H~&(R&) is the evolution matrix defined by
Eqs. (I.4.21a)—(I.4.21c) and summation convention
is used. The explicit form for the H~z can be ob-
tained by linearizing the nonlinear Navier-Stokes
equations about a steady state. The time-dependent
correlation functions M~(R~, R2, t) are defined by

M~(R~, R2, t) = (5a (R~, t)5p(R2, 0))„. (2.2)

Here the average is taken over a stationary-state en-

semble, and the quantities 5a (R&, t) and 5p(R2, 0)
are defined by Eqs. (I.2.3) and (I.2.4) where the
quantities 5a (Ri, t) represent, for a=1,2, . . . , 5,
microscopic fluctuations in the local mass, momen-

tum, and energy densities at R~ at time t. For the
case of a temperature gradient in the x direction
and no macroscopic flow these equations are

B B—Mpp+ Mg p
——0, (2.3a)

B B
gP BR

BP M BP
Mpp+ M p

gIP
l ~tj, kl +Pij ~kl )

gIIBR, . ' BR, p

(2.3b)

BM B IiM

II. BASIC EQUATIONS
FOR TIME-CORRELATION FUNCTIONS B

7
B

BR„. BR„.
BT BT

Mpp+ M p
p

In this section we will use the general equations
for M p(Ri, R2, t) and M ~(R~, R2) derived in Secs.
IV and V of the previous paper for a fluid of arbi-
trary density, to obtain equations for these correla-
tion functions in the case the fluid is subject to a
small steady temperature gradient. Thus, we con-
sider the fluid in a nonequilibrium steady state with
a temperature gradient in the x direction, but
without a macroscopic flow (i.e., no convection),
and consequently, with no pressure gradient.

B~ BX BT
B PP Be 'P BR .p, &

p

(2.3c)

In Eqs. (2.3a) —(2.3c), the subscripts i, j, k, l
represent x, y, z coordinates and again summation
convention is used. The quantities p, p, h, T, e, g,
g, and A. are, respectively, the pressure, mass densi-

ty, enthalpy density, temperature, energy density,
and coefficient of shear viscosity, bulk viscosity,
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and thermal conductivity. Owing to the presence of
the temperature gradient, all of these quantities ex-

cept p depend on R&. The solution to Eqs. (2.3) are
determined by the initial conditions Map(t =0), i.e.,
by the equal-time correlation functions

M~(Ri, R2) —= M~(R i, R2t =0),
which in turn are given by

M (RisR2) Aa (R]~R2}+D (Ri~R2) s (2o4)

where A~(R&, R2) is the local equilibrium contribu-
tion to M~,

A~(R, ,Rz)=(5a (R, )5p(R2)}t », (2.5)

and ( }t„denotes a local equilibrium steady-state
ensemble average [cf. (I.4.9)]. The quantities

Dap(R&, R2) are proportional to the gradients and

satisfy the equation [cf. (I.5.7)]

Hay(R] )Dyp(R]&R2)+Hpy(R2)Day(R]&R2)

= 5(Ri2)(5a~r5apTS„r)o R P

BlnT(R]„)

Rlx

where R&2
——R& —R2, 5a T

—— dR&6a (R&) is the
V

microscopic Auctuation of the total mass, momen-

tum, or energy in the volume V of the system, and

S„T is the total microscopic heat current in the x
direction which is defined in the Eqs. (I.4.23) and
the discussion below it, as well as by the condition
that u =0. The ensemble average appearing on the
right-hand side of Eq. (2.6) is defined by Eqs.
(I.4.24) and (I.5.8), and is an equilibriumlike ensem-

ble average with uniform temperature and chemical
potential, whose values are set equal to the local
values of these quantities of the point R~.

The dynamic structure factor S(k,~) is defined
in the Introduction in terms of Mpp(R&, R2, t) by Eq.
(1.1), and in this and Sec. III we will compute Mpp
to first order in the temperature gradient. To find

Mpp(R~, R2, t), we need to find all of the

M~(R„R2, t) to first order in the temperature gra-
dient. It is convenient to consider the M~, not as
functions of Ri and Rz, but as functions of the rela-
tive coordinates Ri2=Ri —R2 and the center-of-

I
mass coordinates R= —,(R&+R2). For a fluid in

equilibrium, the M~ will depend only on R&2, but
when a gradient is present these quantities will de-

pend on the location of the center of mass R, as
well, because of the variation of the local thermo-
dynamic and hydrodynamic quantities with posi-
tion. ' Similarly, the equal-time correlation func-
tions will also depend on the center of mass R as

XM~(R],R2, t) . (2.7)

For later use we remark that the dynamical struc-
ture factor S(k,co) is then given, with Eq. (2.7), in

terms of Mpp(R, q, co) by

S(k,co)= 2Re fdRP2(R)

X fdR~'(R) f "q P'-„-
(2m)'

XMpp(R, q, co} .

(2.8)

Here Re denotes the real part of the expression and

Pk is the Fourier transform of the function
k —q

3P(R). We have also used that P(R) is a Gaussian,
and we note for later use that P k

- sharply peaks
about k =q if kL &&1, where L is the size of the
scattering volume.

To obtain an expression for Map(R, q, ~) correct
to first order in the temperature gradient, we ex-
press the hydrodynamic matrix elements H p(R&) in
relative and center-of-mass coordinates, then ex-

pand H p in powers of the temperature gradient at
R, and take the Fourier transform with respect to
the relative coordinates R&2. This procedure leads
to the equation

—icoM~(R, q, co) = M~(R, q, t =0)

Har sq rp sq

(2.9)

where we have introduced the Fourier transform of
the equal-time correlation function Map(R, q, t =0)
by

Map(R, q, t =0)

=fdR»e " M(R, , R,,t =0)

=A~(R, q )+D~(R, q ) . (2.10)

The elements H p(R, q) are obtained from Eqs.
(2.3a) —(2.3c) by rewriting these equations in terms

well as on the relative coordinates Riq for a fluid

with a temperature gradient.
Considering then the M p as functions of the

variables R and R&2, it is convenient to introduce
the Fourier transform of M~ with respect to R&z,

as well as the Laplace transform in time; that is, we

define M~(R, q, co) by

M~(R, q, to)= f dt fdR, ~e
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of the center-of-mass coordinate R, and the relative
coordinate Ri2. After carrying out the Fourier
transform with respect to the relative coordinate
Ri2, we find that H p(R, q) can be expressed as a
gradient expansion in the form

Hap(R, q ) =Hap, p(R, q ) +~ap(R& q ) '

(2.11a)

The matrix elements H p p(R, q) are zeroth order in
the temperature gradient and are obtained from
H p(R, q) by neglecting all terms that contain
derivatives with respect to R. The correction
ddt p(R, q) is proportional to first and higher
derivatives of the thermodynamic quantities, trans-
port coefficient, or the M~(R, q, co) with respect to
R. The elements ~+p(R, q) in turn have a gra-
dient expansion given by

AH p(R, q)=AH p &(R, q)+EH p2(R, q)+ - - -,
(2.11b)

I

where hH p i, hH p2, etc., contain first, second,
etc., derivatives, respectively, with respect to R.
The matrix elements H~p p(R, q) are given by

(2.12a)

p
——iq;, Hgp p

———iq;Ai(R),

H
f

p= —iqA (R), H = —iqA (R),
H p, p ~(R)A4(R)q

H&& p = —A, (R)A 5(R)q

g(R)
g.g. ,p= —v{R)q 5;- — —v(R)+ q q. .i j' &J

P(R)

{2.12b)

The first-order corrections in the temperature gra-
dient to these matrix elements are given by

ddt~ )
——~~ i

——0,
a 1 a 1 aAi

A
aR ' ' —

2 aR '+
2 aR q'a

x X x q„

(2.13a)

a~g.p, I ~lx
2 aR„

aA,A2+—
2 aR„

a

aq

1
Egg,

a

aR„
aA3

2 aR„
a

aq
(2.13b)

a~, a . aEH. , i
—— +l V

2 aR„a(iq„) " aR„
a 1~

lqx V ~ijaR„

1 8 v g 8 i
j J q qJ

Blnp . 2v.
l ZP,.„q.— lq;5J„+lq;5J„oR„ 3 p

5 Bv 8+ "-'q-'-" ' 3aR aRx x P
(2.13c)

~~p i ——iq'x
;q2 a(A4A, )

2 aR„aq„
aA4

ap aR +'q"
aR„

T

a
+iq„A4-

x

aT aA, a lq' a(~5)
+lq„i, + iq„AA 5a~ aR„+ " aR„+ " 'aR„2 aR„aq„

(2.13d)

(2.13e)

In Eqs. {2.12) and {2.13) 3
~
——(Bp/Bp)„A2 ——{Bp/Be)p, 33——h/p, Aq (BT/Bp)„A, ={dT——/Be)~, v=g/p, and

all quantities depend on the center-of-mass variable R. In Sec. III we will use the Eqs. (2.9)—(2.13) to obtain
explicit expressions for the M~.
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III. SOLUTIONS FOR THE Mw

Since we intend in this section to compute the

Map to first order in the temperature gradient, we

make the following gradient expansions of the M~..

Map(R, q, co) = M~ P(R, q, co)+Map 1(R,q, co)

+ ~ ~ ~ (3.1a)

M~(R, q, t =0)= Map, o(R~ q~t =0

+Map 1(R,q, t =0)+
(3.1b)

where M~ t. denotes the contributions to Map that
are proportional to the ith power of the temperature
gradient. Then using Eqs. (2.9), (2.11), and (3.1), we
can write the equations that determine M~p and

M~1 as

—lcoMap p(R q N) = Ma p(R, q, t =0)

+H (R, q)M (R, q, co)

(3.2a)

linearized hydrodynamic equations. In principle,
there are higher terms of order q, q, and so on,
due to Burnett, and higher-order terms in the
linearized hydrodynamic equations. Ho~ever, this
expansion can be terminated at order q provided
that q satisfies the condition

qI «1, (3.3)

A2
MHp, i

= ( 3 ~, i
—Map, i)c2

two sound modes

(3.4a)

where I is a characteristic microscopic length on the
order of a mean-free path for a gas or on the order
of the range of the forces for a liquid. ' If Eq. (3.3)
is satisfied, then one can expand the hydrodynamic
modes and their associated eigenvalues in powers of
q, or rather ql, and one can construct combinations
of the M~, that are approximate eigenfunctions of
H pp as shown in Appendix A. These approximate
eigenfunctions of Ha~ p differ from the exact eigen-
functions by terms of order (qM~, ), as discussed
below Eq. (A11e). They consist of a heat mode
given by

and

—icoM p1(R, q, co)= M p1(R, q, t =0)

+Hay PMyp 1(R& q, co)

+~ay, 1Myp, p{R~ q~co

1
Mnp t

= (A 1M~, t +A 2M' t.

2c

+acqjMg p,. ) (o =+1)
1

and two shear modes'

(3.4b)

(3.2b)

If we then first solve Eq. (3.2a) for Map p and sub-

stitute the solution into Eq. (3.2b), we will have a
set of equations for Map1(R, q, co) which can then
be solved in terms of the equal-time correlation
functions.

A. M, A, and D to zeroth order
in the gradient

We will regard the quantities b,H ~1 as small
perturbations to Happ. Since the combinations

Hay OMyp t appear in the Eqs. (3.2) for i =0, 1, it is
convenient to expand the quantities M«, in terms
of the eigenfunctions of the matrix H @p. These
eigenfunctions are the well-known hydrodynamic
modes, and we discuss them as well as their associ-
ated eigenvalues in Appendix A. One can see by in-

spection of Eq. (2.12) that the matrix elements

Happ have the general form Aq+Bq, where the
term Aq represents the Euler terms and the term

Bq the dissipative Navier-Stokes terms in the

1 ~(j)
Mq p, t

= qlkMg„p, t (g = 1&2 {3.4c)

Mpp i M+p i +M, i +MHp, t

Map t
——A3(M+p, .+M p, )

2

+ A3 — MHp, ,
2

~(1)
Mz p i cqj(M+p, t' M —p i ) +cqxj Mg p i

~(2)+cqij M„~ t

(3.5a)

(3.5b)

{3.5c)

To distinguish between these two sets of functions,
we will use Greek subscripts on M, and subsequent-
ly on A and D to represent the indices p, g, and e,
and Latin subscripts a, b, c, etc., to represent the in-

Here qz, qz ', and q form a set of three mutually
orthogonal unit vectors and summation convention
has been used in Eqs. (3.4b) and (3.4c).

The quantities M~, (a=p, g, e) appearing in Eqs.
(3.2a) and (3.2b) can in turn be expressed in terms of
MHp, i~ Map, t, and Mg p t' by
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dices H, o, and g;. By using the Eqs. (3.4), we can
obtain from the Eq. (3.2a) for the M~ p a set of five

equations for the M, p p(R, q, co) that read as follows:
and

A~(R, q) =A~ p(R, q)+A~ &(R, q)+

(3.7a)

( —ico+DTq )MHp 0(R, q, co) D~(R, q)=D~ &(R, q)+ . {3.7b)

Tq y +pQ+ —po Hpo

(3.6a)

( i~ +0 )M~p p( R, q, ~ )

1 DT
, [D—I —Dr(r— 1)]q—M-o, , o

— q MH, , o

where Dzp Q vanishes since the D~p are proportional
to the temperature gradient as follows from Eq.
(2.6). Further, the A,p, and D,p,. are defined in
terms of A~, and D~p, by equations identical to
Eq. (3.4). For small q, such that ql && 1, the quanti-
ties AHp p A p Q and Az p p can be easily calculat-

ed' with the result that

and

( —iN+vq )M„p p(R, q, co)

A p Q, (3 ~ 6b) kgT
AHp, o=p' (y—1)~T,

y

kgT
A~pp ——p XT, A~ pp

—0,
2y t 1

(3.8)

=A„p (i =1,2) (3.6c)

4 ~ 2where D~ = —,v+g/p; cu =iocq+ —,l,q, and

I,=DI+(y —1)DT. In deriving Eqs. (3.6a) —(3.6c),
we have used the gradient expansions

where all quantities in Eqs. (3.8) are to be evaluated
at the point R.

Equations (3.6a}—{3.6c) can now be solved for
the Mpp p by iteration. The resulting expressions are
given by a series in powers of q as'

AHp p

MHp, o(R q )
( —ico+DTq )

A~p p
Map o(R qsco) = ' +

( —ia)+co~)

A-~p, o + ~ ~ ~

( —ice+co )

q'DT(y —1) A+ p A o
+ 2 . ' + . +

( &+DTq2) {—~~+~+ } {—in+~

DTq ~Hp, o q'[DI Dr(r—1)]—
2( —ice+co ) ( —I'.co+D q ) 2( —ico+co )

+

(3.9a)

(3.9b)

and

Mq pp
——

A
g,.p, o

=0—l N+ vq
(3.9c)

with the A,pp given by Eqs. (3.8). Equations (3.9a)
and (3.9b) can be used to compute the Landau-
Placzek expression for the dynamic structure factor
for a fluid in equilibrium. To do this, we use the
expressions for MHpp and M pQ given by Eqs.
(3.9a) and (3.9b} together with Eq. (3.5a) to obtain
an expansion of Mp)p, o(R, q, ~) in powers of q.
Neglecting then the R dependence of Mpp(R, q, co)

since an equilibrium fluid is homogeneous, inserting
the resulting expansion of Mpp p(R, q, co) in Eq. (2.8)
for S(k,m), and carrying out the R and q integrals,
one obtains Eq. (1.3) for Seq{k co) provided that
kL &&1, and e/(I, k L) && 1. We will discuss these
conditions in more detail in Sec. IV. We note that
when a gradient is present, and the fluid is in a
nonequilibrium steady state, there is an R depen-
dence in Mpp p(R, q, co) that must be taken into ac-

count explicitly in the calculation of S(k,co). If the
above conditions together with other restrictions to
be discussed in Sec. IV are satisfied then from

Mpp p(R, q, co) one can derive an equilibriumlike ex-

pression for the dynamic structure factor denoted

by So(Ro, k, co) that has the form of Eq. (1.3), but
where all the thermodynamic and hydrodynamic
quantities are evaluated at the center of the scatter-
ing volume Ro [cf. Eq. (1.6)]. We also remark that
although the second terms on the right-hand side of
Eqs. (3.9a) and (3.9b) make only negligible contribu-
tions to (1.3), they have to be kept for consistency in

the calculations to be discussed below.

B. M(R, q, co) to first order
in the temperature gradient

Now we turn our attention to the determination
of the quantities M~ &(R, q, co) in the gradient ex-

pansion of the M~(R, q, co), Eq. (3.1a). The
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M~1(R, q, co) can be found from Eq. (3.2b) by ex-

pressing them in terms of the quantities

M, o(R, q, co), using Eqs. (3.9) and (3.5), and the

equal-time correlation functions A~ 1(R,q) and

D~1(R, q). As in the zeroth-order calculation, a
simplification occurs if one expresses the M~ 1 in

terms of approximate eigenfunctions of the matrix
H p p ~ Therefore, we define the quantities MH p 1,

I

M p 1 and M& P 1 in terms of the M~ 1 through

Eqs. (3.4) with i =1.
By taking the appropriate linear combinations of

Eqs. (3.2b), we can transform them into a set of
equations for the M,p 1(R,q, co). These equations
are such that MHp1 satisfies an equation of the
form

( —ie+DTq )MHP1(R, q, cu)+ X RHH+X RHHq +RHH MHp, oBq„BR„
q Dr(y 1)M —

z ~(R, q, co)+ X RH" +X RH'q +EH' M zo(R, q, co)
a=+1 Bq„M„

+(X RHg Mg p o +X RH& M&+ o ) =AHp 1 +DHp 1

while M P 1 satisfies an equation of the form

[—i~+~.]M.„+ x'z'.".+x'z."~~ +z'.". M pO

(3.10a)

D D( —1)
—op, 1+ a, —cr + a, —oq + cr, —o' —op, O

2
T (1) T (2) ~ (3)MH 1+ X Ra,H+X RoHq +Ra, H MHp, o

(3.10b)

(i) (i) (i) 2 (i)
Rab Rab, O+qRab, 1+q Rab, 2+ (3.11)

Now we turn to the solution of Eqs. (3.10a) and

We will not give the corresponding equations for

M„p 1 here, since they are not needed for the corn-

putation of MPP1. Further, as we have already
shown that Mz.po(R, q, co)=0, Eq. (3.9c), we can

drop the terms proportional to M„zo in Eqs.
(3.10a) and (3.10b). In paper III we will consider
the contribution of these shear modes further, since
they do contribute to the light scattering for large
gradients. In Eqs. (3.10a) and (3.10b) the quantities
A p 1 and D,p 1 are defined in termS Of the A a(p 1 and

D~1 by equations identical to Eq. (3.4) and we
have defined the quantity XT by XT= T 'BT/BR„.

We will not need the explicit forms of the R,'b'

yet, but only that they depend on R and q and have
a q expansion of the form

I

(3.10b) with the shear-mode contributions set equal
to zero. In Appendix B we discuss the terms R,b

and show that the M,P1 contain three types of
corrections to M~ o that are distinguished by their
orders of magnitude.

(1) The largest correction term in the M,P1 for
small q are of order

(cX /I, q ) (cq/I, q )=O(X /q )

compared to M,p Q All terms of this order of mag-
nitude eventually cancel and do not contribute to
S(k,co) to order X . We remark that the presence
of these terms of O(X /q ) implies that at this
stage of the calculation the second terms on the
right-hand sides of Eqs. (3.9a) and (3.9b) have to be
retained. For, the O(q) corrections to the M,po
lead to terms of O(X /q ) in M,p 1 that should be
kept. It turns out, however, at the end of our calcu-
lations that this class of terms of O(X /q ) that
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has been generated by the 0 (X /q') terms also can-
cels.

(2) The most dominant nonvanishing contribu-
tions to the M, i are of relative order cX /I, q,
for small q.

(3) The remaining terms are of relative order
X /q=(cX /I, q ).(I,q /cq). These terms are
smaller than those listed above by a factor of
I,q /cq. Since we have imposed the restriction

I

I,q /cq && 1, the most important correction to
M«p will be of order cX /I, q, and we will
neglect the terms of order X /q. Therefore, in Ap-
pendix B we retain only those terms in the R,'b' that
lead to contributions to M~ i that are at least of
relative order cX /l, q . This procedure yields in a
straightforward, but lengthy manner, the following
equations for MH~ &{R,q, co) and M ~ &(R, q, co):

and

( —ico+DTq )MH& &

—q DT{y—1)(M+ &+M &) —— cq {M+ p
—M p, p)=AHp1+DHp

1 Blnp

x x

(3.12a)

1 ~ a 1 a . DIq' a

(~4) ~{~s)
+A3

4 2 QR
3

8 ~ 3 Bc &qx& Blnp
4 ~ opp

DTq —i crqe ~A i c ~A 2 (f—1)
—p, i

—D

~o.q Bc 8 &crcq 8 lnp 8
(3.12b)

To derive these equations, we have used the thermodynamic identities given by Eqs. (A9) in Appendix A as
well as the relation

2

A (BA /BR„)=-
P

Bp

BR„

which follows directly from thermodynamics by using the expressions for A2 and A3 given below Eq. (2.13).

C. A and D to first order in the gradient

To obtain explicit expressions for the M«i, we need to compute A« i and D« ~ appearing on the
right-hand sides of Eqs. (3.12a) and (3.12b). We consider first A«~ and begin with the expression for
A«&(R, q) given in terms of the A~ i by equations identical to the Eqs. (3.4). Considering the gradient expan-
sion of A~(R, q) defined by Eqs. (2.5) and (2.10), we obtain with the use of an expansion of the local
stationary-state distribution function about the reference ensemble defined in Sec. IV of paper I

A~(R, q)= fdR&ze "(5a (R&)5p(Rz) }L,„
= fdR, ze "(5a (R, )5p(R2))0 -„

+ JdR~ze "JdR'(5a (R~)5p(R2)5ar(R'))o -„(R'—R) Vy&(R)+O((X ) )

=A~p p+A~p i+0{(X ) ) .

The first term on the right-hand side of Eq. (3.13) is
the quantity A~ p(R, q) which was used earlier to
compute the A~ p appearing on the right-hand side
of Eq. (3.2a) for M~o. The second term on the

(3.13)
I

right-hand side of (3.13) can be neglected since it
does not lead to corrections of order cX /l, q that
are of interest here. To see this, one only needs to
note that the equilibriumlike three-point correlation
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function has a range in the variables R1 —R and
R' —R, that is, on the order of the microscopic
correlation length I, which is small away from the
critical point. Therefore, for small q, this term can
be neglected. Thus, to this order, we can set

Aap(R, q) =Aap o(R, q).
The quantities D,p 1 appearing in Eqs. (3.12a) and

(3.12b) are the first nonvanishing terms in the gra-
dient expression of the D's, and are defined in terms
of the D p1 by equations of the form (3.4). The

D~ &
are in turn given by the solution of Eq. (2.6)

when suitably Fourier transformed. Up to terms of
first order in X, the Dap1(R, q) satisfy the equa-
tions

H yo(R q )Dyp 1(R q )+Hpy o(R q )D y 1(R q )

=(5a~T5apTS„r)0 a pX . (3.14)

Here the Hapo(R, +q) are defined by the Eqs.
(2.12). To determine the D p1 most easily, it is
convenient to express them in terms of the quanti-
ties D,b 1 that approximately diagonalize
H p o(R, q ) or H p o(R, —q). As mentioned above,
the quantities D,& &(R, q) defined by [cf. Eqs. (3.4)]

both a and b denote one of the set (O.,H, g;) obtained

by a linear transformation of Eq. (3.14) from an
equation for the D p1 to one for the D,b1. The
derivation of this transformed equation is outlined
in Appendix A and the result reads

=(5a, -5ab -S„T)0 -„pX (3.17)

with the m, and 5a, - given by Eqs. (A7a), (A8a),
and (A12) of Appendix A.

We are only interested in the leading contribu-
tions to D,b1(R, q) for small q, i.e., those that lead
to corrections to Mppo of relative order X /q .
Contributions of this order are obtained only for the
combinations (a,b) =(H,H), (0., —o), (g;,H),
(H, g;), and (g;,gj) since only for these combina-
tions of hydrodynamic modes is [co,(q)+cob(q)] in

Eqs. (3.17) of O(q ). As we discussed earlier, the
shear-mode contributions to M,b may be neglected
so that the only combinations of interest to use are
DHH 1(R,q) and D 1(R,q), which are given with
Eq. (3.17) by

A2
DH&, (R, q) = (A3D~» D,& &), —

C2

1
D p 1(R q) (A1Dpp 1 +A2D p2c

(3.15a)

and

—(5aHPaH &S„r)o aPX
DHH 1(R,q)=

2DTq

(3.18a)

+ocq;Dg p1),

1 ~(i)
D~ p1(R, q)= —

q&,JDg p

(3.15b)

(3.15c)

(5a -5a N„T)o R

I,q

(3.18b)

are approximate eigenfunctions of Ha& o(R q).
Similarly, one may apply the methods of Appendix
A to construct approximate eigenfunctions of
Hp o(R, —q). In Appendix A we show that the
quantities D b1(R, q) defined by

respectively. The quantities (5aH-5aH -S„T)o RHq H, q x OR
and (5a -5a N T )o R are typical mode-

coupling amplitudes, and their values can be found
in the literature. ' They are

A2
DaH 1(R,q ) = (A3Dap 1

—Dae 1) (3.16a)
c2

1
D 1(R,q)= (A1D p1+A2D, 1

2c

Hq H q zTOR—

q — —q~»)0 R
opcq„

aq n—q & —O,R

(3.19a)

(3.19b)

—o.cq;D g 1),

~ (i)
Day; 1(R,q ) =—( —q )g &Dag, 1

(3.16b)

(3.16c)

Finally, we need DHp1 and D p1 to complete the
calculation of MHp1 and M p1. These quantities
can be obtained by solving the Eqs. (3.15) and (3.16)
and are given by

are approximate eigenfunctions of H p& o(R, —q) be-

longing to the eigenvalues —AH(q), —co (q), and
—co„(q), respectively. Accordingly, we consider

the equations for the quantities D,b1(R, q), where

(3.20a)

and

Hp, 1 H+ 1( q)+ H —,1(R q)+DHH, 1(R q)

DHH, 1(R q)
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p ) ——D~H )(,q)+ ~0 ](,q)+Do 0 &{R,q)

=D, (R, q), (3.20b)

where only terms of O(X /q ) are retained in the
second (approximate) equality in Eqs. (3.20a) and
(3.20b). Combining Eqs. (3.20a) and (3.20b) with
(3.18) and (3.19), we find

and

DH )(R, q) =0

T
D )(R, q)= —p XI,q

(3.21a)

(3.21b)

IV. CALCULATION OF S ( k, co) and I ( k )

We have now assembled all the pieces necessary for the calculation of Mpp{R, q, co). Using the Eqs. (3.13)
and (3.21) on the right-hand side of Eqs. (3.12), iterating these equations around X =0, using Eqs. (A9) and
consistently keeping only those terms that are of order X /q when compared with MHpQ(R, q, ~) and
M p Q (R, q, co), leads after a lengthy calculation to the result

Mpp(R q co) Mpp Q(R~ q~Q) ) +Mpp ] (R q co) +O((X ) )

=(MH +M +M ),+(MH +M, +M ), +O({X~)')

kgT (y 1)= P Xy.
y ( —ico+Dpq )

kgT (1—o.cq„X /I, q )
+p' Xr g

( —ico+io.cq+ —,I,q )

1 ocq~X

{—ico+iacq+ —,I,q )
(4.1)

The dynamical structure factor as well as the in-

tegrated intensities of the Rayleigh and Brillouin
lines can now be computed to order X . To com-

pute the dynamical structure factor, we insert the
expression for Mpp(R, q, co) in Eq. (2.8). Then if we
use that the form factors P{R) are sharply peaked
around the point Ro, and have a spatial extent L, we

can carry out the R and q integrals appearing in

Eq. (2.8). If the following conditions are satisfied:

and

kL &)1, , «1, L IX
I
«1,I,k L

(4.2)

L
[ Vc)k
r, k

((1 p

one obtains Eqs. {1.6a) and (1.6b) for the dynamical
structure factor S(Ro, k, co), where Ro indicates that
all thermodynamic and hydrodynamic quantities
are to be evaluated at the point Ro in the fluid.

The first two inequalities in Eq. (4.2) have been
mentioned below Eq. (3.9) since they must be satis-
fied in order to obtain the equilibrium Landau-

Placzek result given by Eq. (1.3). The condition
kL &&1 pertains to both the central and Brillouin
lines and states that the wavelength A, =2m. /k must
be much less than the size of the scattering volume.
The condition c/I, k L is required only for the
Brillouin-line contributions to S(k, co) and expresses
that the uncertainty in the location of the sound
peaks, due to the finite size of the scattering volume
hco=cAk-c/L, should be much less than their
natural linewidth I,k . The nonequilibrium condi-
tion L

~

X
~

&&1 is used to restrict the gradient ex-
pansion of S(k,co) to first order in powers of X
and simply states that the length over which the
gradients change, Lv ——

~

X
(

' = T/
~

V T ~, must
be much larger than the size of the scattering
volume L. Similarly, the condition
(L

~
Vc

~

k)/I;k && 1 requires that the uncertainty
in the location of the sound peaks due to the ther-
mal gradient hco=Lk

~

Vc
~

is much less than the
natural linewidth l,k . Of the four conditions list-
ed in Eq. (4.2), the most restrictive are the second
and the fourth that refer to the effects due to the
finite size of the scattering volume L and of the
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gradient length L~ on the shapes of the Brillouin

lines.
We remark that the integrated intensities of the

Rayleigh and the Brillouin lines in S(Rp, k, co) can

be obtained in two ways. The first method uses the

explicit expression for S(Ro, k, co) given by Eqs.
(1.6). If we use Eqs. {1.6) and identify the parts of
S(Rp, k, cp) that are peaked around co=ock and

co =0, respectively, and integrate these contributions

over all frequencies, we obtain for the integrated in-

tensity of the 0.-Brillouin line
and

I (Rp, k)= Re fdRP~(R)

X fdRf "q, P'(R)
(2~)3

X~ ~ -MHp(R, q)

(4.5a)

I (Rp, k)= Re fdRP~(R)

[1—oy (k,co)ck„X /i, k']
X

(co—cTck)2+(I k /2)

2 k~ T 0&kx&
XT 1—'

2y r,k' (4.3a)

{y—1)=p kgTXT
y

(4.3b)

where all thermodynamic and hydrodynamic quan-
tities are evaluated at Rp. If the above method is

used to obtain the integrated intensities, then the ex-

pansion parameters that determine the validity of
Eqs. (4.3) appear to be those given by Eqs. (4.2)
since these inequalities were needed to derive Eq.
(1.6). However, one can see that these results hold
under less restrictive conditions by using an alterna-

tive method to obtain I (Rp, k) and I (Rp, k).
In this method we use Eq. {2.8), the general ex-

pression for S{Rp,k, co), and integrate first over
all frequencies to obtain the total integrated intensi-

ty I(Rp, k). If this is done, then one finds an ex-
pression for I (Rp, k) that depends on

M~(R, q, t =0). Using Eq. (3.5a), we can express
this result in terms of M«(R, q) and obtain

I(Rp, k)=I (Rp, k)+I+(Rp, k)+I (Rp, k)

(4.4)

with

and for the integrated intensity of the central or
Rayleigh line

I (Rp, k)= f k TX
277

2DTk 2

X ~2+ (D k 2)2

X fdR f P2(R)
(2~)'

X~], - ap{R~q)

(4.5b)

If we now identify I {Rp,k ) and I (R, k) with the
integrated intensities of the central and the 0.-

Brillouin line, respectively, use Eqs. (2.10), (3.4),
(3.7), (3.8), (3.15), and (3.21), and assume that
kL »1 and L

~

X
~

&&1, then we also obtain Eqs.
(4.3). Therefore, for the line shape, Eq. {4.1) is valid
if all conditions listed in Eq. (4.2) are satisfied, but
for the integrated intensities we need only require
that kL »1 and L

~

X
~

&& l. In addition, one has
used throughout the inequality c ~X

~

/I, k
since in a theory linear in the gradients we can only
consistently discuss changes in the integrated inten-
sities that are small compared to the equilibrium
contributions [cf. Eqs. (4.3)]. Equations (4.1) and
(4.3) are the results quoted in the Introduction.

V. DISCUSSION

We discuss the following points.
(a) We note that the central line is not affected by

the temperature gradient to O(X ), but that the
Brillouin lines, although their location is un-

changed, are asymmetric and non-lorentzian, with
their asymmetry proportional to cX /I, k . Fur-
thermore, the difference between the integrated in-

tensities of the Brillouin lines is proportional to the
inagnitude of the nonequilibrium part D ~ i(Rp, k)
of the equal-time correlation functions, and is pro-
portional to cX /I, k . This k dependence of
the correlation function indicates the presence of
long-range correlations in the Quid, proportional to

~
Riz

~

'. Hence, the existence of long-range corre-
lations in nonequilibrium fluids can be detected by
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experimentally verifying the difference in the in-

tegrated intensities of the two Brillouin lines.

(b) The corrections to the equilibrium result in I
arise from the coupling of the {0., k) sound modes in
the fluid to the heat current S„z, produced by the
thermal gradient. Although to lowest order in k, a
single sound mode does not couple to the heat
current since they are orthogonal, the product of
two sound modes does. That is, while the expres-
sion {5a N„z) =0, (5a -6a -S„z-) in Eq.
(3.18b) does not vanish, and the two relevant sound
modes are described by the subscripts (cr, k) and

(—o, —k), since q = k. Owing to the coupling of
these two sound modes to the heat current, the
sound waves that travel in the same direction as the

macroscopic heat flow will have a larger amplitude
than the waves that move in the direction opposite
to the heat flow. ' For example, in the case where

k„(dT/dR„) &0, I (Ro, k), the integrated intensity
of the Brillouin peak centered at co= —ck, is due to
sound waves that propagate in the direction of the
heat flow, while I+(Ro, k) is due to sound waves

propagating in a direction opposite to the heat flow.
Consequently, I (Ro, k)&I+(Ro, k) for this case
and while I (Ro, k) is larger than the equilibrium
Landau-Placzek result, I+(Ro, k) is smaller.

(c) A difficulty with the theory developed here
for the shape of the Brillouin lines is that the vari-
ous conditions in Eq. (4.2), especially the second
and the fourth, are severely restrictive. One can
easily see that when these conditions are satisfied,
the O(X ) corrections to Szq(ksN) will be very
small on the order of a few tenths of a percent at
most.

However, as discussed in Sec. IV, the Eqs. (4.3)
for the integrated intensities are valid under much
less restrictive conditions. In fact, the major re-
striction is that the nonequilibrium contributions to
the integrated intensities will be much smaller than
the equilibrium contributions, i.e.,
c

~

X
~
/ I,k2 && 1. Therefore, with the linear

theory developed in this paper we can consistently

predict changes in the integrated intensities of the
Brillouin lines that are, say, on the order of 5%.

In the next paper we will develop the theory
needed when the above condition is relaxed, i.e.,
when e ~X

~
/I, k = I. In principle, we will then

be able to predict changes from the equilibrium re-

sults that are large, i.e., on the order of 1. Further,
the theory for I (k) can then be applied to the re-
cent experiments of Beysens et al. , who used tern-

perature gradients and wave numbers such that
c

~

X
~

/l, k =1, provided our neglect of boundary

effects can be justified. We also remark that in the
next paper we will find large changes in the central
line when terms of higher than linear order in X
are taken into account.

(d) In the calculations presented here we have ig-
nored effects due to the walls of the container of the
fluid. While we have incorporated the finite size of
the scattering volume through the use of the form
factors P{R),we have treated the entire fluid as if it
were of infinite extent. This can be seen from the
fact that we constructed and used the modes of the
operator H p 0(R, q) without imposing any boun-
dary conditions on the hydrodynamic fields, i.e., we
have considered an unbounded fluid. While this
may be a valid approximation for sufficiently large
systems, it certainly must fail to be valid for suffi-
ciently small systems. For example, if the cell size
is comparable to the mean-free path of a sound
wave I, =c/I, k, then the effects of the cell bound-
aries on the hydrodynamic properties of the fluid
could be important. Recently, Satten and Ronis'
have reported a calculation of the effects of bound-
aries on the light-scattering spectrum for a system
with a small temperature gradient and they found
that for sufficiently small systems the asymmetry
between the Brillouin line is much smaller than that
for large systems. While their method is based on
fluctuating hydrodynamics, and in particular, on
some assumptions concerning the properties of fluc-
tuations of the hydrodynamic variables at the walls
of the container, one can arrive at similar con-
clusions in a more straightforward way. In Appen-
dix C, we outline such a calculation of the integrat-
ed intensities of the Brillouin lines for a fluid with a
small temperature gradient in the x direction, and
in which the separation between the walls in the x
direction, d, can be comparable to l, . There we
show that the dominant finite-size corrections are
due mainly to modifications of the hydrodynamic
sound-mode eigenfunctions. We remark that the
formulas derived there for small gradients in small
systems show that under realistic experimental
conditions —as, for instance, in the experiments of
Beysens et al. —the intensities of the Brillouin
lines are very considerably reduced by finite-size ef-
fects. A similar calculation shows that the Ray-
leigh line is unaffected by finite-size effects. Al-
though these calculations as well as those by Satten
and Ronis give results consistent with those of
Beysens et al. for the intensities of the Brillouin
lines, they do not have a direct bearing on the latter,
since, as mentioned before, the experimental results
were obtained for large thermal gradients in the
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fluid.
We will comment on this further in the next pa-

per, where we will also discuss a number of experi-
ments that should not be affected by boundary ef-
fects at all.

Hp(q) =
—iqA &

0
—Q A4

—iq 0

—iqA 3

—vq 02

0 —vq
2

0 0

—iqA2

0
—Aq Ag
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APPENDIX A: HYDRODYNAMIC MODE
EIGENFUNCTIONS AND EIGENVALUES

In this appendix we show how Eqs. (3.2a) and
(3.2b) can be solved by constructing the approxi-
mate eigenfunctions and eigenvalues of the matrix
Hp(R, q) defined by Eq. (2.12). We will then illus-
trate the relation between the hydrodynamic mode
eigenfunctions derived here and the combinations

M«, defined by Eq. (3.4). Finally, we will use the
hydrodynamic mode eigenfunctions and eigenvalues
to solve Eq. (3.14) and obtain Eq. (3.17).

I. Eigenfunctions and eigenvalues of Ho(R, q)

where Dl =4v/3+//p and the rows and columns
are labeled p, q g, qz" g, q& g, and e, respective-

ly. A similar transformation can be applied to Eq.
(3.2b) for the M ~. The equations for q M-,
qz M, and qz M- can be obtained by multi-

s p' sp
plying the equation for M- by q. , q~ '-, and qJ
respectively. To simplify the notation, we will not
indicate explicitly in this subsection the R depen-
dence of the thermodynamic and hydrodynamic
quantities, and we will suppress the subscript i on
the M~ „which indicates the order in the gradient
expansion used in Eq. (3.1a).

The matrix defined by Eq. (A2) is a 5)&5 matrix
with five eigenvalues —co;(q) (i =1—5). Further-
more, since this matrix is not self-adjoint it has five
right eigenfunctions 8; (q), as well as five left
eigenfunctions 8; (q), where 8; ( q) is a five-
component column vector and 8; (q) is a five-
component row vector, and the index i denotes the
ith eigenfunction. With these definitions our eigen-
value problem reads

To determine the eigenfunctions and eigenvalues

of the matrix Hp(R, q) and to solve Eq. (3.2a) and
(3.2b), it is convenient to write

M- (R, q, co)= q[q.M- (R, q, ro)j

g qI' [qI' .M- (R, q, co)]

Hp(q). 8; (q)= —e-(q)8- (q)

8; (q ) Hp(q ) = —co;(q) 8; (q),
and for normalization we require

8; (q)-8J (q)=5J .

(A3a)

(A3b)

(A3c)

i =I,2

(A1)

and choose as our independent variables M~,

qz", and qz
' form a set of three mutually orthogo-

nal unit vectors. Denoting this choice of indepen-
dent variables by y, 5=(p,q. g, qq g, qq g, e), Eq.
(3.2a) for example, can be written in terms of this
set as

lcoMyp p(R» q»Q)) Myp p(R» q )

=Hys p(R, q )Msp, o(R» q»co) (A2a)

with

Examining Eq. (A2b), we see that Hp(q) can be
decomposed into a 3)&3 matrix where p, q g, and e
are coupled together and into two simple matrices
for qz

.g and qq g. From Eqs. (A2b) and (A3) it
follows immediately that the eigenfunctions and
eigenvalues for qz

.g and qz
.g, the transverse (or

shear) components of g, are

0 0

8„,(q) = 1, 8„(q)= 0 (A4a)
0 1

0 0

8„(q)=(0,0, 1,0,0), 8„(q)=(0,0,0, 1,0),
with eigenvalue —co& (q), where
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co~ (q) =vq (A4b) There are two sound modes (0=+1) with eigen-
values —co {q),where

h'(q). g. (q)= —N (q)g; (q),
g; (q)-h'(q)= —co;(q)g; (q),
g; (q) gz (q)=5J. ,

where

(A5a)

These eigenfunctions and eigenvalues are denoted
by the symbol g; (i =1,2) to indicate they are shear
eigenfunctions and eigenvalues.

The remaining three eigenfunctions and eigen-
values can be determined from the eigenvalue prob-
lem

2

~ (q)=iocq+ [DI+(y—1)Dr]

O'C

g o
——0

0
(o =+1)

I,—:i crcq+ q (0.=+1)
2

and corresponding eigenfunctions

(ASa)

(ASb)

0 —iq 0
h'(q )= —iqA, —Diq —iqA2

—kq A4 iqA3 ——Aq Ag

(ASb)

A3

1
g o

—— (A &, chic, O, O,A2) {cr=+1) ~

2C

~ lt ~ ll

and g and g are three-component row and
column vectors, respectively. Their three com-
ponents will be the first, second, and fifth corn-

ponents of g and g", with the third and fourth
components being zero for these eigenfunctions
since they are orthogonal to and independent of the
shear eigenfunctions. In solving the eigenvalue
problem defined by Eq. (A5), we shall use that only
the small-q behavior of the eigenfunctions and
eigenvalues is needed for the light scattering. That
is, we make the expansions

Bp 2 aTh
A] —— =c 1—

Bp cz
(A9a)

B~
86'

.p

car2

c&
(A9b)

A4 —— aT (r—1)

Bp, paT
h

7

p Cv

(A9c)

In order to derive these results and others quoted in
the text of this paper, we have used the thermo-
dynamic identities

h'(q)=iqh +q h[

~f(q)=iq~g '+q ~,' '+ ~ (A6) A5 —— BT 1

E PC„.p

(A9d)

g[R,L)"(
)

g[R,L)"+ ~

g [R,L)"+ A, +A,A3 ——c', (A9e)

~H {q)=DTq

and eigenfunctions

A2/A ]

0
Ai

gH, O
A2

0

(A7a)

A2
gH o= (A3 0 0 0 —1)

C2

(A7b)

tt

and determine co;(q) and g; ' (q) using perturba-
tion theory.

The technique used to compute these eigenfunc-
tions and eigenvalues is straightforward and can be
found in the literature. Here we only quote the fi-
nal results for g; ' ' to O(q ) and for co;(q) to
O(q ): There is one heat mode (H) with eigenvalue
—coH(q), where

and

TaTc

Cp
(A9f)

B6 h Cp C„
+

~p p aT
(A9g)

where the coefficient of thermal expansion
a T

———(Bp/B T)& /p.
The eigenfunctions and eigenvalues given by Eqs.

(A4), (A7), and (AS) are those for the hydrodynamic
equations [cf. Eq. (A2)] expressed in terms of the
variables M~, q.M-, q~z".M-, qz .M-, andsp' sp' sp'
M&. The five eigenfunctions and eigenvalues for
the choice of variables Mpp Mg p Mg p Mg p and

M, i.e., the eigenfunctions of the matrix Ho(q),
follow directly from Eqs. (A1), (A4), (A7), and (AS)
with the following results: two shear modes with
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eigenvalues given by Eq. (A4b) and eigenfunctions

given by
8, ' (q)8,"' (q)=5„. (Al lc)

0
~(i)

R ~ ~(i)
0~.(q) = qpy

~(i )

0

g„(q)=(0,q~, qzz, q~, 0) (i =1,2)

(A10a)

Consequently, if we multiply Eq. (3.2a) by 8, ' (q)
and sum over a, we immediately obtain

[ —ico+co, (q)]M,p o(Rqco, ) =M,p o{Rq),
(Al ld)

where for a general M~,. we define M« i by

M,~;(R, q, co)=8, ' (q)M~, {R,q, co) .

and a heat mode with eigenvalue and eigenfunctions

given by Eq. (A7a) and (A7b); two sound modes

with eigenvalues given by Eq. (ASa) and eigenfunc-

tions by

ocq„

g."p(q) =1 &cq„(~=+1)
O.cq,

A3

(A10b)

~a p(q) = (A), o.cq'x~o.cq~, ocCz, A2)
2c

(can=+1) .

II. Relations between hydrodynamic mode
eigenfunctions and Eq. (3.4)

In order to understand the relation between the
hydrodynamic mode eigenfunctions given above
and the combinations of the M p denoted by MH&,

M+p M —p, Mg p and M„+ given in Eq. (3.4),
we consider as an example the sum

y p( q )M&& p( R, q, ~), appearing on the right-hand
side of Eq. (3.2a). We represent the matrix
H pp(q) in terms of its exact eigenfunctions and
eigenvalues by

H po(q)= —+co, (q)8,"' (q)8, '~(q),
a'

(Al la)

8, ' (q)H po(q)= —a), (q)8, '~(q), (A 1 lb)

where we have used the orthonormality relation

where 8,' is the a component of the right eigen-
function 8, with a =(p,g„,gz, g„e) and 8,'~( q) is
defined in a similar way. If we now multiply Eq.
{Alla}by 8, ' (q} and sum over the index a, we ob-
tain

(A11e)

Strictly speaking, we should use the exact hydro-
dynamic eigenfunctions 8 ' in Eqs.
(Al la) —(Al le). Since the construction of these
functions requires a computation of the higher-
order terms in their q expansion, which is very
cumbersome, we have replaced the 8, in Eq. (Al le)

L
by the lowest-order term in their q expansion 8, p as
given by Eqs. (A7b), (A8b), and (A10). These
lowest-order eigenfunctions also satisfy the ortho-
normality relation (Allc). The difference between
the M«defined by (Al le) with (9, replaced by 8, p,
and the exact expression for the M«, is of order

qM~ and accounts for the off-diagonal terms that
appear in Eqs. (3.6). Although these off-diagonal
terms ultimately do not contribute to the M, , as
they do not contribute to the D,b, they have to be
retained for consistency at this stage of the calcula-
tion of the M«p, since they appear in the Eq. (3.2b)
for the M« i. With the use of the explicit form of
cr, 'p given above, one can show that the M«p de-~,p

fined here correspond to those given by Eq. (3.4).
We note that the coefficients A2/c, 1/2c, and 1/c
multiplying the linear combinations appearing in

Eq. (3.4) have been chosen so that
M =M+p+M p+M~p.

III. Derivation of Eq. (3.17)

Equation (3.17) for D,b(R, q) (a,b)
=(H, o =+1,g;(i=1,2)) can be derived from Eq.
(3.14) by using the eigenfunctions and eigenvalues
of Hp given in part I of this appendix. Inserting
[cf.Eq. (3.14)] both

H~, ,p(q»&p, i«q)
= —co, (q)8, ' o( q )[8,' o( q )Dsp(R, q )]

and

Hp p( —q)D i(R, q)

= —~~(q)8b', o( —q)[8b', o( —q» s«q)]
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into Eq. (3.14), multiplying the resulting expression

by

0,;p (q Ws, 'p~( —q)
a,P=p, g, e

using Eq. (Allc), and knowing that only zeroth-
order hydrodynamic eigenfunctions are needed to
determine D it, to O(X /q ), yields Eq. (3.17) with

1
5a -= (A]5pT+A25eT+ocq;5gIT),

2c
(A12a)

1
5aH- ———2A 2(A 35pT —RT ), (A12b)

5a„-=—
qj 5gJT .(I) (A12c)

APPENDIX B: ORDERING OF TERMS
IN THE HYDRODYNAMIC EQUATIONS

In this appendix we first outline the method used
to order and select the contributions to the quanti-
ties M p ](R,q, cu) that were needed in the calcula-
tions presented in Secs. II and III. We then use this
same method to justify the neglect of a number of
terms in the derivation of the hydrodynamiclike
equations for the M p(R],R2, t) and the D ~(R],R2)
in paper I.

I

I. Equations for M~{R, q, ~)

As described in Sec. II, we wish to consistently
retain terms in Map ](R,q, co) which are at least of
order cX /I, q compared to Map Q. To do this, we
consider the hydrodynamic equations (2.9) for Map
and solve them by first expanding the 0 p about
their values at the center-of-mass point
R=(R]+R2)/2 in powers of X . For the case of
small gradients, we need to retain only the first-
order term in X and consider the q dependence of
the terms that contribute to the zeroth- and first-
order terms in X . In the discussion below, we will

also see that the M&pQ is sharply peaked about
co=0, while the M pQ are sharPly Peaked about
co =O.kc.

In Sec. II, we expanded the spatial dependence of
Map(R], R2, co) about its value at point R and then
considered the Fourier transform of Map(R, R]2,co)

with respect to R]2, where R]2——R]—R2. Denoting
the Fourier-transform variable by q, we obtained
equations for the linear combinations of the M
MHp], and M p] that have the formal structure
given by Eqs. (3.10a) and (3.10b), respectively. We
also neglected the terms proportional to M„p. For-

mally solving Eqs. (3.10a) and (3.10b) by iteration,
we obtain

MHp ](R q &) ( lN +DTq ) X R&& +X RHHq +RHH MHp, OBq„BR„

g ( irp+Prq )—' X R~" +X RH~
cr=+1 Bq

+ RH M p, o+q DT(p —1)M p, ]
Rx

and

+( &'rp+Drq ) '(A—H~, +DH~, )+O((X )') (Bla)

+ (DI —DT(y —1))M

2

+(—l ~+~&) X R ~H +X R~&q +R ~H MHp Q+
(]) T (Q) Q (3) a

+(—leo+co ) (A p ] +D p ] )+O((X ) ) . (Blb)
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Here M&p o and M p 0 are given by Eqs. {3.9).
If we examine the expressions given by Eqs. (Bla)

and (Blb), we see that they contain denominators
which are combinations of powers of the quantities
(—iN+DTq ) and ( —iN+N ) '. Each of these
terms becomes large in a different range of frequen-

cies, that is, ( —iN+DTq )
' is of order q for

N =q, while in this region (—i N+N )
' is of order

q '. Similarly, (—iN+N~) ' is of order q for
N =oqc+0{q ), while in this region
( —i N+DTq )

' is of order q '. As long as
cq ))DTq or cq &&I,q these frequency ranges are
well separated. Therefore, the quantities MHp &

and
M p i have qualitatively the same features as their
equilibrium values, in that they are sharply peaked
either at N=O(q ) or at N=o.qc+0(q ), but there
are important corrections of order X q to the
equilibrium values in these frequency ranges.

To see this, we first consider MHp &
and M~p &

in
the range N=0.qc+0(q ). We need the following
estimates, all valid for N in this range:

( —tN+DTq ) '=0(q '),

BRx
( —i N+DTq ) =0(X q ), (B3a)

q ( —iN+DTq ) '=0(q ),
Bq„

while

( —iN+N ) '=0(q '),

BRx
( —iN+N ) '=0(X q '}, (B3b)

can be neglected in this range. When these various
terms are retained and explicitly computed, Eqs.
(3.12a) and (3.12b) are obtained. It is worth men-

tioning that the corrections of order c X /I, q
eventually cancel when the explicit calculations are
done. Therefore, the leading corrections are of or-
der cX /I, q .

We can apply similar arguments to determine

M~p i and M p i near N=O. For this we need the
following estimates, all valid for N =0(q ):

( —iN+D q ) '=0(q ),

( —iN+Dyq ) '=0(X ),a

x

q ( —iN+DTq ) '=0(1) .
a

Furthermore,

( —iN+N ) '=0(q ),

BRx
( —iN+N~) '= 0(X q )

+0(X q ),

(B2a)

(B2b)

q ( —iN+N ) =0(q ) .—1 —1

Bq„

Combining these estimates with Eqs. {3.11} and

(Bl), we find that to determine corrections to MHp o

and M~p 0 of order (X q ) in the range N =0(q ),
we need to retain RzH, RHH, and RHH all to order(1) (2) (3)

0(q ), while all other R,'b can be neglected. How-

ever, as RHH
——0 for i = 1,2,3, and as DH& ~

——0 [Eq.
(3.21a)], one can easily check that for c0=0(q ),

Mp(RqN)Mp0(RqN)+0(Xq')
(B4a)

q ( —iN+N~) '=0(q )+0(q ),a

~qx

while

and

(84b)

MHp(R q N) M&p o(R q N)+0(X q )

+0({X )')
( —iN+N ) '=0(q '),

( —t'N+N ) '=0(X q '),8

x

q ( —iN+N ) '=0(q ') .a

Bq„

(B2c)

so that there is no change in the Rayleigh line of or-
der X /q relative to the equilibrium result.

II. Discussion of neglected terms

We now use that the R'p appearing in Eqs. (Bla)
and (Blb) can be expanded in powers of q according
to Eq. (3.11). By combining Eqs. (3.11), (81), and
(B2), we can see that to obtain corrections of order
(cX /I, q ) or c X /I, q, compared to M o in
the range N=o.qc+0(q ), we need to retain RH~
and RH

' to 0 (q ) and R "' to 0 (q ). All other R,'b'

We now discuss the terms that were neglected in

paper I in the derivation of the hydrodynamiclike
equations for M p(R&, R2, t) and D ~(R~,Rz). The
introduction of the Fourier transform-variable q
and the temperature gradient X =(1/T)(BT/BR„)
in this paper greatly simplifies the discussion of the
terms neglected in I. That is, we will show below
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that the neglected terms are all smaller than the
terms retained above for the calculation of the M &,
the structure factor S(k,co), and the integrated in-

tensities.
We begin by considering the kinetic-theory

derivation of the hydrodynamic equations for the
M ~(R&,R2, t) in Sec. II of paper I. To derive the
set of hydrodynamic equations (I.2.42a) —(I.2.42c),
we first derived a kinetic equation for the quantity
PC(1,2,z), which was given by Eq. (I.2.40). In the
derivation of Eq. (I.2.40) we neglected two types of
terms: (a) terms of order (cL ~

' )(IL ~
'

) and
higher, compared to terms of the order cLq ' and
(cL~ ')(IL~ ') that were retained, and (b) an initial
condition term of relative order (IL~ ') compared to
the initial condition term PC(1,2, t =0) that is re-
tained. When we consider those terms in the
Fourier representation and see that each power of
L~ ' is replaced by either a factor q or X, it be-
comes clear that the terms neglected in (a) above are
of order cl q, cl q X, cl q(X ), orcl (X ) com-
pared to the terms of order cq, elq, and eX that
we retain. Now the terms in (a) can be neglected
provided that the conditions

Iq=I, q /cq &&1

and

neglected in Eq. (I.3.13) when the hydrodynamic
equations for the D p(Ri, R2) are derived. Further-
more, the argument given above for the kinetic-
theory calculations in paper I, Secs. II and III may
be immediately extended to the more general fluid
theory described in paper I, Secs. IV and V. The ar-

guments are identical to those given above, and one
needs only note that for a liquid the microscopic
length I is the range of the intermolecular potential,
while for a gas I is the mean-free path.

APPENDIX C: INTEGRATED
INTENSITIES OF BRILLOUIN LINES

IN THE PRESENCE OF WALLS

In this appendix we briefly sketch how the in-

tegrated intensities of the Brillouin lines may be cal-
culated to linear order in the temperature gradient
when effects due to the finite size of the container
are taken into account. To simplify the calculation,
we take the fluid to be finite in the x direction with
parallel plates at x =0 and d but infinite in the y
and z direction. Further, we assume that slip
boundary conditions ' ' are satisfied at x =0 and
d. As in the text, the temperature gradient is in the
x direction.

To calculate the integrated intensities of the Bril-
louin lines to linear order in X, we need to deter-
mine the equal-time correlation functions given by

are satisfied. The initial condition terms (b) are of Eq. {2.4) to linear order. The local equilibrium con-
order Iq and IX compared to the initial condition tribution A~~(R&, R2) is not sensitive to the bound-
terms of order unity and cX /I, q, respectively, aries because it has a correlation length on the order
that are retained in the A p and D 13. Here, too, the of a molecular diameter. The long-range contribu-
neglect of the terms in (b) is consistent provided tion D~p(R&, R2), on the other hand, is sensitive to
lq &&1. the boundaries. To linear order in X, D~p satisfies

Similar considerations apply to the terms that are the equation
I

H r,q(R, )Drp, (R, ,R2)+Hpr, q(R2)D r ((R„R2)=5(R(2)(5a~r5apTS„r),qPX (C1)

with ( )«an equilibrium ensemble average and H«(R;) the equilibrium hydrodynamic matrix. H«(Ri)
equals the H(R&) in paper I [cf. Eqs. (I.4.21) and (1.4.25)], with constant (i.e., space-independent) thermo-

dynamic and hydrodynamic quantities. To solve Eq. (Cl), we use the method of Appendix A, and Sec. III,
but we replace the infinite-space hydrodynamic modes of Appendix A by a set of finite-space hydrodynamic
modes for slip boundary conditions and for the geometry given above. Since only the integrated intensities of
the Brillouin lines are needed, we quote only the results for the sound modes which have eigenvalues given by

~~(q) =oicq+ I,q /2 (o.=+1) and right and left eigenfunctions given by

cosqzx i

iq
I

R ocqzi sinq„x i

1 2/d o.cq~ cosq„x i2'
ocq, cosq„x

&

A3 cosqzxi

(C2a)
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8~ p(q, R))=
—iqII R)

II

v'2/d 1

2c

X(A ) cosqxx» —«qadi sinq„x»«qy cosqzx»«Pz cosq„x»A2 cosq„x~ ) (C2b)

with the rows and columns labeled as in Appendix A. In Eq. {C2), q~~
——(qy, q, ) is a continuous eigenfunction

index, q„=nm/d (n =0, 1,2, . . .) is a discrete eigenfunction index, q =(q„,q„,q, ), q; =q;/q, q =(q„+qII )'

and R, =(y„z,). It should be remarked that Eqs. (C2) are the analog of Eq. (A10b) for fluid cells of finite
II

extent. The set of hydrodynamic heat (H), sound (0.), and shear (g;) modes satisfy the completeness and ortho-

gonality relations

q„a =H, cr, g;
f dq~~ I

&."(q Ri)&& ~'(q Ri)
I

(C3a)

2 &()"(q R )
I

eb'"(q' Ri) & =5.b&, , @q~i —qj~» {C3b)

where in obvious Dirac notation &f{R,) lg(Ri)) =J dx, fdR, f(Ri)g(Ri) for any two functions f{Ri)
0 II

and g (R~).
The completeness and orthogonality relations given by Eqs. (C3) can be used to express D ~ &(R&,R2} in

terms of hydrodynamic modes with the result

. II()."'(q Ri)i9b'~(q Rz)))
D~p ~(R~,R2) = —~ ~ d qII l~.(e)+~b(e ) )

X p «|)o' (q Ri)()t ' {q' Rz)IINR12) »

XPX (5azzgaszS„z), q . (C4)

The integrated intensity of the o.-Brillouin line is then given by an expression similar to Eq. (4.5b):

I {Rii,k)
1

=Re J dRP (R) J dR, J dRzP(Ri)P(R2)e

kg T(Ri)
X p (R)) XT(R))5(R)2)

2y(R, )

+ g Jdq(( I()."'(q,Ri)& g &e.' (q, Ri) IDzi, , i(Ri, R2))
q„

=ILE(RO, k)+Iv(Ro, k), {C5)

with Ii.E(k) the local equilibrium contribution due to A zi(Ri, R2) and Iv(RO, k) the contribution due to

Dziz, i(Ri, Rz) to I (Ro, k). Inserting Eq. (C4) into (C5) and keeping only the dominant (for small q, q') contri-
butions yields



26 LIGHT SCATTERING BY A FLUID IN A. . . . I. . . . 993

' —]
Itt(Ro, k)= —Re f dRP (R) f dRt f dR2P(Rt)P(R2)e

, lleo"(q Rt)&'(q' R2)~)
X d q!! q

I I [co (q)+co (q')]
'4&x

X g((() ' (q, Rt)e ' (q', R2)ll5(R»)))
a, P

XpX (5aaT5apTS„T)eq . (C6)

Inserting the explicit expressions for the hydrodynamic mode eigenfunctions in Eq. (C6), carrying out the
—k2L ~

summations and integrations and neglecting terms of order (kL ) ', (kd) ', L /d, and e ",all of which are
taken to be much less than unity, one obtains

Ip(xp ——d/2, k) =——p XT
2y I,k

I ——, exp( —dI, k /2
l
k„!c)+—, exp( —3dI', k /2

l
k„

l
c)

exp( —d I,k'/2
l
k„

l
c ) +— exp( —3dl .k'/2

l
k

x Z

(C7)

where we have taken the x coordinate of the point
of observation Rp ——(xp,yp, zp) to be xp ——d/2.

It should be said that in going from Eq. (C6) to
(C7) the only place where finite-size effects are im-

portant under realistic experimental conditions is in
the denominator of (C6). This follows from the
fact that in an infinite fluid the isotropy in space
leads to a factor 5(q+ q'), so that the denominator
in (C6) reduces to (I;q ) ', since the +Iqc contri-
butions to the two sound-mode eigenvalues exactly
cancel. This leaves then a denominator that is
much smaller than when the propagating parts
would not have canceled. In finite space, however,
q„-=q„'+O(1/d). This uncertainty in wave num-

bers leads to a denominator that schematically has

I

the form (inc/d+I, q )
' which implies that we

can expect finite-size corrections of O(c/dI, q ).
This parameter can be on the order of unity in real-
istic experiments, i.e., finite-size corrections to the
propagating part of the sound eigenvalues can be of
the same order of magnitude as the damping part.

If L lX l
&&I, the local equilibriutn contribu-

tion ILE(Ro, k ) [cf. Eq. (C5)] is

kgT
ILE(Ro, k) =p Xr (C8)

2r
with the thermodynamic parameters in Eq. (CS)
evaluated at the point of observation Ro. From
Eqs. (C5), (C7), and (C8) the integrated intensity of
the o-Brillouin line, I (Ro, k), follows.
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