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In this paper the correlation functions for fluctuations in a fluid kept in a nonequilibrium

steady state are studied. Hydrodynamiclike equations for the unequal- and equal-time
correlation functions of the microscopic densities of mass, momentum, and energy are de-
rived both for a dilute gas on the basis of kinetic theory and for a fluid of arbitrary density
from the Liouville equation. The connection of these equations with those of fluctuating
hydrodynamics is discussed.

I. INTRODUCTION

In this and the two following papers we study the
fluctuations in a fluid that is a nonequilibrium

steady state, near or far from equilibrium. In par-
ticular, we will study the correlations in space and

time of fluctuations in the microscopic densities of
mass, momentum, and energy for a fluid subject to
a temperature gradient. Because of the connection
between the spectrum of the light scattered by such
a fluid and the (mass) density fluctuations, informa-
tion about the nature of these fluctuations and espe-
cially about the difference between them and those
in a fluid in thermal equilibrium can be obtained.
This will be discussed in the following two papers.
In this paper the basic equations for the unequal-

and equal-time correlation functions for the above-

rnentioned densities in a fluid subject to a tempera-
ture and a velocity gradient will be derived.

Preliminary account of the work presented in

these papers have appeared elsewhere, ' and there is
now a substantial literature of related work by
several authors. The particular interest in these
nonequilibrium correlation functions has been
stimulated by the fact that because of the gradients
in the system, such correlation functions have a
much longer range in space than their equilibrium
counterparts, and that the existence of these long-
range correlations can be detected by means of
light-scattering techniques. The long-range correla-
tions in a nonequilibrium fluid are due to the same
mode-coupling effects that are the origin of the
long-time tail contributions to the transport coeffi-

cients, which, in turn, are related to the nonex-
istence of virial expansions of the transport coeffi-
cients. Thus, the experimental detection of long-
range correlations in nonequilibrium fluids by light
scattering would provide support for the reality of
the long-time tails and the nonanalytic terms in the
density expansion of the transport coefficients,
which have not been convincingly verified in real
fluids so far.

In a typical light-scattering experiment one mea-
sures the dynamical structure factor S(k,co), that
is, the intensity of light scattered by the fluid where
an amount of momentum Ak, and energy Aco has
been transferred by the fluid to the light. In gen-
eral, S(k,co) can be related to the Fourier transform
of the correlation function of the density fluctua-
tions in the fluid.

The theory for the scattering of light by fluids
not in thermal equilibrium was originated simul-
taneously and independently by Procaccia et al.
and by Kirkpatrick et al. ' and subsequently pur-
sued by many authors, in particular, by Tremblay
et al. Ronis and Putterman, Dufty, and Van der
Zwan et al. A11 these investigators found that
correlation functions which are either zero or short
ranged in equilibrium become long ranged in none-
quilibrium. They calculated the effect of the pres-
ence of the gradients on S(k,co) for the case where
these gradients were sufficiently small that first-
order perturbation theory around the equilibrium
state could be applied. Later, Kirkpatrick and
Cohen' were able to show how the case of a large
temperature gradient could be treated. It should
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also be mentioned that the existence of long-range
correlations in a nonequilibrium fluid was first not-
ed by Ludwig. Kawasaki was the first to apply
mode-coupling theory to derive formal equations
for the correlation functions in nonequilibcium
steady states, and Onuki" computed the long-range
part of the nonequilibrium pair-correlation function
for a dilute gas to first order in the gradients, using
the kinetic theory of gases.

We will be concerned here with deriving hydro-
dynamiclike equations of motion for correlation
functions of the general form

M tt(R&, t&, Rq, t2) = (5a (R~, t~ )5att(R2, t2) )

where 5a and 5a~ are fluctuations in the micro-
scopic mass, momentum, or energy densities of the
fluid. In particular, the density-density correlation
function Mpp where 5a =5a~ ——5p determines
directly S(k,co). We will have to consider the full
set of correlation functions M ~ rather than just the
density-density correlation function, since the equa-
tions for this set of correlation functions are cou-
pled to one another. We will use two distinct
methods for deriving equations for
M ~(R&, t&,R2, t2). One method, valid for gases at
low densities is based on the kinetic theory of gases,
the other method, valid for arbitrary fluid densities,
is based on Liouville's equation and the construc-
tion of a solution of this equation that describes the
nonequilibrium steady state. The kinetic-theory
method has the disadvantage that it is only applica-
ble to dilute or at best moderately dense gases.
However, it has the advantage that the structure of
the theory is simpler and more transparent and that
the approximations made can be more easily dis-
cussed. Although a complete kinetic discussion of
the light scattering by fluids in a nonequilibrium
steady state has been presented elsewhere, ' we will

not give such a treatment here. Instead we will use
kinetic theory in these papers only to derive a set of
hydrodynamiclike equations for the M p and relat-
ed quantities valid for low densities. Since the
equations for the M ~ for a general fluid derived
from the Liouville equation reduce for low densities
to the equations based on kinetic theory, the latter
can be used as a partial justification of the former.
We remark in general that many details of the cal-
culations sketched in this and two following papers
can be found in Ref. 12.

The outline of this paper is as follows. In Sec. II
we use the kinetic theory of gases to derive general
equations of motion for the M ~(R&, t&',R2, tz) under
the circumstances that the system is in a nonequili-

brium steady state, close to local equilibrium. We
will introduce a local equilibrium projection opera-
tor in p space in order to derive equations for these
correlation functions, and we show that the M p
satisfy a set of hydrodynamiclike equations closely
related to the fluctuating hydrodynamic equations
proposed by Keizer. ' These hydrodynamiclike
equations can be solved in terms of the equal-time
correlation functions M~@(R&,t&,R2, t~), and in Sec.
III we use kinetic theory to show that for low densi-
ties the equal-time correlation functions can be ex-
pressed explicitly in terms of the nonequilibrium
one- and two-particle distribution functions. Then,
using local equilibrium projection operators in p
space, we will derive a set of hydrodynamiclike
equations for these equal-time correlation functions.
In Sec. IV we introduce the I -space description of a
general fluid in a nonequilibrium steady state close
to local equilibrium and derive from the Liouville
equation hydrodynamiclike equations for the
M &(R&,t&,R2, t2) for a general fluid with the aid of
the I -space analog of the p-space projection opera-
tor used in Sec. II. In Sec. V, we indicate how the
mode-coupling method of Kadanoff and Swift'
and of Ernst, Hauge, and van Leeuwen' can be
used to derive a set of hydrodynamiclike equations
for the equal-time correlation functions in terms of
which the equations for the unequal-time correla-
tion functions M p(R&, t&,R2, t2) can be solved. The
equations derived in Secs. IV and V can be seen to
reduce to those derived in Secs. II and III on the
basis of the kinetic theory of gases for a low-density
gas. They will be applied in the next two papers to
the computation of S(k,co) of a fluid in a none-
quilibrium steady state subject to a small (paper II)
or a large thermal gradient (paper III). In Sec. VI a
brief discussion of the results obtained in this paper
is given and, in particular (cf the Appendix), the
equivalence of our results and those obtained on the
basis of fluctuating hydrodynamics is discussed.

II. HYDRODYNAMICLIKE EQUATIONS
FOR THE UNEQUAL-TIME CORRELATION

FUNCTIONS: KINETIC THEORY

A. Formulation of the problem: The basic
kinetic equation

We consider a system of 1V identical particles of
mass m, confined to a volume V. The phases of the
particles will be denoted by x;=(r;,v;) where r;
and v; are the position and velocity of particle i,
respectively. It is assumed that the particles obey
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classical mechanics and that they interact according
to a pairwise central potential P(r,j ), where

ri =
~
r; —rj

~

. The Hamiltonian for the system is
given by

N N

H(x )=g mv,'/2++/(rj), (2.1)

where x denotes the set of phases x1. . .,xN of the
N particles. In the course of our calculations we
will be considering a small subvolume of the system
that is far from the walls, so we will neglect the
direct effect of the walls on the dynamics of the
particles. The walls will certainly have some effect
on the system, since it is only by means of wall ef-
fects that a temperature or velocity gradient can be
maintained in the system. We will comment on this
point further in papers II and III.

The quantities of interest for describing the fluc-
tuations in the system that are detectable by light-
scattering experiments are connected to the time-
correlation functions of the microscopic densities of
conserved quantities. These time-correlation func-
tions are defined by

M tt(R, , t, ;Rz, tz)=(5a (R, , t, )5att(Rz, tz))

(2.2)

Mpp and to determine this function, we will need to
consider the larger set of functions M p defined
above, since the equation for Mpp is coupled to
those for the other M p. We remark that for dilute
gases the potential-energy contributions in Eq. (2.5)
will be neglected in the derivation of the hydro-
dynamiclike equations below, since they lead to
terms of higher order in the density than the
kinetic-energy terms.

To find the M p(R1, t1,R&, t&) at low densities, it
is convenient to introduce a microscopic p-space
density function F(1,t) defined by

N

F(l, t)= g 5(1—x, (t)) (2.6)

and a corresponding two-time correlation function
C(1,t1,2, tz) by

C( l, t i, 2, tp) = (5F( l, t 1 )5F(2, tp) ), (2.7)

where 5F(l, ti ) =F(l,tt) —(F(l, ti ) ). Here x;(t)
=[r;(t),v;(t) j and "1"denotes a particular position
R1 and velocity V1 in p space. One can easily check
that

M tt(R&, t&, Rq, tq)= JdV& f dVza~(Vi)att(Vz)

X C(1,t1,'2, tg ), (2.8)

where
with

5a (R,t)=a (R, t) —(a (R,t)), (2.3)
a (V)=m,

a-(V) =m V,

(2.9a)

(2.9b)
where a (R, t) denotes the actual value of one of the

microscopic densities of mass p momentum g, or
energy e, at the position R and time t, given by

N

p(R, t)= g m5(r;(t) —R), (2.4a)

N

g(R, t) = g m v;(t)5(r;(t) —R), (2.4b)

N

Z(R, t) = g e, (t)5( r, (t) —R), (2.4c)

respectively. Here

e, (t)= —,mu (t)+ —,
' g P(r J(t)),
j+i

(2.5)

(a (R, t)) denotes the average value of a (R, t) at
R, t and r;(t), v;(t) are the position and velocity of
particle i at time t, respectively. In Eqs. (2.2) and
(2.3) the angular brackets denote an average over an
appropriate initial ensemble. For the purpose of
describing light-scattering experiments, we need to
determine the density-density correlation function

1a, (V)= —,m V (2.9c)

Consequently, if we know how C(l, t1,2, tz) depends
on time, we can determine the time development of
the M ~ by integration.

We will restrict ourselves here to a consideration
of nonequilibrium steady states, where the quanti-
ties M p(R1,t1,Rz, tz) and C(1,t1,.2, tz) are functions
of time only through the difference t1 —tz. We,
therefore, consider only the quantity

C(1,2;t) =C(1 ~ t1 —t~,'2, 0)

= (5F(l, t& —t&)5F(2,0) )„, (2.10)

with t = t1 —tz, and the angular brackets denote an
ensemble average with respect to a nonequilibrium
steady-state (ss) distribution function. Similarly, we
consider the quantities M &(R1,Rz, t) defined by

M p(R|,Rq, t)= fdV, JdV,a.(V&)aa(vz)

XC(1,2, t) .
(2.11)
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Recently, Ernst and Cohen' sho~ed how one can
derive a closed kinetic equation for C(1,2, t) for a
dilute gas in which the particles interact with
short-range central forces. Ernst and Cohen's equa-
tion is, for t) 0,

—+LO(t) C(1,2, t)= fd3T(13)(l+P, 3)

XF](3)C(1,2, t) .

(2.12)

Here

a
Lp(1) =V].

BR]
(2.13a)

T(13) is a binary-collision operator defined by

T(13)=5(R]—R3)

X f de f bdb ~V, —V3~(b —1),

(2.13b)

B. Derivation of hydrodynamiclike equations
for the unequal-time correlation functions

F(1)=FI(1)(1++]+@2+ (2.18)

where FI(1) is the local equilibrium distribution
function

Equation (2.12) will be the starting point for our
calculations of M~(R], R2, t}. We will assume that
the fluid is in a steady state, which is close to a state
of local equilibrium with a local temperature T(R),
local (number) density n(R), and local velocity
u(R). Under these circumstances, the single-
particle distribution function at low densities, is a
solution of the steady-state nonlinear Boltzmann
equation

p(1)F](1)=J(F]F])

= f d3T(13)Fi(1)F (|3) . (2.17)

A solution of this Boltzmann equation that de-

scribes a steady state near local equilibrium can be
obtained by applying the Chapman-Enskog method
to Eq. (2.17).' Thus, we write

v', =v, —(V»-&)&,

V3 —V3 + (V]3 & )&

(2.14a)

(2.14b)

(b,e} are the impact parameter and the azimuthal
angle characterizing the collision between two parti-
cles with velocities V],V3, and b is an operator that
replaces the velocities V] and V3 by those of the res-
tituting collision, V],V3, given by

3/2
P(R))m

FI(1)=n(R]) 2'
P(R))m

Xexp
2

C', (R, )

=n (R 1 )pt ( I),

(2.19a}

(2.19b)

where & is a unit vector in the direction of the apse
line of the (V],V3) collision V]3——V] —V3, and 0. is
the range of the forces. For any function h (V],V3)

b h (V],V3) =h ( V'], V3 )

=h (V]—(V]3.& )&,V3+ (V]3 & )& ) .

(2.1S)

Further, P» is a permutation operator that per-
mutes particle indices 1 and 3 and F](3) is the
single-particle distribution function in the none-
quilibrium steady state

F1(3)=(F(3))„. (2.16)

To determine C(1,2, t) for t (0, we can use the
steady-state condition C(1,2, t) =C(2, 1;—t) and
again apply Eq. (2.12) with particle indices 1 and 2
interchanged. In both cases the solution of Eq.
(2.12) is determined in terms of the equal-time
correlation function C(1,2;0). In Sec. IIB we will
show how C(1,2;0) can be computed.

with P(R, )=[ksT(R~)] ', where ks is
Boltzmann's constant and C](R]) =V]—u(R] ).
The quantities 4],42, are of first, second, etc. order
in the gradients of the hydrodynamic variables
n(R), T(R), and u(R), respectively. 4](1) is given

by

C&, (1)=A;(1) +Pm8; (1), (2 20)
BR]; '

BR]

where the superscripts (i,j) denote (x,y,z) and sum-
mation convention is used. A;(1) and B,J(1) are
solutions of the inhomogeneous, linearized
Boltzmann equations

At(1)Ft(1)A;(I) =Cu Ci ——Ft(1),

(2.218)

AI( 1}Fl(1)Bij(1)= C]'C]j C] Fl(1)I J

(2.21b)
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Further, A;(1) also satisfies the additional con-
straint that

(C~
I
A;(1))t =0, i =x,y, z (2.23)

where we have defined the inner product of two
functions of velocity by

(h (C))
I g (C)))t = JdV)h (C))g (Ct)pt(1)

(2.24)

with Pt(1) given by Eq. (2.19b).
The low-density value of the (local) coefficient of

shear viscosity gz(R~), and the low-density value of
the (local) coefficient of thermal conductivity
A,q(R~), can be expressed in terms of Bij(C~) and

A;(C&), respectively, as

pm ~ij
C);C)J — C&

I
akt(C|) = t)tt(R—, )h,, k,

g T I

(2.25a)

and

p(R|)m
nkvd Ci C& — Aj(Ci)

where 5,j is Kronecker delta function, and Ai(1) is
the linearized Boltzmann collision operator defined
for an arbitrary function g(1) by

At(1)Ft(1)g (1)=J d 3 T(13)(1+P» )

X FI(1)FI(3)g

fies Eq. (2.12), which has the structure of a
Boltzmann equation linearized about a nonequilibri-
um steady-state distribution function F

~
(R&, V|).

Thus, after solving this Boltzmann equation for F&,
equations of motion for C(1,2, t) and subsequently
for the M~p can be derived. For the case of interest
here, when the system is close to a local equilibri-
ums state, either the Chapman-Enskog method, or a
method based on Zwanzig's projection operators"
can be used. Here we will use the latter method
since this method is analogous to the one we will

employ later for a general fluid, in Sec. IV. In
Zwanzig's projection-operator method, a projection
operator P(1) is introduced that projects a function
of R&, V& onto a space spanned by the conserved
variables a (V&) defined by Eqs. (2.9a) —(2.9c). For
convenience we rearrange those functions somewhat
to facilitate the carrying out of the velocity in-

tegrals in the local equilibrium state. That is, in-

stead of the set a (V|), we define a more convenient
but equivalent set of function 1( (C~), a=1,2, . . . , 5,
by

1('~
——m, g2

——mC&„{R& ), g3
—m Ci~(R, ),

Q4 ——mC), {R)), (2.27)

p(R|)m

2
Ci(Ri) ——

2

with Ci(R&) given below Eq. (2.19).
The projection operator we use is the local equili-

brium operator defined by

= —A,g(Ri)5ij (2 25b) P(1)= I tt (1))t(q.(1)
I

(q (1)
I q (1))/

(2.28)

where

2

~ij, kl ~ik~jl +~il~jk 3 ~ij ~kl .

Now the quantities M p(R&,R&,t) are obtained as
follows. The M p are directly related to C(1,2, t)
by means of the velocity integrations indicated in

Eq. (2.8). The correlation function C(1,2, t) satis-

where the I in
I 1( (1))t indicates that the weight

function Pt(1) of the inner product defined by Eq.
(2.24) is in the ket vector. The re1ation between
C(1,2, t) and the M p is then obtained through one
between P(1)C(1,2, t) and the M p(R&, R2, t), which
can be derived with the help of the Eqs. (2.27) and
(2.28), and can be written in the form

I dV2ap(Vz)P(1)C(1, 2, t)=m '
I
1('i)tMpp(R& R2 t)

+m p{Ri)
I 0 )t[Ms,.p(R| Rz t) —u (k)~ p(R~, R2, t)]

+ —,
I $5)t p(R|)M, p(Ri, R2, t) — M p(R|,R2, t)

2m (2.29)

where
u (Ri)

M~ p Map Qi (R] )Mg p+ Mpp

(2.30)

I

In Eqs. (2.29) and (2.30) we have used summation
convention; g;=g„, g„, and g, for i =2, 3, and 4,
respectively. It is important to note that neither the
projection operator P(1) nor the operators appear-
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ing in Eq. (2.12) act on the variables with particle
index 2. By means of Eq. (2.29), we will be able to
convert an equation for P(1)C(1,2, t) directly into
an equation for M & by multiplying by

f dV& I dV2a {V&)att(V2) .

To derive an equation for P (1)C(1,2, t), we write

C(1,2, t) =P(1)C(1,2, t)+Pi(1)C(1,2,t),
(2.31)

where P&(1)=1—P(1), is the projection operator
onto the space of variables orthogonal to the 1( 's.
We now use Eq. (2.12) to derive a pair of simula-

taneous equations for PC and P&C. To do this, it is
convenient to consider the Laplace transform of Eq.
(2.12) which we write as

[z+L(l))C{1,2,z)=C(1,2, t =0), (2.32)

where C(1,2,z) is the Laplace transform of C(1,2, t)
defined by

C(1,2,z) = f dt e "C(1,2, t) (2.33)

After multiplying Eq. (2.32) by P(1) and Pq(1), and

using Eq. (2.31), we obtain

[z+PL (1)P)PC=PC(1,2,0) PLP~—C

(2.35a)

and

[z +PAL (1)Pt]PtC =PIC(1,2,0) PtLPC—.

(2.35b)

By using Eq. (2.35b) to eliminate Pj C, we obtain the
following equation for PC:

with the circumflex denoting a Laplace transformed
quantity, and

L(1)=LO(1)—J d3T(13)(1+P,3)F,(3) .

(2.34)

[z+PL(1)P PL(1)P [—z+P L(1)P ] 'P L(1)P)PC(1,2,z)

=PC(1,2,0)—PL (1)Pt[z+PtL (1)Pi] 'PtC(1, 2,0) . (2.36)

In order to proceed beyond the formal result for
PC given above, we will need to use that the system
is in a steady state close to local equilibrium. We
recall that the Chapman-Enskog solution of the
Boltzmann equation describes a state of a gas with
two well-separated characteristic length scales; one,
denoted by l, is the mean-free path of a gas particle
while the other is the length scale L~, over which
the hydrodynamic variables p, u, and P vary. It is
assumed in the Chapman-Enskog solution that
l &&L~. It is this separation of microscopic and
macroscopic length scales that permits a derivation
of the hydrodynamic equations from the Boltzmann
transport equation. We will consider fluids with
gradients such that this applies to the case of in-
terest here, and use this separation of lengths scales
to simplify the equation for PC(1,2,z), Eq. (2.36).
To do this, we note that the linearized Boltzmann
collision operator appearing in L(1), Eq. (2.34), is
of the order or magnitude cl ', where c is a charac-
teristic average velocity, the velocity of sound, for
example, and l is the mean-free path -(na )

while the gradient term Lo(1), in Eq. (2.34), is of
order cLq ' when it acts on a hydrodynamic vari-
able and is, therefore, much smaller than the col-
lision operator. Consequently, we will be able to ex-

pand PjL(1)P& in powers of the gradient operator
Lo(1). To be specific, we first write the collision
operator

f d 3 T(13){1+P)3)F&(3)=At(1)+Av, (1)

+ 0 ~ ~ (2.37)

At(1)= f d3T(13)(1+P)3)Ft(3), (2.38a)

Av, (1)=I d3 T(13)(1+P~3)Ft(3)@)(3),

(2.38b)

and so on, where F~ is given by Eq. (2.19a), and 4&
by Eq. (2.20). Unless AI acts on a function of the
form Ft(1)g;( I) when it gives zero, it is of the order
of magnitude -cl ', while A~ is of order cLq'.
Further, for the light-scattering experiments we
want to describe, we will only be interested in varia-
tions of the correlation functions M & over hydro-
dynamic time scales, tH -Lq/c, long compared to
the mean-free time, so we consider the Laplace vari-
able z to be of order -c/L~, also.

If we now apply these remarks to the operator
P&[z+P&L(1)Pj] 'Pz appearing in Eq. (2.36), we
see that it has an expansion in powers of l/L~,
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Pi[z+PiL(1)Pi] 'Pi= P—iAi 'Pi P—iAi 'Pi[z+PiL0(1)Pi P—iAv Pi]PiAi 'Pi+ . (2.39)

Here we have used that P~AIP& ——AI, since P(1) projects onto the space of eigenfunctions of AI(1) with zero

eigenvalue, and that PyA] Py is a well-defined operator, since Pz projects onto a subspace that is orthogonal
to that of the zero eigenfunctions of AI(1). Upon inserting this expansion Eq. (2.39) into Eq. (2.36), and col-

lecting terms, we find that PC(1,2,z) satisfies the equation

z+PV]. P+PV]. P&Ai Pz V]- —A~, P+ . . PC=PC(1, 2,0)+ .
aR] aR, aR,

(2.40)

where we used that AIPC=O. On the left-hand side of Eq. (2.40) we have retained only the terms of order
eL~ ' and of order cL~ '(1L~ '), neglecting terms of order cL~ '(1L~ ') and higher. On the right-hand side
we have neglected all the terms proportional to P&C(1,2,0). These are of order 1L~ and higher since
PL(1)-O(Lv ) and [z+PiL(l)Pi] -O(l). Although it is not yet obvious at this point why these various
terms can be neglected, we will show in paper II, Appendix B, subsection II that they lead to less important
contributions to the light-scattering spectrum than the terms we retain.

It is now a straightforward matter, albeit a lengthy one, to convert Eq. (2.4) for PC to a set of five coupled
equations for M p(R],R2,z), i.e., the Laplace transform of M~~(R], R2, t). To do this, one uses the Laplace
transform of Eq. (2.29) to obtain a relation between PC and M p, and then takes the inner product of Eq.
(2.40) with respect to the five a or equivalently the five i( 's defined by Eq. (2.27). Using the relations

PmCi
Pi(1)

~

1)/=Pi(1)
~

Ci;)/=Pi(1)
2 2 1

(2.41a)

C2
P (1)

i C„C, .) = C„.C, —5J
I

(2.41b)

f3m C,
Pi(1) C];

2 2, l

T

PmC,
C];

2 2
(2.41c)

C, PmCi
C] C]J 5 J Ak C]

3 I 2 2 I
BJk

——0, (2.41d)

+

the derivation of equations for M p(R], R2,z) is straightforward. %e merely quote the results.
The equations for M ~(R],R2,z) are as follows.
(a) For a=p:

zMpp + Mg p Mpp( R] R2 t 0)
li

(2.42a)

(b) for a=g;:
n

zMg p+
aR]J

ap
5gJM;& +Pu; Mu .P+ ~J™g

.".p
a a

=Mg p(R], R2, t =0)+ gpss, ~ k) M„,p+aR, iJ' aR, "' aR, .

a&, a~,
M~p+ Mpp 2 D,J

— Da

(2.42b}
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(c) for a=@':

B Bh » Be
zM p+u; M~p+ Map +MI, p +h M p

li BE .P li R li li

B B BT " BT
=Mgp(Ri, Rp, t =0)+ Ag Mgp+ MppR li li

P

B

BR„.
B~B B~ BT

M;p+ Mpp

5J B
+4ga Dij — DII M„p+ 2D

3 BR„.
Bq, B~,

Mpp+ M, p DIJ — DII (2.42c)

Here we have defined M„p by

M„p—— [Ms p
—u;(R) )Mpp]

p(R))

and used the notation

(2.43a)

Bu; Bu)

2 BR, . BR„.
(2.43b)

C. Discussion of Eqs. (2.42)

The hydrodynamic equations for the M p given

by Eqs. (2.42a) —(2.42c) can be put in a simple ma-
trix form as

zMN p(R~, R2,z) =Hay(R~ )Myp(Ri, R2,z)

+M~p(Ri, R2, t =0), (2.44)

where H~y(R&) is an evolution matrix defined by

The subscripts i,j,k, l, represent x,y,z coordinates
and summation convention has been used. The
thermodynamic quantities appearing in Eqs.
(2.42a) —(2.42c) are the local pressure

p(Ri) =n(Ri)k~T(R&), the local energy density

e(Ri ) = —,n (R) )kg T(R) ),
and the local enthalpy density h (Ri ) =e(R~ )

+p(R&). These quantities depend on position as in-

dicated. The transport coefficients appearing in

Eqs. (2.42b) and (2.42c) are given by Eqs. (2.25a)
and (2.25b).

The (average) hydrodynamic variables p, u, and
T occurring in the Eqs. (2.42) are determined by the
Navier-Stokes equations as follows from our as-
sumption that the Chapman-Enskog solution of the
Boltzmann equation describes the nonequilibriurn
steady state.

Eqs. (2.42a) —(2.42c). We note that Eq. (2.44) is

linear in the M p but the elements of the matrix of
coefficients H~y(R&) are not simply gradients with

constant coefficients, but gradients with coefficients
proportional to local thermodynamic functions,
transport coefficients, and their various derivatives

that all depend on the point R&. In order to inter-

pret Eqs. {2.42) or (2.44), we note that small macro-

scopic deviations 5p, 5g, 5e of the mass, momen-

tum, and energy densities from their nonequilibri-

um steady-state values satisfy equations that can be
derived from the nonlinear Navier-Stokes equations

by linearizing these equations about the steady state.
These linearized equations read

Bt
5aa{R]t) =Hay(R~ )5ay(R&t) (2.45)

where the 5a {R~t)=(6p,6g, 6e). Thus, both the
small deviations of hydrodynamic variables about
their nonequilibrium steady-state values, and the
correlations of fluctuations about steady-state
values described by M p(R&, Rz, t), satisfy the same
set of hydrodynamic equations with the same evolu-
tion matrix H y{R~). This may be regarded as a
generalization of the Onsager regression principle to
nonequilibrium steady states. By assuming the va-
lidity of this generalized Onsager principle, Keizer'
obtained a set of Langevin equations for the fluc-
tuations of hydrodynamic variables about their
nonequilibrium steady-state values, which have a
form identical to Eq. (2.45) except that there is an
additional "fluctuating force" term on the right-
hand side of Keizer's equations and the H y(R&)
given in this section is the low-density limit of
Keizer's evolution matrix. In Sec. IV we will sketch
a derivation of this evolution matrix for a more
general fluid which gives a result identical to that
postulated by Keizer. '
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Now, having derived the equations of motion for
the M p that we need for a dilute gas, we turn our
attention to the calculations of the equal-time corre-
lation function M p(R~, R2, t =0) in the nonequili-
brium steady state that is needed for the solution of
Eq. (2.44).

III. HYDRODYNAMICLIKE EQUATIONS
FOR THE EQUAL-TIME CORRELATION

FUNCTIONS: KINETIC THEORY

A. Relation to nonequilibrium distribution functions

The equal-time values of the M ~ are defined byI p(R&, Rz, t =0)=f dU& f dVza (V&)a)t(Vz)

X C{1,2, t =0),
(3.1)

where C(1,2,0) is the equal-time correlation func-
tion defined by Eq. (2.10) with t =0. That is,

and

D p(R&, Rz)= f dV~ f dVqa (V&)a~(Vz)

XG2(1,2) . (3.7b)

A~P(R), R2) =A~P I(R],R2)+A~P P (R),R2)+

(3.8)

with

A~P, (=~(R]—R2)

)& f dV&a (V~)a~(V~)FI(1),

A~P P
——5(Ri —R2)

&( f dV(a {V))ap(V))F1{1)4)(l),

(3.9a)

(3.9b)

To determine the A p, we expand F&(1) in powers
of the gradients by using the Chapman-Enskog
solution of the Boltzmann equation given by Eq.
{2.18). This leads to

C(1,2, 0)= (5F(1,0)5F(2,0) )„. (3.2) and so on. For D ~(R&,R2) one needs G2(1,2).

We can relate C(1,2,0) to the one- and two-particle
distribution functions in the steady state by means
of Eqs. (2.7) and (2.16) as

B. Kinetic equation for the pair-correlation
function

C {1,2,0)= ([F(1)—(F(1))„]
X [F(2)—(F(2) )..]).,

=S(1—2)F, (1)+G {1,2) .

where G2 is the pair-correlation function

G2(1 2)=F2(1 2)—F)(1)F&(2)

(3.3)

(3.4)

The nonequilibrium pair-correlation function

G2(1,2) has been studied by a number of authors
using the techniques of the kinetic theory of
gases. "' ' ' ' If the density of the gas is suffi-

ciently low, and if we are interested in determining

G2(1,2) for R]2 &&o, then 62(1,2) satisfies the
equation

and F2(1,2) is the two-particle distribution function
defined by

Fq(1,2)= g 5(1 —x;)5(2—xj ) (3.5)

The equal-time value of the M ~ can then be ex-

pressed as

MaP{Ri ~ R2,0)=A +P{Ri ~ R2) +DaP{Ri ~ R2) ~

(3.6)

where

A~P(R], R2) =5(Ri —R2)

)& f dV&a (V&)ap(V&)F&(1)

(3.7a)

[I.(1)+l.(2)]Gp(1,2)=T(12)F)(1)F)(2), (3.10)

where the binary-collision operator T(12) is defined

by Eq. (2.13b), and L(1) by Eq. (2.34). Equation

(3.10) takes into account that for low densities par-
ticle correlations are established by means of binary
collisions among the particles, as described by the
T{12)E&F& term on the right-hand side of Eq.
(3.10). These correlations are propagated in the
fluid by the free-streaming of the colliding pair of
particles as described by the Lo(1) and Lo(2) opera-
tors on the left-hand side of Eq. {3.10), and by ran-

dom collisions of the particles 1 and 2 with other
particles in the fluid, described by the collision
operator contributions to L (1) and L (2).

If we now combine Eqs. (3.3) and (3.10), we see
that the equal-time correlation function C(1,2,0) is

given at low densities by the equation
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C(1,2, 0)=5(1—2)Fi(1)+[L(1)+L(2)]

X T(12)Fi(1)Fi(2) . (3.11)

The second term on the right-hand side of Eq.
(3.11) cannot, in general, be neglected compared to
the first, even at low densities, since one can show
that for the case of interest here the two terms are
of the same order of magnitude. " In fact, in these

papers we will see that the most important correc-
tion to the equilibrium dynamic structure factor for
small wave numbers k, comes from the nonequili-
brium pair-correlation function Gz(1,2).

C. Hydrodynamiclike equations
from the kinetic equation for 62(1,2)

Having obtained an expression for the pair-
correlation function Gz(1,2), we now turn our at-

tention to the calculation of D p(R&, Rz) given by
Eq. (3.7b). Since D & is simply a projection of
Gz(1,2) onto the hydrodynamic subspace defined by
the ~g ), given by Eq. (2.27), we can adopt the
same projection-operator method to determine the
D ~ as we did for the M p. However, we now need

to consider projection operators acting on both par-
ticle indices 1 and 2, since two dynamical operators,
L (1) and L (2), appear in Eq. (3.10) for Gz{1,2).
This is in contrast to Eq. (2.32) for C(1,2,z) where

only L(1) appears. We are, therefore, forced to
consider a set of four simultaneous equations for
the quantities P(1)P(2)Gz(1,2), Pi(1)P(2)Gz(1,2),
P(1)P&(2)Gz(1,2), and P, (1)P~(2)Gz(1,2). These
equations can be derived by applying the products
P(1)P(2) P(1)Py(2) Pi(1)P(2), and Pi(1)Pi(2)
successively to Eq. (3.10) for Gz, and by writing Gz
in the form

Gz( ) =P(1)P(2)Gz(1 2)+P(1)Pi(2)Gz(1 2)+Pz(1)P(2)Gz(1&2)+Pi(1)Pi(2)Gz(1 2) (3.12)

We then solve three of these simultaneous equations so as to express P(1)P&(2)Gz, Pz(1)P(2)Gz, and

Pz(1)P&(2)Gz(1,2) in terms of P(1)P(2)Gz(1,2). These expressions are then inserted in the equation for
P(1)P(2)Gz to obtain a closed equation for this function in terms of T(12)F&(1)F&(2)~ As for the case dis-

cussed in the previous section, we order this equation in powers of the gradients {or 1/L~) and keep only the
terms of order cL ~

' and cL ~ '(1/L~). The resulting equation for P(1)P(2)G(1,2) is then found to be

(1+Piz) P(1)Vi' +P(1)Vi Pi(1)Ai (1)Pg(1) Vi' —Aq (1) P(1)P(2)Gz(1,2)
BRi BRi BRi

=P(1)P(2)T(12)(1+Piz)FI{1)FI(2)4)(1). (3.13)

The right-hand side of Eq. (3.13) is obtained by using the Chapman-Enskog expansion of F&, Eq. (2.18), the
relation T(12)FI(1)FI(2)=0 and retaining only the terms proportional to 1L z in the expansion of F&. In pa-
per II we will show (see Appendix B, subsection II) that the higher-order terms in this expansion can be
neglected.

We can convert Eq. (3.13) into a set ofhgdrodynamical equations for the D p by multiplying this equation

by g (1)A/2) and integrating over V& and V2. In so doing, we will need the identity

f dV~ f dVgg-(1)gp(2)T(12)(1+P, p)F~(1)F (21)C&~(1)

= —5(R~ —Rp) f dV ~Q-(1)fp(1)A((1)F~(1)4~(1), (3.14)

which may easily be proved using that the Ig~j are conserved quantities in binary collisions. " Using also
Eqs. (3.14), (2.37), (2.38a), and (2.38b), we obtain the following equation for P(1)P(2)Gz(1,2):

f dV
& f dV2$. (1)Pp(2)(1+P&p) P(1)V& +P(1)V& Pz(1)AI 'Pz(1) V~ —Av

BRi BRi BR)

z

)&P(1)P(2)G2(1,2)= n(R')5(R' ——R2) Q~(1)pp(1) C';
pmC, 5 5lnT

2 3R„.

+ (g (1)peal) ~
pm(C„C, ——,5; C, ))I3" M,

(3.15)

The opera«rs on the left-hand side of Eq. (3.15) are, apart from the permutation operator P&z, identical to
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those appearing on the left-hand side of Eq. (2.40) for PC. Therefore, the analysis of Eq. (3.15) can proceed in
the same way as that for Eq. (2.40): one has to carry out all the indicated innerproduct integrals, and relate
some to thermodynamic quantities and others to expressions for transport coefficients as given by Eqs. (2.25a)
and (2.25b). As a result, we can immediately write the hydrodynamic equations for D p as

H&y(R1 )DyP(R1& R2) +HPy( R2)D&y( R1&R2)

2PmC, 5 al T=n {R1)5(R1—R2) a~{1)ap(1) Ci;
2 2 BR„.

+ a (1)a~(1) Pm(C~;C, ~
——,5;JC, )

BR,J
(3.16)

Here H is the evolution matrix defined by Eq. (2.44)
with matrix elements given by Eqs. (2.42a) —(2.42c).

Equations (2.44), (3.7a), (3.7b), and (3.16), togeth-
er with the definitions of the H p in Eq. (2.42), pro-
vide us with a complete description of the hydro-
dynamic fluctuations for a dilute gas maintained in

a nonequilibrium steady state. In the following sec-
tions we will generalize the ideas and methods used

here to derive a set of equations that are valid for a
fluid of arbitrary density and that reduce to those
given here in the limit of low densities.

will expand the N-particle distribution function
Fz(x ), which satisfies the Liouville equations,
about its value at local equilibrium in powers of the
gradients of the hydrodynamic variables. The re-

sulting distribution function will be used to corn-

pute ensemble averages in the non equilibrium
steady state. Then using a projection-operator
method similar to that used in Sec. II, we will be
able to derive equations of motion for the
M~P(R1, R2, t).

We begin by defining the Liouville operator Lz
for the system (neglecting interactions of the parti-
cles of the system with the walls) as

IV. HYDRODYNAMICLIKE EQUATIONS
FOR THE UNEQUAL-TIME CORRELATIONS

FUNCTIONS: GENERAL FLUID

N N

L~(x )= g Lp(i) —g OJ, (4.1)

A. Formulation of the problem

In this section we will show that the hydro-
dynamic equations obtained in Sec. II for
M p(R1,R2, t) for dilute gases, Eq. (2.42), apply to a
fluid of arbitrary density as well. The only differ-
ence between the equations in Secs. II and IV is that
for a general fluid the bulk-viscosity coefficient is
not zero and that the other transport coefficients
and the thermodynamic quantities have to be re-
placed by their values for a general fluid. This im-

plies then that also for a general fluid the Onsager
regression hypothesis can be generalized to none-
quilibrium steady states (cf. Sec. II), i.e., the equa-
tions of motion for M~p(R1, R2, t) can be obtained

by a linearization of the Navier-Stokes equations
about the steady state.

As before, we consider the fluid to be in a none-
quilibrium steady state close to local equilibrium.
We will apply the idea of the Chapman-Enskog
method, used in p space to construct solutions of
the Boltzmann equation, to obtain a similar solution
of the Liouville equation in I space. That is, we

with

Lp(i) = v;- V'-, (4.2a)

and

i3vJ
(4.2b)

+L~(x1, . . . , x~)FN(x1, . . . , xz, t)=0, (4.3)

while any function of the phase variables
a(x1, . . . , xz, t) satisfies the equation of motion

da(x1, . . . , x~, t)
=L~a{x1,. . . , x~, t),

dt
(4.4a)

with formal solution

In general, the distribution function for the system
F~(x1, . . . , x~, t) satisfies Liouville s equation
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tL
a(xl, x2, . . . , xz, t)=e a(x&, . . . , x~, t =0)=a(xi(t),x2(t). .,x.tt(t), t =0) . (4.4b)

tL~
Here the time evolution operator e acts on the phases x in the function behind it and replaces them with
their values a time t later .In the nonequilibrium steady state, the Ngarticle distribution function
F~(xi, . . . , x~) is independent of time and the correlation functions M p(Ri, R2, t) defined in general by Eq.
(2.2), can be expressed as

M tt(R&, R2, t)=M tt(R&, t;R2, 0)= J dI Fz(x )5att(Rz)e "5a (R&)

= J dI 5a (R&)e Fz(x )5att(Rz), (4.5)

where dI =g~ (N!) 'dxl . dx~, i.e., we consid-

er grand-canonical-ensemble averages where only
the average number of particles is fixed. In writing
the second equality in Eq. (4.5), we usai Liouville's
theorem, neglected interactions of the walls with the
fluid and denoted 5a (R;,t =0) by 5a (R; ). We as-
sume that the system is close to local equilibrium
and the distribution function F~(x ) can be ex-

panded in powers of the gradients of the hydro-
dynamic variables as

(4.6)

P Qp PQ~ge"
FL(x )=

dI e" (4.9)

where

I

where (a (R))t „ is the average of a (R) in the
steady-state local equilibrium ensemble with distri-
bution function given by Eq. (4.7a). For the case of
interest here, with the a&(R) given by Eq. (2.4) and
the corresponding y (R) given above, the local
equilibrium distribution function has the explicit
form

(4.7a)

Here the a 's are given by Eqs. (2.4a) —(2.4c) with
t =0, summation convention is used, and the quan-
tity y~ is defined by

y ea =f dRy (R)a (R) . (4.7b)

The y are the thermodynamic variables conjugate
to the (a ). If we denote the set Ia I by (p, g, e)
then the set of conjugate (local) variables Cy I is
given by I Pp Pu /2, 13—u, —P), where p is the lo-
cal chemical potential. The values of the y~ are
determined by the condition

(a (R))=(a~(R))L„, (4.8)

Here FL'(x ) is the I -space local equilibrium distri-
bution function in the steady-state ensemble, and

F~ is the first correction in the expansion of Fz in
I

terms of the spatial gradients in the system. In the
next section we will discuss the explicit structure of
F~, but this is not needed for the calculations in

this section.
As was the case with the low-density theory

developed in Secs. II and III, the properties of the
local equilibrium distribution function will be used
extensively in deriving the equations for the M ~
for a general fluid. The local equilibrium distribu-
tion function for a system of X particles is given by

e'(R)=e(R) —u(R) g(R)+ —,p(R)u (R) .

(4.10)

This is clearly a generalization of an equilibrium en-

semble to the case where there is a position-
dependent temperature, chemical potential, and
nonzero flow velocity in the fluid.

B. I -space projection operator

As was the case in the low-density theory in Sec.
II, we will construct equations of motion for the
M ~(R&,R2, t) from a fundamental dynamical equa-
tion, which is in this case closely related to the
Liouville equation, by means of a suitably chosen
projection operator that directly relates the M~p to
the solution of the dynamical equation. For the
case of low densities, the basic dynamic equation is
the Eq. (2.12) for the time-correlation function
C (1,2, t). The relation between the M p and
C(1,2, t) is given by Eq. (2.11), and the appropriate
projection operator that is used to convert Eq. (2.12)
to an equation for the M p is defined by Eq. (2.28).

For the general case of interest here, it is con-
venient to start with the dynamical equation for the
quantity e "F&5att(Rq) since it appears in Eq.
(4.5). The Laplace transform of e "F~5a~(R2)
given by
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yields the basic equation

(z+L~)F~5ap, (R2) =F~5ap(R2) .

{4.11)

(4.12)

F&5ap, (Rz) =f dt e "e "Fz(x )5a p(R2) We now introduce a I -space local equilibrium pro-

jection operator P that projects an arbitrary func-

tion FI"h {x ) onto the space of conserved densities

a . This projection operator is the I -space analog

of the p-space projection operator used in Sec. II
and is defined as'

PFL»h (x )=FL'(h (x ) ~L„»+Fr. 5a (R)e e (5ap(R')h (x+))L„.
5(ap(R'))L „ (4.13)

5(ap(R))t „=(5ap(R)5a (R'))t. „
5y~(R ')

(4 14)

that can easily be proved using Eq. (4.7). Further,
from Eq. (4.14), it follows that 5y (R)/
5(ap(R ))t & in Eq. (4.13) is just the normalizing
factor (5a (R')5ap(R))t,',.

In order to proceed with the derivation of equa-

tions for M~p(Ri, Rz, t), we first note the following

relation between the projection operator and the La-
place transform of M p.

Here summation convention is used and

5y (R)/5(ap(R'))L „denotes a functional dif-
ferentiation. One can check that P is a projection
operator, i.e., that P =P, by using the identity

f dl Ft't5ap, (R2)=0 .

Equation (4.15) and the relation

f dl'5a&(R~)PF&5ap, (R2) =M&p(R~, R2,z)

(4.16)

together with the projection operator P will be used
next to derive hydrodynamiclike equations for
M~p(Ri, R2,z).

To develop the projection-operator equation for
PF~5ap„we apply P and Pj ——(1—P) successively
to Eq. (4.12). This leads to the two equations

zPF~5a p, (Rq) +PL~PF~5a p, (R2)

+PL@PgF~5ap, (R2) =PF~5a p(R2) (4.17a)

ya{R)
PF~5a p, (R2) =Fr".5a (R)e

5(ay(R ') )L„„

4 Myp( R y R2yz) (4.15)

and

zPj F&5ap, (R2)+P&L&P&F&5ap, (R2)

+PgL~PF~5a p, (R2)=Pj F~5a p(Rp) . (4.17b)

where M&p(R ', R2,z) is the Laplace transform

of M&p(R', Rz, t). In giving Eq. (4.15), we have

used Eq. (4.13) and that

After solving Eq. (4.17b) for P&F&5ap, in terms of
PF&5ap, and inserting the result into Eq. (4.17a),
we obtain an equation for PF&5ap„similar to Eq.
(2.36), of the form

[z +PLOP PL&P~(z +PAL—zPz) 'P~L&P]PF&5a p, (R2) =PF~5a p(R2)

—PL~Pg(z +PgL~P j ) 'PgF~5a p(R2) . (4.18)

As in the low-density case, we order the terms appearing in Eq. (4.18) in powers of (1L~ ') where 1 is a length
that characterizes the range of the microscopic correlations between the particles in the fluid. To obtain expli-
cit equations for the M p, we multiply Eq. (4.18) by f dl 5a (R, ) and use Eqs. (4.15) and (4.16), and

(5a (R~) )L, „——0 to obtain

zM~p(Ri, R2,z)+E~p(Ri, R2,z) —N~p(Ri, R2, ) =Map(Ri, R2, t 0)

where

(4.19)

5y~(R3)
Eap(R1 R2 t) = dI 5a (R& )L&5a (R3)FL'(x ) + +M&p(R4, R2,z)

5(ar(R4) )L»
(4.20a)
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and

N p(R&, R2,z)= — I dI [PjL&5a (R, )](z+P~LzPz) 'P&L&FL'5a (R3)

5y (R3)
+Myp(R4, R2,z) .

5(a (R4))L „ (4.20b)

L&5a (R)=— J;(R),
BR;

where the J;(R) are microscopic fluxes. For the
explicit expressions of J;(R) we refer to the litera-
ture. As an example, we quote:

L~5p(R) =— g;(R),
R

Here we have used that the adjoint of P is
P =(FL') 'PFL' and we have neglected the second
term on the right-hand side of Eq. (4.18), which is a
gradient dependent correction to the initial condi-
tion term M p(Ri, R2, t =0) that can be dropped for
reasons to be discussed in paper II. The terms
E p(R&, R2,z) are proportional to the first power of
the spatial gradients acting on M p and represent
the nondissipative, or Euler, contributions to the
hydrodynamic equations for the M ~, while the
terms N p(R~, R2,z) are proportional to the second

powers of the spatial gradients acting on M p and
represent the dissipative or Navier-Stokes terms in
the hydrodynamic equations for the M p. To see
this, one need only use that

where g(R) is the mass flux.

C. Hydrodynamiclike equations
for the unequal-time correlation functions

To obtain explicit equations for M p(R&, R2,z)
from the formal equations given by Eqs. (4.19) and
(4.20), one orders the terms in Eq. (4.19) in powers
of (lL q

' ). Provided we consider fluids that are not
close to their critical points, l will be on the order of
the range of the forces for a liquid, while for a gas, l
is on the order of a mean-free path. Since the cal-
culations to O(l) are straightforward and can be
found in the literature for the special case of an
equilibrium fluid, we will not give the details here
but merely quote the results.—+ —+

The equations for M p(R&, R2,z) are as follows.
(a) For a=p:

+ +

zMpp + Mg. p Mpp( R] R2 t 0)
BR„

(4.21a)

(b) for a=g;:

B Bp Bp
zMg p+ 5jj Mpp+5jj Mg p+pQjMg p+ Dj Mg pBR„Bp, B~

B B=Ms p(R, ~R~~t =0)+ (v1&,.J. ki+g(pn) ~~ p

+2 B

BR ij

Bg - Bg - 5J
Mpp+ M~p Dv — Dll

Bp BE 3

B

BRij pp+ e'p jj II i (4.21b)
Be P Be. ' .p ~ P



T. R. KIRKPATRICK, E. 6.D. COHEN, AND J. R. DORFMAN 26

(c) for a=@':

a - aI - » aI - » - aEzM~p+"
a M'p+

a M~pa . +
a M'~aR .

™paR . +haR . M'pR li p &
R li ~

p li li li

a a=M, p(Rl, R2, t =0)+ A,

aRl; aRl;
Mpp+ M;p

p 6
r

aRl;
aA, aA, A aT 5;J A

Mpp+ M;p +2 2t} Dij — Dtt +(6ijDtt M„p

+2D,J

r

a& - a& - ~;, ag - ay
M&p + Mg p Dtj'DII +Dii

ap , a~ 3 ap , a~
M p+ Mgp DII .

(4.21c)
In these equations p, u, T, p, e, It, t}, g, and A, are the pressure, flow velocity, temperature, mass density, ener-

gy density, enthalpy density, shear viscosity, bulk viscosity, and heat conductivity, respectively, at the point Rl
and M, p and M„p are defined by the equations [cf. Eqs. (2.30) and (2.43}]:

M„p(Ri, R&,z) = [Ms p(Ri, Rz, z) —u;(Ri)M&p(Ri, Rz,z)],
p(R, )

2

M, p(Ri, R2,z)=M,p(Ri, R2,z) —u;(R, )Ms p(Ri, R2,z)+ (Ri)M&p(Ri, Ri,z) .

(4.22a)

(4.22b)

Further, local Green-Kubo expressions have been
used for the transport coefficients t}, g, and i(..
Since they are used in deriving Eqs. (4.21), we give
them here for reference. Denoting the set of micro-

scopically conserved densities by jp, g, e], the corre-
sponding set of microscopic currents are Ig;, t j,sJ
with g; the mass flux, t;J the momentum flux, and s;
the energy flux. The local Green-Kubo formulas
used in deriving Eqs. (4.21) are

I r JdRiI~ j——(Ri) .

Further, the angular brackets ( )0 R denote an

average over a position-dependent distribution func-
tion, Fo(x

~
R, ) that has the form of a total equili-

brium N-particle distribution function except that
the temperature, chemical potential, and mean velo-

city depend parametrically on the position Rl in the
fluid, i.e.,

lim ( Tk; (R„z}Tjtr )o -„
kgT(R;) &

9( 1 )~ik jt +0(Ri)biklijl

y fRI)a
Fo(x

i
Ri)=

drey ('I) -, T
(4.24)

lim (S (R, ,z)Sj r )0 R
=A,(R, )5;

{4.23b)

with

and

S; =S; uJTP (4.23c)

(S TTk;(Ri, z))0-„=0 . (4.23d)

In Eqs. (4.23), T,J(Rl)=P t,J(Rl):—Ig J(Rl), SJ{Rl)
P SJ{Rl )

—=I, j(Rl ), I J(Rl Z) (Z LQ )

XI j(Rl ), and

with a r ——J dR a~(R). The position-dependent
distribution function Fo(x~~ R, ) appears naturally
in the derivation of the hydrodynamiclike equa-
tions, Eqs. (4.21), when one expands the y (R) in
the local equilibrium distribution function Eq.
(4.7a), about their values at the point R l.

Comparing Eqs. (2.42) and (4.21), it is clear that
they differ only in that the values of the thermo-
dynarnic and transport quantities that appear in Eq.
(4.21) are replaced by their low-density values (in-
cluding (=0) in Eq. (2.42). Equation (4.21} has
also been derived by Brey, who used a method
based on a different projection operator.

Again, as in the low-density case, Eqs. (4.21) can
be put in the general matrix form
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zMap(R], R2,z) =H~y(R) )Myp(R), R2,z)

+M p(Ri, R2,0), (4.25)

where the matrix H can be obtained from Eqs.
(4.21). To complete our calculations of
M p(R~, R2,z), we will have to solve Eq. (4.21) in

terms of the equal-time correlation functions
M p(R&, R2, t =0), and in Sec. V we show how these
functions may be computed.

V. EQUAL-TIME CORRELATION
FUNCTIONS FOR A GENERAL FLUID

A. Formulation of the problem

To obtain the equal-time correlation function
M p(R], R2, t =0)=M p(R], R2), we need to deter-
mine the explicit form of the nonequilibrium
steady-state distribution function F~ (x ), since
M p(R&, Rz) is given by

M p(R„R2)= (5a~(R&)5ap(Rz) )»

=f dl 5a (R&)5ap(Rz)F&(x ) . (5.1)

We shall first give a normal solution to
Liouville's equation for Fz(x ) in the form of the
sum of the local equilibrium distribution function
Fz' given in the previous section and a correction
term proportional to the gradients of the hydro-
dynamic quantities. We then indicate how one can
determine the explicit form of the M p(R], Rq) by a

(5.2)

where Fz' is given by Eq. (4.7) and I; below Eq.
(4.23). With the aid of this expression for the distri-
bution function, we can compute the equal-time
correlation function M p(R],Rz).

We begin by writing M p(R],R2) as

M~p(R], Rp) =A ~p(R], R2) +D~p(R], R2)

(5.3a)

with

and

A p(R), R2)=(5a (R))5ap(R2))t. „ (5.3b)

generalization of the mode-coupling methods
developed for systems in equilibrium' ' to systems
in a nonequilibrium steady state. This will lead to
a set of hydrodynamiclike equations for the
M p(R],R2) that are the extension of Eq. (3.16) to
the case of a general fluid.

The formal solution of Liouville's equation for
Fz(x ) is obtained by a systematic but formal ex-

pansion in powers of 1/Lz where l is the correlation
length discussed earlier and L& is a hydrodynamic
gradient length. If we neglect terms of 0 [(1/Lv ) ],
the F~(x ) can be determined by a number of tech-
niques given in the literature. " To O[(l/Lv)],
the result is

Fz'(x ) =Fr'(x ) f dt—e Ft"(x )I

3y;(R)
D p(R&, R2)= —f dr(5a (R&,r)5ap(R2, r)Ir, (R))t. „e

I

(5.3c)

where

5a~(R],~)=e "5a~(R] ) . (5.3d)

B. Hydrodynamiclike equations for D,~

Since the quantities D p(R], R2) vanish in an
equilibrium ensemble, they are proportional at least

The quantities A p(R&, R2) are the analogs for a
general fluid of those defined by Eq. (3.7a). They
may be readily computed, as they are equa1-time
correlation functions in a local equilibrium ensem-

ble. In particular, one can expand Fz' about the
reference ensemble Fo (x

~

R~) and use this expan-
sion to produce a gradient expansion of A p(R~, R2).
As shown in the next paper, we will, in fact, only
need the lowest-order term for the application to
light scattering.

I..py(R, ,R,,R,r)

=(5a (R„r)5ap(R„r)I~,(R))~„. (5.4)

To determine the behavior of I with time ~, we use
a simple extension of the method of Ernst et al. ' '
We will only give the results and refer to the litera-
ture for the details.

The main result that we need is that
I pz(R], R2, R,~) is given by the expression

I

to the gradients of the hydrodynamic quantities.
They are the analogs of the quantities D p defined

by Eq. (3.7b), and they are responsible for the long-
range correlations contained in M p(R],R2). As in
Sec. III, we show here that the D p satisfy a hydro-
dynamiclike set of equations.

First, we consider I p& defined by
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I p&(R~, R2R r) =( [[e ' ] s5as(R&)] [[e ' ]+a,(R2)]I&,(R) )L, „, (5.5)

where H(R) is the hydrodynamic evolution matrix
defined by Eq. (4.21). It is worth noting that this
result of mode-coupling theory is equivalent to the
replacement of the exact microscopic value of
5a (R,s),

5a (R,w)=(exp'&)5a (R)

by a hydrodynamic approximation

5a (R,r) =[exprH(R)]~p5ap(R) .

Such a replacement can only be understood if one
replaces the exact values of the microscopic densi-
ties at point R] by suitably defined coarse-grained
densities. Then one can reasonably assume that al-

though the microscopic densities evolve in time ac-
cording to the microscopic dynamics, their coarse-
grained counterparts evolve through hydrodynamic
processes. The method of Ernst et al. ' is designed
to provide a plausible foundation for the replace-
ment of microscopic evolution by hydrodynamic
evolution in the computation of time-correlation
functions like those discussed here.

To obtain the desired hydrodynamic equations
for D p, we differentiate Eq. (5.4) with respect to
time (~), and multiply the resulting expression by

BV&(R)
d74

BRi

so as to obtain

H&( R] )D&p( R]& R2) +Hp&( R2)D&&( R] & R2 )

= (5a (R, )5ap(R2)Ir;(R) )L «

By (R)
BR

(5.6)

by

V 5(Ri —R2)(5a~r5apzIr, r)0 a +O(V ) .

The quantities 5a T and 5apT are defined in a
manner similar to that for I&,T. The resulting
equation for D p(R],R2) is then

Consistent with our Navier-Stokes approximation
for F&, we can expand the local equilibrium
steady-state average on the right-hand side of Eq.
(5.6) about the reference ensemble, Fo«(x

~

R~). In
the same approximation we can replace

Iy (R)e By&/BR; by I&,.TBy (R] )/BR ]; where I& iT
is defined below Eq. (4.23) and we replace

(5a (R&)5ap(R2)I&,T)0 z

H&&(R] )D&p(R],R2)+Hp&(R2)Day(R»R2)

By&(R] )
=5(R]—R2)(5a~T5a pTIy, .T)o ~

li

B lnT(R]) Bu;(R])
=5(R) —R2) (5a~z5a»Sr), -„P +(5a~r5aprT;, ,r)o -„P , (5.7)

where

1
(5a~z5apzI&, z)o -„=—(5a z5apzIr;r)o -„

(5.8)

and we have used that [Iz,r] = [O, TJT,ST] is. de-
fined below Eq. (4.23) and S T by Eq. (4.23c).

We remark that Eq. (5.7) is the analog for a gen-
eral fluid of Eq. (3.16) derived for a dilute gas using
the kinetic equation (3.10) for the pair-correlation
function G2(1,2). Equation (5.7) has also been de-
rived by Ronis et al. and by Machta ' using dif-
ferent methods.

VI. DISCUSSION

We conclude this paper with a number of re-
marks.

(1) We have derived hydrodynamic equations for
the time-correlation functions M~p(R], R2, t) and for
the equal-time correlation functions M p(R, Rz) by
two methods: by kinetic theory, for dilute gases,
and by nonequilibrium ensemble methods, for gen-
eral fluids. The advantage of the kinetic-theory
method is that a partial justification of the validity
of the basic Eqs. (2.12) and (3.10) for C and Gz,
respectively, can be given. In fact, one can show
that some contributions due to higher-order co1-
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lisions, such as triple collisions, ring collisions, etc. ,
can indeed be neglected in these equations, since
they lead to effects of higher order in the density
than kept here. However, it should be stressed that
a complete justification based on kinetic theory is
not available at present even in this relatively simple
case. In spite of this limitation, what can be accom-
plished in kinetic theory is still more concrete and

trustworthy than the purely formal hydrodynamic
derivations presented in Secs. III and IV. Since the
hydrodynamic results reduce in the low-density case
to the kinetic ones, it seemed worthwhile to give the
kinetic derivation also in order to support the use of
the more general but formal hydrodynamic results
in the next two papers.

i2i Equations equivalent to those for the

M~p(R&, R2, t) derived in Sec. IV have been obtained

by a number of authors using a variety of methods.
These methods may be grouped into two categories.
One method is similar to that followed here. Start-
ing from the Liouville equation, one constructs an
ensemble distribution function that describes the
nonequilibrium steady state in terms of which both
equal- and unequal-time correlation functions can
be computed. This method has been used by Op-
penheim, Procaccia, Ronis and co-workers,
and by Brey to derive a set of equations for the
various time-correlation functions needed to com-
pute S(k,co). While the techniques differ, the re-
sults obtained for the correlation functions agree to
first order in the gradients of the hydrodynamic
variables.

The other method that has been used in this con-
nection seems, at first glance, to be completely dif-
ferent in spirit, and is based on fluctuating hydro-
dynamics. In this method one assumes that the
fluctuations of the microscopic densities 5a (R, t)
obey a set of Langevin-type hydrodynamic equa-
tions, which are the Navier-Stokes equations linear-
ized about the steady state, to which a fluctuating
stress tensor and heat-flow vector have been added,
as suggested by Landau and Lifshitz. The
relevant Langevin-type hydrodynamic equations for
the nonequilibrium states were first postulated by
Keizer, ' together with the prescription that the
correlations of the fluctuating terms are to be com-
puted by assuming that these correlations have the
same form as given by Landau and Lifshitz, except
that the temperature, velocity, transport coeffi-
cients, and other thermodynamic variables are re-

placed by their local values in the nonequilibrium
steady state. Furthermore, in this approach one
does not have to evaluate the equal-time correlation
functions M p(R&, R2, t =0), separately, since they

too are determined by the correlations of the fluc-
tuating stress tensor and heat-flow vector. This
method was used by Tremblay, Siggia, and Arai,
van der Zwan, Bedeaux and Mazur, and by Ronis
and Putterman. The explicit results obtained by
these authors for S(k,co) are in agreement with the
ensemble methods used here to first order in the
gradients.

It may seem surprising that these two
methods —ensemble theory and fluctuating
hydrodynamics —should give identical results, espe-
cially so since the ensemble method has to resort to
mode-coupling theory to compute equal-time corre-
lation functions, while these correlations seem to
follow directly from the Langevin assumption in
the fluctuating hydrodynamic equations. It is,
therefore, worth spending some time to illustrate
the connection between these two methods. This is
done in the Appendix. For the sake of simplicity
and brevity we consider the case of a dilute gas so
that the methods of kinetic theory can be employed.
In the Appendix we outline a method by means of
which one can show that both the unequal- and
equal-time correlation functions determined by fluc-
tuating hydrodynamics are completely consistent
with those obtained from the ensemble theory. The
source of the agreement is that both methods agree
on some crucial features of a certain equal-time
correlation function, and on the form of the hydro-
dynamiclike equations for the time-dependent
correlation functions.

(3) We have emphasized in the Introduction that
in a fluid in a nonequilibrium steady state, correla-
tions between fluctuations extend over a much
larger range than in fluids in equilibrium, and that
these long-range correlations are closely related to
the appearance of "long-time tails" in the equilibri-
um time-correlation functions that determine trans-
port coefficients. These points will be clarified in
more detail in the following papers, where we apply
the formalism developed here to the case of a sys-
tem with a temperature gradient and explicitly com-
pute the relevant correlation functions.

(4) In our derivation of the equations for
M ~(R&,R2, t) and M ~(R&,Rz„t =0), we regularly
made gradient expansions and neglected, without
detailed argument, both higher-order terms in the
gradient expansions, and corrections to initial con-
dition terms that appeared in our equations. In the
next paper we will introduce the various expansion
parameters that appear when these equations are
solved to compute the S(k,co) and we will show
there (cf. Appendix I B, subsection II), how one can
justify the approximations made here.
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assume that the fluctuations in a dilute gas are
described by a Boltzm ann equation linearized
around the average state F~(1)=(F(l,t))„with a
random force S(1,t) added. The equation of
motion for the fluctuations is then,

APPENDIX a—+L(1) 5F(1,t)=S(l, t) .
at

(AI)

In this appendix we give a brief outline of the
connection between the hydrodynamic equations de-
rived from the kinetic theory presented in Secs. II
and III and the hydrodynamic Langevin approach
discussed by Keizer.

I. Fluctuating hydrodynamic equations
from the fluctuating Boltzmann equation

As a first step, we derive Keizer's fluctuating hy-
drodynamic equations for the fluctuations 5a from
a kinetic equation for the fluctuation of the single-
particle distribution function 5F(1,t)
=F(l, t) —(F(l,t))„, defined below Eq. (2.7). We

I

(S( i, t) )„=0,
(S(1,t)S(2, t') )„=I (1,2)5(t t '), —

(S(1,t)5F(2,0) )„=0 for t & 0,

(A2a)

(A2b)

(A2c)

where I (1,2) is as yet undetermined. We fix I (1,2)
by requiring that Eqs. (A1) and (A2) give the same
equal-time correlation function as Eqs. (3.3), (3.4),
and (3.10) of the text. By formally solving Eq. (A1)
and requiring that its solution gives the correct
equal-time correlation function, it is straightfor-
ward to show that"

Here L(1) is given by Eq. (2.34). The random force
S(1,t) is assumed to have the following properties:

&(1,2) = —[At(l)+Av(1)+At(2)+A (2)]5(1—2)F, (1)

+T(12) Fi(1)Fi(2)+5(1—2) I d 3 T(13)F,(1)F,(3) . (A3)

Here the notation is identical to that used in Sec. II,
and we write A~(1) =A~, (1)+A~,(1)+

Using the p-space projection operator given in
Sec. II, we can derive the fluctuating hydrodynamic
equations that are associated with Eq. (A1). The
derivation proceeds in a manner identical to that
used in Sec. II for C(1,2, t) and will not be duplicat-
ed here. The resulting equations are to Navier-
Stokes order, in matrix notation:

5aa(R»t) =Hap( 1)5a&(R»t)+ma(R»t) .
at ' y

(A4)

Here 5a is the column vector whose components
are 5p, 5g„, 5g~, 5g„and 5e', and o is a column
vector representing the hydrodynamic "fluctuating
forces" with components

o =(o,aP„,XaR „,aP;/aR „,aP. raR „,aQ; XaR „),

where P is the fluctuating stress tensor and Q is the
fluctuating heat flux defined by

PJ(R~, t)=m I dV, C~;C~,P&(1)

X PJ (1)S(l, t),
I

PmC,2
Q;(R),t)= —I dV)C); ——P, (1)

2 2

P~( 1 )S( 1 t)
AI (1)

(A5)

In Eq. (A4), H is the evolution matrix discussed in
Secs. II and III and in deriving Eq. (A4) we have
used that

([P(1)S(l,t)]S(2,t') )„
=(S(l,t)[P(2)S(2,t')])„=0, (A6)

which can be obtained from Eqs. (A2) and (A3),
and the property that the 1( are conserved in a
binary collision.

Since in cr both Q and P are preceded by a spatial
derivative, it follows that (o'o ) is at least of 0 (V' )

for Navier-Stokes fluctuating hydrodynamics. Ex-
amining 1 (1,2) [cf. Eq. (A3)], we see that all one
needs of I (1,2) to compute the correlation of the
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random force to this order is

l,tt(1, 2) = —[At(1)+At(2)] 5(]—2)Ft(] ) .

(AI)

Using Eqs. (2.25a), (2.25b), and (A7), the correla-

tions between the fluctuating forces can be easily

computed with the result

(P1(R), t)Pkt (Rp& t') )„
=2k& T(R])gg(R~)5(t —t') 5(R]—R2

(A8a)

(P)(R),t)Qk(Rp, t') )„=0,
(Q;(R],t)QJ(R2, t') )„

=2k~ T (R~ )A,~ (R] )5IJ 5(t —t')5(R] —R2) .

(A8b)

(A8c)

The correlations given by Eq. (A8) are a local ver-

sion of those given by Landau and Lifshitz for fluc-

tuations around total equilibrium. 33 Equations (A4)

and (A8) are identical to those given by Keizer for
fluctuations in a nonequilibrium steady state, when

Keizer's equations are applied to gases at low densi-
ties.

Finally, one can easily show that Eg. (A4) leads

to Eqs. (2.42) for the quantities M p(R], Rq, t). To
do this, one need only multiply Eq. (A4) by
5a~(R~, O), average over the fluctuations, and use
(5att(R2, 0)o~(R),t) )„=0.

II. Equal-time correlation functions
from the fluctuating Boltzmann equation

Next we show that Keizer's fluctuating hydro-
dynamic equations, i.e., Eqs. (A4) —(A8) lead to
equal-time correlation functions M p(R&, R2) identi-
cal to those derived in Sec. III. In order to do this,
we use Eq. (A1) but, instead of the full correlation
between the fluctuating forces given by Eq. (A3) we
will use the effective correlation given by Eq. (A7),
which is equivalent to that used in a local Landau-
Lifshitz theory. Using Eqs. (A1), (A2), and (A7),
we formally solve Eq. (A1) and compute the equal-
time correlation function (5F(l, t)5F(2, t))„ in the
stationary state. The result is

(5F( l, t)5F(2, t) )„= '~"'+~""(5F(1)5F(2))„
dre —[L(l)+L(2)](t—r)[At(1)+At(2)]5(1 2)F (1)

0

Owing to the steady-state assumption, we can carry out the time integral in Eq. (A9), so that

(5F( l, t)5F(2, t )„=(5F(1)5F(2))„=— 1

[L (1)+L(2)]
[At(1)+At(2)]5(1—2)Ft(I) .

By using Eqs. (2.34) and (2.37), we can write

(5F(1)5F(2))„= ( I+PU)L (1)5(1—2)Ft(1)
1

L (1)+L(2)

5(1—2)V) Ft(1)—[Ap(])+Ay(2)]5(1 —2)Ft(1)
[L (1)+.L (2)] 5R~

(A9)

(A10)

(A11)

or

(5F(1)5F(2))ss=5(1—2)Ft(2) — 5(1—2)Vi - Ft(1)—[Av(1)+Av(2)]5(1 —2)Ft(1)
[L (1)+L(2)] 5R,

=A '(1,2)+D'(1,2) . (A12)

We now show that the quantities A'(1, 2) and D'(1,2) in Eq. (A12) are closely related to the matrices A p and
D ~ defined in Sec. III. To see this, we use Eq. (A12) to compute the hydrodynamic correlation functions
M p(R],R2) defined by Eq. (3.1). The term due to A'(1, 2) is easily shown to lead to A p I(R],R2) defined by
Eq. (3.9a). The D' term in Eq. (A12) obeys the equation
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[L (1)+L(2)]D'(1,2) = —5(1 —2)V, Fi(1)+[Av(1)+Av(2)]5(1—2)Ft(l) .
BR)

(A13)

The second source term [Av(1)+Av(2)]5(1 —2)Fi(1) in Eq. (A13) vanishes to Navier-Stokes order when Eq.
(A13) is projected onto the hydrodynamic subspace, i.e., P(1)P(2)A~(1)=P(1)P(2)A~(2)=0 as may be
shown using that t)'t (j) is conserved m a binary collision. Using this property, an effective equation for
D'(1,2) is

[L{1)+L(2)]D'(1,2}=—5{1—2)V, . Fi(1} .
BR&

(A14)

Since V&.(BIBR&)F~(1)=AI(1)F~(1)4&(1) in the steady state, and because of the identity given by Eq. (3.14),
we see that the equation for D (1,2) and the equation for the pair-correlation function G2(1,2) are identical in

the hydrodynamic subspace. Thus, the equal-time correlation functions given by the local Landau-Lifshitz
fluctuating forces are equivalent, in the hydrodynamic subspace, to those given in Sec. III. This equivalence
also implies that fluctuating hydrodynamics, with local Landau-Lifshitz correlations functions given by the
Eqs. (A8), contain the same long-range correlations due to the mode-coupling effects as are found in the next
two papers on the basis of the equations for the M ~(R&,R&) derived in Secs. II—V of this paper.
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