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Fluctuating hydrodynamics is used to calculate the density correlation function and

light-scattering spectrum for a fluid in a stationary temperature gradient. The non-plane-

wave nature of the light source in the direction of the temperature gradient is considered

explicitly. Finite-size effects are shown to be important when the ratio of system size to
dynamic correlation length is smaller than or equal to O(1). The magnitude and size of the

asymmetry of the Brillouin peaks, as well as the line shapes, are found to depend strongly

on the scattering wave vector, beam width, and system size, while the dependence on the
surface reflection coefficient is much weaker than expected. The importance of including

surface fluctuations when absorbing walls are used is discussed.

I. INTRODUCTION

Recently, several papers have discussed the light-

scattering spectrum of a fluid in a stationary tem-

perature gradient using the fluctuating hydro-

dynamics method. ' In all cases, the effect of the
boundary of the fluid has been ignored by assuming

that the size of the fluid in the direction of the tem-

perature gradient (denoted by L) is much larger
than any other characteristic length scale in the
problem. In this limit, an asymmetry in the in-

tegrated intensities of the Brillouin peaks (I) &) is

predicted; in addition, all linear theories agree that
the quantitative measure of the asymmetry e is

given by'

/
vT/eoq

aTok
(13

where co is the speed of sound in the fluid, a is the
kinematic sound attenuation coefficient, and q is the
component of the wave vector k in the direction of
the temperature gradient VT. This result is in
agreement with calculations using nonlinear-
response theory ' and kinetic theory. ' Qualita-
tively, this effect arises because there is a net flux of
phonons traveling from the hot to the cold wall.

Unfortunately, the only experiments' to test this
prediction were carried out under conditions for
which L was not the largest length scale (in particu-
lar, the mean-free path of the phonons I was larger).
The consequent disagreement between the observed
and predicted asymmetry was attributed to mode-
coupling effects. In this paper we will show that

the inclusion of the finite size of the fluid in the
direction of the temperature gradient has a large ef-
fect on the magnitude of e which can reconcile the
experimental results with linear theory. Qualita-
tively, we expect a decrease in e due to boundary ef-
fects, as reflection of phonons will tend to cancel
the net flux of phonons traveling away from the hot
boundary. In addition, because the system is finite,
fewer phonons will be collected from very hot
(x &L/2) or very cold (x & —L/2) regions, further
reducing the asymmetry.

In addition, most theories to date neglect the
non-plane-wave character of a real light source
when calculating the light-scattering spectrum. A
notable exception is the work of Tremblay et al. , ' '

in which the effect of a Gaussian light source is
considered. The light source may only be treated as
a plane wave if both the wavelength and the mean-
free path of the scattering phonons are much small-
er than the beamwidth. %ith the above exception,
all previous work has only included the possibility
of incorporating a finite beam at the formal level,
the actual spectra being computed as if the beam
were much wider than the dynamic correlation
length I. This results in line shapes which are
Lorentzian or the square of Lorentzian. For the
systems used by Beysens et al. the mean-free path
of the phonons is approximately 2 cm. Thus, for
the plane-wave approximation to be valid, a beam
of at least 5 cm width must be used. Rather than
impose this restriction on the experiment, we have
explicitly included the finite size of the beam by as-
suming that the light source has a Gaussian profile
in the direction of the temperature gradient. The
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only assumption on length scales is that the
halfwidth of the light beam d be less than L. It will
be seen that the line shape of the Brillouin peaks in
regions of physical interest is determined primarily
by the characteristics of the light source. This is in
agreement with Ref. 2(b). (For further discussion of
the nonobservability of natural line shapes, see Ref.
3.) In Sec. II we outline the general theory and cal-
culate the density correlation function. In Sec. III
we derive the light-scattering spectrum using the re-
sults of Sec. II. In Sec. IV we discuss the spectra
generated by the results of Sec. III, and compare
our results with the experimental results by Beysens
et al. In Sec. V we present additional comments
and concluding remarks.

II. GENERAL THEORY AND THE DENSITY
CORRELATION FUNCTION

In fluctuating hydrodynamics, " fluctuations are
assumed to evolve under the linearized Navier-

Stokes equations with white-noise source terms. To
simplify the equations of motion, we assume that
the thermal expansion coefficient is zero. For an

infinite fluid, this leads to the following equation
for the density fluctuation:

where c =co —i~a and K =co /c —k~~.
2= 2 2 — 2 2 2

For a finite fluid, Eqs. (2) —(4) are incomplete at
the fluctuating level if dissipation occurs at the
boundaries (i.e., if the walls are not totally reflect-
ing). Physically, this comes about because the walls
absorb some of the fluctuations generated in the
fluid but do not transmit to the fluid any fluctua-
tions generated in the walls. As a result, the
fluctuation-dissipation theorem is not obeyed, and
in particular, time-reversal symmetry is violated in
equilibrium. To compensate for this, we add fluc-
tuating source terms, 0., localized at each boundary
(x=+L/2). Since these terms model fluctuations
originating above and below the fluid, they are as-
sumed to be statistically independent of the fluc-
tuating stress tensor in the bulk of the fluid, and of
each other. ' An equivalent approach would be to
consider the fluctuating dynamics of the combined
fluid-wall system. This approach has been used by
van Vliet et al. ' in considering the noise spectrum
in a thin film on a substrate. In practice, however,
this method is limited to surfaces which are smooth
with respect to all other length scales. To avoid this
restriction, we will use surface source terms, and
model the effect of the solid on the fluid through
phenomenological boundary conditions. Thus, our
equation for the density fluctuation in the fluid is

(2)

where co and a (assumed constant) are as above,

and r is the longitudinal component of the fluctuat-

ing stress tensor (white-noise source), which can be

shown to have the following nonequilibrium corre-

lation function" '.
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Fourier transforming Eq. (2) in x, y, z, and t leads

directly to the linear prediction for e in the {infinite)
fluid [Eq. (1)]. For this paper, however, we assume
the fluid is infinite in the y and z direction only,
which leads to Eq. (4):

+K p= — —k((r
Bx c~ Bx

(4)

(x k II'~) p, t)e d r(~ d

For the moment, we will postpone the discussion
of the statistical properties of 0.. As we shall show
[cf. Eq. (14') below], only very limited information
regarding the statistical behavior of the random
noise fluctuations at the surfaces is needed to com-
pute the density correlation function. The required
information will be obtained by insisting that the
equilibrium density correlation function must be
even under time reversal, even in a finite system.
The generalization to the nonequilibrium regime is
then analogous to Eq. (3).

The solution to Eq. (5) for a fluid confined be-
tween boundaries at x =+L/2 can be expressed in
terms of the Green's function
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—kii7 dx'
2

p(x, k~~, co) = — G(k~~, x,x,co)

G(x
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where x &
——max(x, x'), x &

——min(x, x'). The phase P is determined by the acoustic boundary condition

BG icoPG=+ for x =+L/2,
Bx co

('7)

(8)

where 13 is the (complex) specific acoustic admittance of the boundary. ' To simplify the calculation, we have
assumed the acoustic admittance is independent of temperature.

Integrating Eq. (6) by parts, using Eq. (8) and the defining equation for G gives

G(x
~
+L/2) Br i F13 1 a)p(x, &(( ~)= —g, +, +o — 7 —

~ r(x)+ ~ dx) G(x ~xl)r(x, ) .
+ c~ x'=+L /2 C tx) C

The specific acoustic admittance of a smooth planar solid-liquid boundary can be calculated theoretically if
the solid is modeled as an elastic continuum. The total admittance is expressed as the sum of two terms, the
first arising from the solid-liquid interface itself, and the second from coupling to the transverse velocity
modes in a thin boundary layer at the surface. The interface admittance is given by'

poco

Pscl

1 —2

2 2
c,sine

2
co c, c,sin8

2 1/2 +4
clsin0 cl cp

Cp

'2 i1/2
c,sin8

Cp
(10)

where pp is the density of fluid, p, is the density of
the solid, cp is the sound velocity in the fluid, cl is
the longitudinal-wave velocity in the solid,

c, is the shear-wave velocity in the solid, 8
=sin '(N k

~
~/cp )=angle of incidence. The

boundary-layer admittance is given by'
' 1/2

Pat =e ' ~z sin 8, (11)
poco

where g is the fluid viscosity. Note that for normal
incidence (k~~

——0), the acoustic admittance is given
simply by

(12)
pscl

The acoustic admittance is related simply to the
reflection coefficient R by

cos8 —P
(13)cos8+P '

where 8 is the angle of incidence of the scattering
phonon. In this paper we will consider only the
case 0=0, although the results of this paper hold
for 8+0 as well. For the system studied experi-
mentally, Eq. (12) predicts P=0.03.

Strictly speaking, the acoustic impedance calcu-
lated by Eqs. (10)—(12) can only be applied when
the surface is smooth on the scale of the phonon
wavelength. For light scattering, this corresponds
to the requirement that the surface roughness be
less than —10 pm. Unfortunately, the surface
roughness in the only experiment to date is
—100 pm. Thus, P cannot be calculated by the
simple elastic theory given above, but can be deter-
mined experimentally. ' In comparing with experi-
mental results, we have presented a minimum and
maximum e (corresponding to P=O, R =1 and
P= 1, R =0, respectively) as well as a value corre-
sponding to about 33% reflection (P=0.5).
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From Eqs. (3) and (9), we obtain the density correlation function

(p{x,k((,co)p'(x', it((, a)) )NE

2k' ppa
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In obtaining Eq. (14), we have assumed that correlations between ~x) and the surface random noise at
+(L /2) is localized to within a microscopic distance of the surface and vanishes in the bulk. This assumption
is reasonable given that the random sources are supposed to represent microscopic scale fluctuations (i.e., in ~,
etc.) and thus should correlate only over microscopic distances and times. This is also the rationale behind the
5 function in Eq. (3).'" Finally, we have omitted two terms in Eq. (14) which are nonzero only if x or x' is
on the surface.

From Eq. (14') we see (as mentioned above) that of the myriad of random surface source correlations which
would, in general, need to be specified in order to completely solve the stochastic problem posed by Eq. (5),
only a very specific combination of them is required for the density-density correlation function. If we had
started by first phenomenologically specifying the surface correlations, we see that there are an infinite num-
ber of equivalent choices which would give the same value for X and hence same physical observable correla-
tion function. This is no accident and arises partly due to the fact that the decomposition of the noise into
surface 5-function source and random stress is somewhat ad hoc; the sum being the only relevant quantity [cf.
Eq. (S)].

Finally, in the spirit of Eq. (3), we assume that X may be replaced by its equilibrium value. The fact that
the system is out of equilibrium is reflected by the explicit local temperature factor which appears on the left-
hand side of Eq. (14 ). This assumption is plausible if we note that X represents the correlation of microscopic
processes which are supposed to be local to the surface.

Performing the integration in Eq. (14) results in
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The manipulations leading to Eq. (15) are straightforward, and the algebraic details are omitted. In equilibri-

um, the density correlation function becomes

(p(x, k)(,co)p'(x', k~),co)),q To icoTO c'„ c„
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The requirement that the equilibrium correlation function be even under time-reversal symmetry can only

be satisfied if the coefficient of the last term in Eq. (16) vanishes, that is if X=(co /2co) ReP. The co2 depen-

dence in X is not unreasonable, as the correlation function [cf. Eq. (14')] must be even in co, and must vanish

as co~0 [see Eq. (8)]. With this choice for X, the nonequilibriuin density correlation function becomes
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As mentioned before, elastic theory predicts very
small values for P. The effects of surface roughness
can be modeled phenomenologically by using a
larger P. '4 In this case, phonons impinging on a
rough surface scatter with a random distribution of
scattering angles {i.e., Snell's Law for the effective
flat surface is not obeyed). Looking only at the
specular angle, there would appear to be a loss in
coherent intensity. This effect is important only
when the wavelength of the phonon is comparable
to the scale of the surface roughness, i.e., for suffi-
ciently large N.

In the surface layer, Eq. {5) is too simple and
boundary conditions must be imposed at the true
surface. If one could carry out the mathematics, it
would be more realistic to solve the full fluctuating
hydrodynamic equations with boundary conditions
specified on the rough surface. The solution would
then be asymptotically matched to that given by Eq.
(2). This would allow us to compute cr and P. In
this approach, the random sources in the surface
layer would not correlate with ~ in the bulk. Since
Eq. (2) does not hold inside the surface layer, its
source term ~ should be irrelevant. Since the fluc-
tuations in the surface layer will not be bulklike, we
set r (which is a bulklike source term) to zero in the

I

surface layer, the true physics being absorbed in 0.
From the above discussion, it is reasonable to as-
sume

r(x, k~~, co)cr —,k~~, co =0,

L ~ L0', k[J,N 0 ——,k~~, N
NE

=0,

L ~ L
0 + 'k~~, N ~ +

NE

=2k p sXTO(+L/2) .

These phenomenological correlations, when used in
Eq. (14'), together with the fluctuation dissipation
relation for X gives

L- ~ L-
0 +—,k[(,N H +—,k~~, N

NE

T(+L/2) .
Cp

Note that this in no way changes the observable

quantity, the density correlation function.
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III. LIGHT-SCATTERING SPECTRUM 1 —(x —xo)~/2d~
e(r) oc —e

d
(20)

The intensity of scattered light is given by'

I=c dr dr 'e(r)e'(r ')e
V V

X (p(r, c0)p'(r ',co)), (19)

where e(r) specifies the profile of the light source,
and c is a constant. As the fluid is homogeneous in

the y and z directions, we take e(r)=e(x). For a
Gaussian profile, we have

If the beam is narrow on the scale of L, we may ex-
tend the limits of the x integrations in Eq. (19) to
infinity with only exponentially small error. Note
that this approximation will yield incorrect results
if

~
xo

~
L/2—is less than the width of the beam.

With these approximations, substitution of (17) and
(20) into (19) yields, after straightforward but tedi-
ous integration,
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imp —d (q+K) /2 —imp —d (q —x) /2
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where q is the x component of k and

—=L /2 IP—
2

f(q, «)= —, [cosaAi simclerffid(. q—+«)]] .

From Eq. (21) two features of the spectrum are
easily seen. First, the line shapes are essentially
Gaussian with width determined by the parameters

of the light source. Second, the intensity of scat-
tered light will be particularly large when Re(simcL)
vanishes. These resonances, which occur whenever
co=nn.c/L, are a result of scattering from the (fluc-
tuating) standing-wave pattern (i.e., cavity modes)
established between the boundary plates. In addi-
tion, it can easily be shown that Eq. (21) reduces to
the usual result' when L ~00 or q~ao. [Specif-
ically, the resonances disappear. The overall line
shape is still Gaussian until l (q) &&d, in which case
a square-Lorentzian line-shape results. ]
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IV. RESULTS AND DISCUSSION

In this section, the analytic expression for the
light-scattering intensity [Eq. i21)] is evaluated, and
the asymmetry ratio e is obtained by numerically
integrating the spectrum. For concreteness, we
have chosen our parameters to correspond to those
of Beysens's experiments (i.e., water at 313 K, with
V T=59 K/cm). For this system, the sound veloci-

ty co ——153000 cm/sec, the sound attenuation coef-
ficient a =2.6g 10 cm /sec, the distance between

plates L =0.515 cm, and the beam halfwidth
d =0.01 cm. Note that the small size of the system

improves the approximation that the parameters are
temperature independent.

Figures 1(a)—1(c) present theoretical spectra for
a typical value of q for a variety of acoustic im-
pedences. There are three main features: (1) the
Gaussian line shape of each of the Brillouin peaks,
reflecting our choice of a Gaussian beam; (2) the
standing wave resonances, occurring whenever
coL /co ——nm,' (3) the increase in asymmetry with in-
creasing p. It is interesting to note that the total in-

tensity is independent of P. If no surface sources
were included, we would expect a decrease with in-

creasing P. The surface sources precisely compen-

25.0

20.0-

l 150-
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UJ
H 10.0—

5.0—

&f&t~~ illlljl~&l&l&Ill)I~,
~&&~l J I[1is ~~ ~'~&~li u llI&j&~lli&&l1ll/I'lt&)&)l~)J&

l la

-1.1 -1.0 + 0.9 1.0
w/(q x Co) w/(q x Co)
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I

-LO
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+09
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1.0
w/(q x Co)
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Vl
X
UJI-z

QO
-I.1 -1.0

w/(qxQ )
1.0

w/(qxC J

FIG. 1. Typical spectra for q=2380 cm ', L =0.515 cm, and VT=59 K/cm in water at 313 K. (a) —(c) show the
effect of changing P (0.0, 0.5, and 1.0, respectively). Envelope of the peaks is a Gaussian whose width is determined by
the beam diameter (d =0.01 cm and xo ——0.0). Total integrated intensities are independent of P.
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sate for this tendency.
That the line shape is determined by the beam

profile is not surprising. Light-scattering probes
spatial coherence, and in the cases considered in this

paper, the (hydrodynamic) correlation length
(I =2co/ak ) is much larger than the beam diame-

ter, making it irrelevant to the overall line shape.
The standing-wave patterns would be extremely

difficult to resolve experimentally, as hco-10 Hz.
Note that the width of the resonances increases with
a and P. The dependence on P is quite strong, and

as the limit of perfectly absorbing walls is reached
(P~l) the resonances disappear. In addition, we

have assumed that the frequency and parallel corn-

ponents of the wave vector are exactly resolved. In
an actual experiment, this is only approximately
true and hence the standing-wave resonance pattern
(as determined by the minima of

~

sin(vA. )
~

) must
be convolved with the appropriate incident parallel
wave number (k

~
~) and frequency (co) profiles.

These factors will complicate the resolution of the
standing-wave resonances.

In Fig. 2, the increase of e with P exhibited quali-
tatively in Figs. 1(a)—1(c) is presented quantitative-

ly for a variety of sample sizes. For perfectly re-
flecting walls, only the at tenuation of sound
prevents the total vanishing of e. For a small sys-

tem, the sound attenuation before reflection is
minimal, and a large reduction in e is found. {For
water under the above conditions, the system must
be -10 cm for the bulk limit to be achieved. ) As
the walls become more absorbing the asymmetry in-

creases, as there are fewer reflected phonons. Note,
however, that even in the limit of perfectly absorb-

ing walls, e does not attain its bulk value. In a bulk

system, scattering occurs from phonons originating
in the region xo+I characterized by T(xo —I )
& T & T(xo+I). In a sufficiently small system, the
restriction that fluctuations must originate in a re-
gion characterized by T( —L /2) (T & T(L /2)
reduces the number of phonons available for
scattering, in particular, eliminating those phonons
generated in the region having the highest (in the
hot direction) and lowest (in the cold direction)
source intensity. Note that for the conditions of
Beysens's et al. experiments this effect is large {see
Fig. 2).

In Fig. 3, we examine the dependence of e on xo
(beam center) for totally reflecting and totally ab-

sorbing walls. When the surface source terms are
included, only a very weak xo dependence is found
(solid line). Neglecting these terms leads to a spuri-
ous xo dependence (dashed line) which persists even
in equilibrium. This dependence can be explained
by noting that for highly reflecting walls, the
co= —qco peak is generated primarily by fluctua-
tions originating at x &xo, while the co=+qco peak
is generated primarily by fluctuations originating at
x &xo. Without surface sources, e is determined
largely by the volume of fluid above and below xo,
even in equilibrium. The boundary sources com-
pensate for this.

In Fig. 4, the dependence of e on q is examined.
For q less than some crossover value q„e varies
weakly with q. If q is greater than q„e is correctly
predicted by Eq. (I). The crossover value q, can be
determined by noting that the ratio L /I depends on
q. We have seen previously (see, e.g., Fig. 2) that e
does not exhibit its bulk limit behavior unless
L &21. Using this, we find that q, -+4co/aL,

0.2—
L= 5.15 cm

0.15— L= 2.575 cm

0.1

L =1.03 cm

0.05 0.515 cm

pp ! I I I I I I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 7 0.8 0.9 1.0

FIG. 2. Dependence of the intensity asymmetry e on
the surface admittance P for a variety of sample sizes.
Other parameters are as in Fig. 1. Infinite-system limit
is a=0.196. Acoustic reflection coefficient is given by
R = (1—P)/(1+P).

O.138 ~ I

)gc I

)ecO

0.0—

0.2575

E 0.043—

I

0.0
Xo

-Q057—
-0.2575

FIG. 3. Dependence of e on xo, the position of the
beam center, with (solid line) and without (dashed line)
surface source terms. Recall that for P=O surface
source terms are irrelevant. All other parameters are as
in Fig. 1.
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0.0

L= 5.1

2.575

-1.0
O

1.03

-2.0
2,39 2,5 3.0

log (q)
3.5 4.0

agreement between our results and experiment is
well within the scatter in the experimental results.
As the scale of the surface roughness was not sma11

compared to the phonon wavelength in the experi-
ments, a large P is expected.

For the temperature gradient used here, it is of
course ridiculous to consider too large a cell.
Nonetheless, this is a linear theory and all asym-
metries can be easily rescaled for a smaller tempera-
ture gradient.

FIG. 4. Dependence of e on the scattering wave vec-
1

tor q for P=0.5 (R =—) for a variety of system sizes.

Note the strong deviation from 1/q behavior at small

q.

which gives reasonable agreement with Fig. 3. Note
that the behavior of e below q, indicates that the
surfaces quench the long-range correlation of the
infinite system as soon as the fluctuations interact
with the surface. From an experimental point of
view, note that the behavior below q, obviates the
need for ever smaller angle scattering to enhance
the asymmetry of the Brillouin peaks.

Linear theories with constant-temperature gra-
dients based on infinite fluids break down in the
limit k~0 {i~00),because some phonons contri-
buting to the light scattering will have been generat-
ed in regions of negative temperature, thus leading
to negative spectra. " Note, however, that this is
not the case for our theory, and that as long as the
temperature in the cell is positive, the spectra will

always be positive.
Table I contains a comparison of experimental re-

sults with results calculated by the theory in this
paper and by Eq. (11. For relatively large P, the

V. CONCLUDING REMARKS

Kirkpatrick and Cohen have proposed a non-
linear mechanism in an infinite system whereby e
can be decreased. As we have shown, a linear
theory with boundary effects also results in a de-

crease in e. Since boundaries tend to weaken the ef-
fects of nonlinearities {i.e., there is not enough room
for them to develop) we expect that for a sufficient-
ly small system the effect of the boundaries will be
dominant. The parameter characterizing nonlinear-
ities in Kirkpatrick and Cohen's theory is 1{7T/T),
while the effect of the boundaries is measured by
1/L. Thus, for sound, the ratio of the influence of
nonlinearities to boundary effects is given by
LV T/T=hT/T, where hT is the temperature
difference between top and bottom surfaces. Except
at extremely low temperature, this ratio is small. In
particular, for Beysens et al. experiment, this ratio
hT/T=0. 1; hence, the effect of boundaries should
be much greater than any nonlinear effects. This
does not necessarily imply that nonlinearities can
always be neglected, but rather that nonlinearities
must be considered along with boundary conditions.
We expect that the nonlinear mechanism will be-

come more important as the size of the system is in-

TABLE I. Comparison of theoretical and experimental asyrnmetries.

q V T e(P=O) )(10 e(P=0.5) &(10 e(P=1) )& 10 e(expt) )& 10 e)(10
[linear theory, Eq. (1)]

3420 59
3360 59
3220 59
3130 59
2380 59
2110 59
3060 83
2100 84
2720 92
2590 93

1.08
1.05
0.98
0.93
0.56
0.44
1.26
0.62
1.13
1.04

3.38
3.40
3.44
3.47
3.65
3.70
4.91
5.27
5.58
5.69

3.77
3.80
3.87
3.92
4.27
4.38
5.57
6.25
6.43
6.59

7.5
4.3
3.5
3

11.74
8.84
6.25
7.92
7.38
3.93

9.4
9.8

10.6
11.2
19.4
24.7
16.7
35.8
23.4
26. 1
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creased.
To summarize, we have shown that finite-size ef-

fects can cause a substantial reduction in the asym-
metry of the Brillouin peaks from that previously
calculated for infinite systems. This reduction is
present even for totally absorbing walls, and leads
to reasonable agreement between linear theory and
Beysens et al. experimental data. In addition, we
have sho~n that the line shape of the Brillouin
peaks is determined by the characteristics of the
light source, with an added resonant substructure
dependent on the boundaries.
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