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We consider the 1ong-wavelength behavior of smectic liquid crystals (or any solid
developing periodic order in only one direction) in the presence of anharmonic terms dictat-
ed by symmetry considerations. We analyze this anharmonic model of smectics with the
use of analytic renormalization-group techniques directly in three dimensions. We find
that the hydrodynamic description of smectics given by the harmonic theory is not valid at
sufficiently small wave vectors. Instead, the elastic constants corresponding to the
compression and undulation modes, respectively, vanish and diverge logarithmically at
small wave vectors. Density correlations, which decay algebraically in the harmonic
theory, are found to fall off with a distance-dependent power law at sufficiently long dis-

tances. Additionally, the system responds nonlinearly to applied stress at sufficiently small

stress, i.e., Hooke s law is not valid. After presenting the calculations leading to the above

results, we discuss the feasibility of experimental observation of these effects.

I. INTRODUCTION

Some forty years ago, Landau' and Peierls
demonstrated theoretically that three-dimensional
crystals whose density is a function of only one spa-
tial coordinate cannot exist. Thermal fluctuations
destroy any long-range density order in such "one-
dimensional" (1D) solids, restoring the uniform
density of the liquid state. This result is based on a
harmonic description of the 1D solid (i.e., a theory
quadratic in displacements about the perfect solid)
which involves two elastic constants B and Ei (here
we adopt the notation conventionally used to
describe smectic-A liquid crystals ) corresponding to
compressional and undulational modes, respectively
(see Fig. 1). Subsequently, using this harmonic
theory, Caille showed that while the density in a
1D solid is uniform, density correlations decay alge-

braically and not exponentially as would occur in a
true liquidlike state. Thus, 1D solids can exhibit

quasilong-range order, similar to the ordering found
in two-dimensional superfluids and magnets.
Indeed, Caille found that the density-density corre-
lation function G ( x ) decays as

Giz, x, =oi- ~z
~

— '",

G(z =O,x )-x

for large
~

x
~

where r1 is a continuous function of
temperature. (Here z is taken as the direction of the
1D density wave, and the system is cylindrically
symmetric about this axis. ) In the language of the
renormalization group (RG), the continuously vary-
ing exponent g arises from the existence of a fixed
line in the harmonic (Gaussian spin-wave) approxi-
mation. ' Experimental results for smectic liquid
crystals, physical realizations of 1D solids, are con-
sistent with Caille s prediction (1.1).

In a recent paper, we noted that symmetry argu-
ments require the existence of terms higher than
quadratic order (i.e., anharmonic) in the elastic en-

ergy of a 2D solid. These anharmonic terms do not

(0)

FIG. 1. Two long-wavelength modes of a 1D solid.
The dotted lines denote the unperturbed positions of the
layers. (a) Compressional: The wave vector of the fluc-
tuation is parallel to the z axis. (b) Undulational: The
wave vector of the fluctuation lies in the xy plane.
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modify the qualitative nature of the Landau-Peierls

result, however, using analytic RG techniques we

showed that these terms are marginally irrelevant

with respect to the fixed line of the harmonic
theory. In consequence, we showed that the elastic
"constants" B and E], respectively, vanish and

diverge logarithmically at small wave vector k. We
also found that G{z,x =0)- ~z

~

~ with

y =g(T)(lnz)" at large z (a similar result holding in

the x& direction) and g takes the universal value —,

[compare with the harmonic result (1.1}].These re-

sults are manifest at sufficiently long wavelengths
and our analysis yielded the crossover length scale
where the harmonic behavior is replaced by the full
anharmonic results.

In this paper, we present the details of the
analysis leading to our results. We also present two
new calculations: the dependence of B(k) and

K~(k) on arbitrary values of
~
k,

~

/k, z, where

kz ——k„+k„, allowing comparison of our predic-
tions with experiments' performed when both kz
and k, are nonzero; and the behavior of B as a func-
tion of applied stress, which is relevant to mechani-
cal measurements" on smectic liquid crystals.

This paper is organized as follows: Section II de-

fines the anharmonic elastic energy describing the
1D solid and explains its origins in terms of sym-

metry arguments and classical elasticity theory; Sec.
III contains the RG analysis of the model; Sec. IV
is devoted to a summary of our results and a discus-

sion of the feasibility of their experimental verifica-

tion. The appendixes contain technical details of
the RG analysis.

II. MODEL

The elastic free-energy functional describing a 1D
solid can be deduced using symmetry arguments.
We require that this energy functional depend only
on gradients of m(x), the spatially varying part of
the mass density n(x), i.e., n(x)=n(0)+m(x),
where n(0) is the average density. Requiring that
the density order at wave vectors q for which

~ q ~
=qo, and that we respect spatial isotropy, we

obtain the following free energy:

H = , Kf—d'x[—2qo[Vm(x)]

+[V m(x)] +O((V m) }] (2.1)

for some parameter E. Assuming that the 1D solid
orders along the z axis with unperturbed layers ly-

ing parallel to the x —y plane we write

m {x}=Re[A{x)expiq[z+u (x)]] .

The function u(x) describes the vertical displace-
ment of a point x about its unperturbed position.
Transverse displacements corresponding to stretch-
ing the layers can be shown to be irrelevant to the
long-wavelength behavior of a 1D solid. Using the
above expression for m(x) in (2.1) and neglecting
fluctuations in A(x) [i.e., taking A(x)=A, a con-
stant' ] we arrive at the spin-wave' Hamiltonian,

H,„=—fd x C + —.C(Vu) +A, (V u) + + (Vu) + —,[(Vu) ]SW az 2 a, a, (2.2)

where t=[4K(Aq ) ] ', C=q ~(q qo), and A, is-
proportional' to q '. The value of C and hence q
(the wave vector of the 1D density wave ) is deter-
mined by demanding that the expectation value
(Bu /Bz ) =0, thus ensuring that we perturb about a
configuration of stable equilibrium. This choice for
C also guarantees that ((Vzu) }=0 where,
V', —=a'sax'+a'ray'. (See Appendix A for an ex-
plicit one-loop verification of this result. )

Equation (2.2) can also be obtained on the basis
of classical elasticity theory. ' Since the displace-
ments of the particles of the 1D solid are assumed
to be one dimensional, the trace of the Lagrangian
strain tensor' reduces to

re= ~u + —'(qu (2.3)
az 2

I

Since the 1D solid cannot support shear, the elastic
free energy is a function only of the invariant Tre
and the bending {i.e., undulational energy density
(Vzu) . Thus, we can write the free energy as

H= —fd x[C(Tre)+(Tre) +A~(V&u)z
2t

+O((Tre )')], {2.4)

which is identical to (2.2), aside from a term
~ {c)u /Bz ) which can be neglected at long wave-
lengths. As noted above, we choose C so that
(Bu/Bz }=0. This condition is simply the state-
ment that the thermal average of the strain is zero
in the absence of applied stress.
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If we drop higher than quadratic terms in u in

(2.2) we arrive at the Gaussian or harmonic approx-
imation. To obtain (Bu/t)z) =0 we must choose
C=0, and Fourier transforming we find for small
k

H,„-—Jd'k[k, '+A(k, , )]
~

u(k)
~

'.
S%V (2.5)

By the equipartition theorem

(u (x))= J dik
2 ~~a&

k, +A, k~
(2.7)

when t+0 for a system of infinite size; hence,
(m (x) ) =0, unless t =0. One can also recover the
results of Caille for 6 ( x ) [see (1.1)] with

g(t) =q t!8m.A, .
The necessity of anharmonic terms in (2.2) can be

understood in terms of the rotational isotropy of the
system. If one begins with an unperturbed 1D solid
(i.e., u =0) and uniformly rotates the system by an
angle 0 about, for example the y axis, one generates
a displacement

u (x)=z(cosO —1)+xsin0 . (2.8)

The coefficients of k, and kz in (2.5) are, respec-
tively, B/k~T and K~/k&T. Using (2.5) one can
readily establish the Landau-Peierls instability, '
i.e., (m (x)) =0, as follows:

(m(x)) =A(expiq[z+u(x)])

=Aexp(iqz)exp[ ——, (u (x))] . (2.6)

It is straightforward to verify that upon substituting
(2.8) in (2.2) one obtains H,„=O identically. How-
ever, with only quadratic terms present,
H,„=O(|9 ). Thus, anharmonic terms are required
to preserve the rotational invariance for arbitrarily
large uniform rotations.

III. RG ANALYSIS AND CROSSOVER
BEHAVIOR

A. Renormalization program

Q(x)=

xy= xy,

z =X-'z,
(3.1)

where the field g is dimensionless. With this rescal-
ing (note that d x =A, 'd x), Hamiltonian (2.2)
takes the form

To assess the effects of the anharmonic terms in
(2.2) we employ the field-theoretic RG techniques
of Brezin et al. ' Our analysis will follow closely
an earlier study of the spin-wave Lifshitz point
model which contains a single anharmonic term
proportional to [(Viu) ] . The quadratic theory
(2.5) is used as the noninteracting Hamiltonian, and
the anharmonic terms are treated perturbatively in
powers of t. The calculation is simplified by rescal-
ing the field u (x) and the coordinates x as follows:

' 1/2

t((x ),

'2 ' I /2

&'"t'" Bz A,
' Bz k' Bz 4

+—(VA) + +(Vit() + — (VA) +——[(VA) ]

(3.2)

where we have dropped terms proportional to
(a' t(/ar')', (al(/ar)', (aq/az), and

( VA ) (Bg/t)z) which, by power counting, are ir-
relevant with respect to the fixed line of the qua-
dratic theory. Since we will ultimately develop a
loop expansion in powers of t, we have also dropped
a term proportional to C(Bt(/Bz) (recall that C =0
in the quadratic theory). The two anharmonic
terms displayed in (3.2) are marginal by power-
counting arguments, and we define a dimensionless
coupling

tW0=-
A,

3 (3.3)

To suppress the infrared divergences in perturbation
theory in powers of tUD, we add a mass term —,m 0$
to (3.2), letting ma~0 at the end of the RG calcu-
lation. Multiplicative renormalizabiligt of the two-
point correlation function g ( ki, k, ) = ( 1((k )

Xli( —k)) requires that there exist dimensionless
renormalization constants Z&, Z, and Z such
that in the limit where the ultraviolet cutoff A~ ~,
the quantity
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wp Zww

k, =Z k, .

(3.4a)

(3.4b)

Similar statements of renormalizability can be made
for the vertices I 3( k &, k2, k3) and I 4( k &, k2, k3, k4),
the amputated Fourier transforms of the connected,
single-particle irreducible three-point and four-point
correlation functions, respectively. Specifically, '

we require that the quantities Z ZQ„' I & and

Z„ZQ I 4 remain finite as A~ ap when expressed
in terms of the renormalized variables. As
described in Sec. II, the parameter C in (3.2) is
chosen to ensure that (a1(/az) =0; C is therefore
treated as a renormalization constant, not as an in-

dependent coupling constant.

B. RG equations: g '( k ) in the absence
of applied stress

Z~ g(kz, k„wp, A)

remains finite order by order in wp when expressed
in terms of the renormalized variables w and k," de-
fined by

where the dimensionless quantities A Rp and Sp
are given by

' 1/4
A 'Rp ——A ' k +k (3.6a)

k,
Sp ——

kq
(3.6b)

a 1 )i a a a
al 2 1+S al aS aw

A
+21'ii+2'Yi f So wo =0 (3 7)Rp'

where I =ln(A/Rp), mp has been set equal to zero,
and

Bk, 8lnZ 3w

"=k, Bl "= Bl .=64-"'"'
2

(3.8a)

Renormalizability of the theory implies that the
function f satisfies the RG equation:

The explicit computations with Hamiltonian (3.2)
of g '( k ), I 3, and I 4 are summarized in Appendix
A where expressions for Z, Z, and Z~, which
render the theory finite, are given to first order in

wp. By dimensional analysis, the correlation func-
tion g '(kz, k„wp, A) can be written in the form

Bwp Swp
2

P —= = +O(wp),
w 7T

8 lnZ~ —wp
y~ —— —— +O(wp) .

(3.8b)

(3.8c)

g (ki k wp A)=k f Sp wpRp' (3.5) To lowest order in wp, the solution of (3.7) is
given by'

f Sp wp f( 1,S(l),w(l))e——xp 2J [1—~[w(r)] +yi[w(r)]]dr
A

Rp p
(3.9)

where S and w are functions of Sp, wp, and ~ determined by the RG flow equations

as
a~

= —Syi(w), (3.10a)

= —P (w),
37

(3.10b)

and the boundary conditions S(~=0)=Sp, and w(~=0) =wp. Using (3.8a) and (3.8b) the solutions of (3.10)
with the above boundary conditions are found to be

—3/5
5Wp

S=Sp 1+
64m

(3.11a)
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5wp
W=Wp 1+ 7

64~ (3.11b)

The function f(1,S(l),w(l)) is evaluated in a regime where the Gaussian theory is valid [i.e., w(1) « I], and
thus to zeroth order in w(1) we have

f(2,S(1),w(1) ) = I + [S(1)]

Using {3.5), (3.9), (3.11), and (3.12) we then find
—4/5 ' 2/5

g ( kJ k w ) k + ln
2 4 1/4 + J 1 + ln 2 4 1/464~ (k 2+ k 4)1/4 64~ (k2+ k 4)1/4

(3 ~ 12)

(3.13)

Equation (3.13) implies the existence of crossover length scales (k~ )
' and (k,*) ' satisfying

(k ) (k* )2 A 4 256m

5w
(3.14)

where the system crosses over from the familiar Gaussian behavior to the asymptotic behavior governed by
the full Hamiltonian (3.2). In the Gaussian regime, k, +k~&&(k,*) +(k& ) and g '(kz, k, )-k, +{kq) .
For k, +k] &&(k,*) +(k] ), however, (3.13) yields

—4/5

g '(kx kz)-kz» 2 4 1/4(kz +kq)'/
+k~ ln

(k2 k4)1/4 (3.15)

We can define renormalized elastic constants B"(k ) and I(:1 ( k ) as the coefficients of k, /k~ T and k ~ /kz T in
g '(k), respectively. Hence, one sees from (3.15) that B (k) and K1(k), respectively, vanish and diverge log-
arithmically at small k, implying the breakdown of hydrodynamics in the asymptotic regime.

C. RG equation: g '(k), in the presence
of applied stress

In the presence of an externally-applied dilative
stress crp, we add a term 15

Op 3 Bu
d X

k~T

to the Hamiltonian (2.2). With the rescaling (3.1)
this term becomes

1/2
pro t

y
~ Bg

az

If we let C~C+(opt/kgT) then the symmetry-
breaking term in the Hamiltonian becomes

——,uo J d x(V jt() (3.16)

where vp ——o.pt/i, k&T. Renormalizability of the
theory in the presence of (3.16) implies that

Z~g '(k) is finite as A~no when expressed in
terms of the renormalized parameters given by (3.4)
and by

A calculation of Z„ to first order in wp is presented
in Appendix A. To this order, Z„=Z . Assuming
for convenience that k&

——0, dimensional analysis al-
lows us to write

g '(k„u, w) =k, h ln —,wp
vp

where h satisfies the RG equation:

(3.18)

a a a—yi +2y, +2y~+P h (x, w) =0
BX BX wp

(3.19)

and x =ln(A/up). To lowest order, the solution of
(3.19) is given by

x
h (x,w)-h(l, w(x))exp —2I [y, [w(r)]

+y&[w(r)]]dr

(3.20)
with w(7) given by (3.11b). We then find that

—4/5

g (k„u w) —k, 1+ ln
5w A

64~ vp

Vp =Zu V
2= 22 (3.17) (3.21)
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The above expression for g
' implies the existence

of a crossover stress scale defined by

2
BlnZ uo , 4y-

Bl 4m.
+R'wpu p+O(wp), (3.26b)

v* =A exp
64m.

5w
(3.22)

and the system responds nonlinearly to stress. '

Recalling that B /k&T is defined as the coefficient
of k, in g ', we see that for stresses v »v*, linear-
response theory (Hooke's Law} is valid, i.e., B is
independent of stress. However, when v « v*,

—4/5

g -k, ln
A

Vp

and R' is a nonuniversal number (i.e., it depends on
the specific cutoff procedure used to evaluate the
integrals). The solution of (3.24) to lowest order is
given by

G(r, s, w) -G{1,s(l), w(l) )

Xexp —f y[u(r), w(r)]dr

(3.27)

where 1 = ln(Arp) and u is a function of up, wp, and
r determined by the RG flow equation:

D. RG equation: G(x}
Bu = —P„(u,w)
a~

(3.28)

Techniques similar to those used above in the dis-
cussion of g '(k) can be used to find the large dis-
tance behavior of the density-density correlation
function G(x },defined by

G(x~ z, w) = (exp jiA, '[u (x)—u (0)]j )

=(expjiuo[g(x) P(o—)]]), (3.23)

Ar, =A(Z'+x', }'/',

z
sp

xg

and satisfies the RG equation:

(3.24a)

(3.24b)

where uo ——wo [under renormalization, however,
u (1) differs from w '~ (I)]. The renormalizability of
G(x) implies that there exists a renormalization
constant Z such that ZG is finite in the limit
A~~ when expressed in terms of renormalized
quantities. The calculation of Z to first order in wp

is displayed in Appendix B. By dimensional

analysis, G can be written as a function of the di-

mensionless variables,

and the boundary condition u(v. =0}=up. Using
(3.lib) and (3.26a) the solution of (3.28) is given by

' 1/1P
5Wp

u =uo
64m

(3.29)

8 5w
G(x) -exp —— 1+ ln(x&A)

3 64~

6/5

—R 1+ ln(x&A)
Sw

64~

2/5

(3.30)

where R is proportional to R'. When z »x~, G(x )

is given by (3.30) with x~ replaced by z . The
crossover length scales are thus given by

The function G{1,s(l), w{1}) is evaluated in the
Gaussian regime. Its form for arbitrary values of
z /x J is cumbersome; however, in the limits z »x ~

and z «xz, G{1,s{l),w(1)) behaves like a constant
to lowest order. Using (3.26b), (3.27), and (3.29) we
conclude that for z «x &, G scales as

a ~i 1 a a—Spl'1
ai 2 1+s,-' a~ as,

(zg)1/2 A exp
5w

(3.31)

+P +P„+y G =0, (3.25)
a a

Bwp Bup

At distances xz «xz, we recover from (3.30) the
Gaussian result

where 1 =ln(Arp) and

(Z 1Z 1/2
)

M p

Wpup 2+O{wo},

(3.26a)

G(x„z=o)-x,—" .

However, at distances xz »x z, we find

xl, z =0) xg

where

(3.32)

(3.33)
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6/5

n = —— [ln(x A)]'
3 64m

2/5

—R [ln(xtA)]
64m

(3.34)

dyne/cm, whereupon w -0.7. Since these num-

bers are typically obtained through experiments
done at wave vectors A-10 A ', we substitute
this value for A in (3.13). For a light scattering
measurement of K], we choose k, =0 (Ref. 24) and
obtain from (3.13)

When xz ——O,z+0, G(z) is given by (3.32)—(3.34)
with xz replaced by z '

IV. DISCUSSION

We have considered the long-wavelength behavior
of 1D solids in the presence of the anharmonic
terms demanded by rotational symmetry. While
some of these terms are irrelevant with respect to
the fixed line of the harmonic theory, two terms,
namely, (V~u) (B,u) and [(Vtu) ] represent mar-

ginal operators. Using analytic RG methods direct-
ly in three dimensions we have assessed the effects
of these marginal operators, and found the follow-

ing results:
(1) At sufficiently long wavelengths, the renor-

malized elastic constants 8"(k) and K~ (k), respec-
tively, vanish and diverge logarithmically [see
(3.15)]. This nonanalytic dependence of the elastic
constants on the wave vector k implies that the gra-
dient expansion, whose existence is the central as-
sumption of hydrodynamics, is not valid at suffi-
ciently long wavelengths in 1D solids.

(2) For sufficiently small applied stress, the linear
relationship between stress and strain (Hooke's
Law) breaks down. This effect is manifest in the
nonanalytic dependence of 8 on the applied stress
[see (3.21)].

{3)Density correlations decay at sufficiently long
distances with a length-dependent power law [see
(3.33)].

The crossover length and stress scales [see (3.14),
(3.22), and (3.31)] where the above effects begin to
dominate the system's behavior are determined by
the dimensionless quantity w =kz TB ' /K ]

which serves as the expansion parameter of our per-
turbative RG procedure. The predicted effects
should be observed more readily in liquid crystals
with large values of w (i.e., the crossover wave vec-
tor and stress scales will be larger in such systems).
Since the compressibility 8 tends to zero or a small
constant as the nematic —smectic-A transition is
approached from below, the anharmonic behavior
should be more easily seen deep in the smectic-A

phase. For a typical smectic-A liquid crystal,
T-350 K, K&-5&(10 dyne, and 8-5)&10

K& (kj ) =E&(A)[l —0.017 ln(10 k~)] ~, (4.1)

where kz is measured in reciprocal angstroms and
K

&
(A ) —10 dynes, the value of K

~ at
k J A —10 'A ' . The elastic constant K

&
can be

measured by light scattering with an accuracy of
about 3%. The logarithmic correction term there-
fore becomes observable at kz's sufficiently small
that K& (kz) and K~(A) differ by more than 3%,
i.e., when kj -10 A '. In light scattering experi-
ments k's —10 A ' are obtainable.

In the second sound measurement of 8 reported
in Ref. 10, e.g., wave vectors

~

k
~

as large as 400
cm '=40X10 A ', and values of k, as small as
10 A ' can be obtained. Setting kz ——0 in {3.13)
and using A-40&10 A ', k, =A, '10 A
with A, = 10 A (Ref. 24) and w =0.7, we find

B(k, ) —B(A)
B(A) B(A)

(4.2)

Reference 10 actually reports hydrodynamic
behavior (i.e., constant 8) over the available range
of k, 's. However, the data was taken near the
nematic —smectic-A transition where 8 is small; in
consequence w-0. 1 for these measurements and
the expected change in 8 for k, 's between 10 and
4)(10 A ' is less than 1%.

Estimates for the observability of the nonhydro-
dynamic behavior are very sensitive to the value of
w. For example, given a liquid crystal with w =4,
a 3% variation in Ki occurs between kz -10 A
and kq-10 A ', the fractional change in 8 over
the range of k, 's probed in Ref. 10 becomes 36%.
In making these estimates one should note that
(3.13) was derived assuming w ~&1, and higher-
order corrections [i.e., higher powers of w multiply-

ing the logarithmic terms in (3.13)] have been

neglected. While such corrections do not alter the
form of g '(k) [i.e., kj(lnkl) ~ or k, (ink, )

~ ]
for asymptotically small k, they can, in principle,
affect estimates of the observability of the nonlinear
corrections. In ignoring these higher-order terms
we have implicitly made the assumption that the
true expansion parameter is [see (3.13)] something
like w/64m rather than simply w, in which case the
higher-order terms play no role until w becomes
larger than 100.
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A similar assessment can be made of the feasibili-
ty of observing the breakdown of Hooke's Law, i.e.,
the nonanalytic dependence of 8 on the applied
stress for small stress. Equation (3.21) for the re-
normalized elastic constant 8 can, e.g., be cast
readily in the form

5w(vp) vp8 (v) =8 (vp) 1 + ln-
64m v

—4/5

(4.3)

where

w(vp) = 5 ln(A/vp )
+W

64m

is the solution of (3 ~ 10b) with the boundary condi-
tion w(A) =wp. Recalling v =(ot)' (AK~T) ' we
write (4.3) in terms of the stress o. as

5~(U, )8"(o)=8"(o ) ln
128m o

—4/5

(4.4)

Again assuming w(vp)-0. 7, one finds, as in (4.2),
the percentage change in 8 for a given change in
o'

6B BR( ) BR( )

8«o) 8(~o)

sample's finite size. With 8-5)(10 dyne/cm,
A, -10 cm, and k, —10 cm ', we have o.~-50
dyne/cm; this represents a decrease by only a fac-
tor of 10 from the maximum stress of 500
dyne/cm in the Bartolino-Durand experiment, and
should be accompanied by roughly a 2% decrease in
the value of 8.

In view of the extreme (exponential) sensitivity of
these estimates to the value of the parameter w, it is
worth emphasizing that reliable values of both 8
and K~ (which determine w) for smectics A far from
the N-A transition are simply not available. The
"typical" numbers we have used in the above esti-
mates are, in fact, very conservative. For example,
8-5X 10 dyne/cm seems a reasonable number
for bilayer smectics, but much larger 8's (for ex-
ample -2)&10 dyne/cm ) have been measured in
monolayer materials. So far as we can ascertain,
values of K& are not available for these monolayers.
If, however, K~ does not change appreciably from
bilayers to monolayers, ' the monolayers can have
values of w almost ten times as large as the w-0. 7
we have been assuming. In such a material anhar-
monic effects would be readily observable. Mea-
surements of K~ in monolayer materials whose 8's
are known is, from this point of view, a worthwhile
endeavor.

oo——(0.007)ln-
o
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APPENDIX A: COMPUTATION OF THE Z's

The computations of g '(k), the inverse Fourier
transform of (t((x)t((0)), 1 3, the three-point ver-
tex, and I 4, the four-point vertex to first order in
wo are presented here.

I. g '( k )

Writing Dyson's equation,

op —o-*—=BA,k, , (4.6) g '(k) =go '(k) —X(k)

whereupon further evolution of 8 is halted by the with
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while the graph in Fig. 2(b) yields

2 wplnA
rb(k)= —k',

4m
(A2)

We choose C in (3.2) to cancel the 0(kz ) terms in
(A1) and (A2). This same choice of C cancels the
graph of Fig. 3, thus ensuring that (Bg/Bz) =0 to
this order. In the presence of an external stress
(3.16), an additional contribution to X(k) comes
from the graphs of Fig. 4, which yield the divergent
quantity

gp '(k)=k, +(kq) +mp,

one generates from (3.2) the diagrammatic perturba-
tion series for X(k) shown in Fig. 2. Only dia-
grams divergent as the inverse ultraviolet cutoff a
tends to zero have been included; the Z's are chosen
to remove these divergences in each order of the ex-
pansion in wp. The graph in Fig. 2(a) yields the fol-
lowing divergent quantity:

wplnA 2 wplnA 4 wplnA
X,(k)=k, +k~ +k~

16m 8n. 327r

(A1)

FIG 3. Graph contributing to (Bg/Bz).

II. I 3 and I 4

~w&& wolnAI3- 1—
2 16m

(A6a)

The vertices I 3(k),k2, k3) and y4(k), k, , k3 k4)
are the amputated Fourier transforms of the con-
nected, single-particle irreducible three-point and
four-point correlation functions, respectively. To
compute Z, one need only compute the part of
I 3(k, k, —2k)proportional to k, (kt), and the part
of 14(k, k, —k, —k) proportional to (k&) . Dia-
grams contributing to these quantities appear in
Fig. 5. Evaluation of these diagrams leads to the
results

g '(k) =k, 1—wplnA 4 wplnA

16m 32~
+k4, 1+

2 lnA
~v klwpUp

16m

Note that g&& '(k) now includes a term —vok

Thus, we find to first order in wp,

(A3) Wp Wp
I 4- 1 — lnA

8 16m
(A6b)

The appropriate combinations of Z's rendering I 3

and I 4 finite are found by relating these vertices
and g(k) to the corresponding functions in the un-

scaled theory (2.2). Using (3.1) we find that

wplnA—Upky 1—
16m

(A4)

wplnA
Zp ——1—

64m

3w plnA
Z„=Z =1+

64m

(A5a)

(Asb)

The renormalizability assumption demands that the
substitutes (3.4) and (3.17) render the quantity

Z~ g '(k) finite. This assumption yields

w A. r4(kJ k ) = r4(kJ Ak )

where I 4 is the vertex function associated with the
Hamiltonian (2.2). Likewise, the Fourier
transforms of the two-point correlation functions
expressed in terms of f and u, respectively, are re-

lated by g(kJ k )=g (kg A,k, ). Renormalizability
requires that Z~ g and Z„Z Z 'g' are finite as
A~ ~, hence, Z„=Z~Z~ Z~ ' . Requiring that
Z„Z I 4 be finite as A~ Do we then find, using the
above considerations, that ZQ Z I 4 must remain
finite as A~ oo. Similar reasoning leads to the con-

FIG. 2. Graphs contributing to the self-energies X,
and Xb. Each solid line represents a bare propagator

gp(k).

FIG. 4. Graphs contributing to the self-energy X„ in
the presence of an applied stress. Each cross represents a
Uo vertex.2
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FIG. 6. Graphs contributing to G(x), the density-
density correlation function. The wavy line represents
Gp(x).

FIG. 5. (a) Graphs contributing to the three-point ver-

tex I 3. (b) Graphs contributing to the four-point vertex

r, .

elusion that ZQ' Z r3 remain finite as A~ac.
%'ith the above renormalizability assumptions on

r, and I 4 we then find, using (A5) and (A6) that

parameters.
To zeroth order in wp,

G ( x ) = 6&& (x )=exp [ u 0 [go ( x ) —go ( 0 )]],
where gp(x) is the Fourier transform of gp(k). Set-
ting z =0, for simplicity, we find

5wpZ„=I+ lnA .
64~

(A7)

—u p /(4')
gp(xj, z =0)=(xgA) (Bl)

in agreement with Caille.
In O(wp) there are two classes of diagrams (Fig.

6) divergent as A~ ao, evaluation of which yields

APPENDIX B: RENORMALIZATION OF G(x)
Ga ( xg z =0)= —R 'wpu pGp( x )lnA (B2)

Multiplicative renormalizability of the density-
density correlation function

G(x)=(exp[iuo[g(x) —P(0)]] ) (B3)

where R' is a positive nonuniversal coefficient.
Thus, to first order in wp,

—u 2/4n'
G ( xz,z =0)= (x&A) ' (1—R 'wpu plnA)

implies the existence of a renormalization constant
Z (independent of x) such that ZG(x) is finite
when expressed in terms of the renormalized

whereupon

u 2/4e
Z =A ( 1+R'wpuplnA) . (B4)
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