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A new extended theory of electron transport in dense gases is presented. It is shown that

positive and negative density effects can be explained in terms of a single unifying theory.
The agreement between theory and experiment is extremely good over a wide range of pres-

sure and temperature in gases with a negative effect, such as He and H2. Some further im-

provements of the theory in gases with elevated polarizability seem to be necessary for a
better quantitative agreement with experimental data, even if the agreement in Ar makes us

confident that the proposed theoretical approach can be correct. In the light of our unify-

ing theory, previous theoretical models are analyzed and it is shown that almost all can be

obtained under special conditions.

I. INTRODUCTION

The density dependence of the electron drift velo-

city W in dense gases at a given (small) field-to-
density ratio E!N, is an established experimental
phenomenon first observed almost twenty years
ago. Since then, positive and negative effects (i.e.,
drift velocities that increase or decrease with the
density N) have been observed in a number of gases
under different conditions of pressure and tempera-
ture. For the most part, these results have been al-

ready reviewed. In Sec. VI, those experimental
data that are particularly significant as a test of our
theoretical approach will be reported.

As concerns theory, several more or less debated
models have been proposed in the last years to ex-

plain the experimental evidence. However, because
of the difficulties the problem presents from the
analytical and, even more, from the interpretative
points of view, the situation still appears to be rath-
er unsatisfactory. In this paper, after a brief
analysis of the theoretical models proposed up to
now, we shall present a multiple-scattering theory
which in our opinion gives a satisfactory answer to
the conceptual problem. It is shown, in fact, how

positive and negative effects can be (quantitatively)
explained in terms of a single unifying theory in

which localization phenomena, which appear so evi-

dent in these systems, are also taken into correct
consideration. In order to reduce formal difficulties
and in an attempt to give a more satisfactory
answer to the conceptual problem, the restriction to
thermal electrons will be retained. On the other
hand, no rigorous attempt has yet been done to
develop a transport theory for hot electrons. The

proposed extensions ' to elevated E/N of some
theories developed for thermal electrons appear to
be reasonable simple ways to solve the problem, but

they still need sound mathematical justifications.

II. THEORETICAL MODELS
OF THE LITERATURE

The first experimental observations of a density

dependence of electron drift velocity were all rela-
tive to gases (i.e., N2, H2, CO2, D2, CpH6) where the
effect is negative. ' Frommhold suggested that
the lower drift velocities at higher densities were

due to the thermal electrons spending part of their
transit time as negative ions, trapped in postulated
Feshbach resonances associated with excited rota-
tional states of the molecules. This model, howev-

er, which only provides negative effects in molecu-
lar gases, was soon found to be inconsistent with the
discovery that the effect is positive in CH4 and that
positive and negative effects are possible in monoa-
tomic gases.

Legler' proposed an alternative model based on
the observation that, under the conditions of some
experiments (where N & 10 cm ), the wavelength
of the low-energy electrons becomes of the same or-
der as the mean-free path. For this reason, Legler
suggested that the gas can be treated as a continu-
ous medium and that multiple-scattering rather
than single-scattering theory must be used. Legler
applied multiple-scattering theory in the form of a
shift of the kinetic energy which, according to a
theory of Fermi, " can be related to the scattering
length. This, in turn, leads to an explanation of
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both negative and positive effects according to the
sign of the scattering length. Also, this theory had
only a limited success as it was unable to correctly
account for the experimental results if not in excep-
tional cases, at extremely elevated values of N.

Atrazev and Yakubov presented two distinct in-
terpretative models for positive and negative effects.
The positive effect in gases with large polarizability
is explained in terms of a density-dependent at-
tenuation of the polarizability a by a factor of
(1+8m.aN/3), as a consequence of the dipole-dipole
interactions induced by the electrons on the atoms,
which finally leads to a new effective cross section

1= 1 — Nqk. ,
~p 2& m.

(2.1)

where A, =h/&2mkT and where 8'p ——8'(N~O) is
the classical drift velocity. The momentum-transfer
cross section q is also given a constant value when

writing W/8'p in this form. Equation (2.1) agrees
well with the experimental data in slightly dense
gases where negative effects have been observed.
However, in spite of this success, the derivation of
Eq. (2.1) seems to be incorrect. In fact, according
to a theory developed by Yakubov, ' the corrective
term should be divided by about a factor of 2. But
even the good agreement with experimental data in
Ar and CH4 did not seem to be a sufficient support
to the theory of positive effect presented by Atrazev
and Yakubov. In fact, the presence of a parameter
rp, whose choice is somewhat critical, is a weakness
of the theory.

Almost simultaneously and independently, Bra-
glia and Dallacasa proposed a quantum-
rnechanical model of both negative and positive ef-
fects. The theory, in a sense, extends Fermi's
theory of Legler's model' and also is based on the
observation that multiple-scattering effects can be
properly accounted for in terms of scattering ampli-

q ff =q(1+ 2m a N/3aoroa )~,

where a ( &0) is the scattering length, ap the Bohr
radius, and rp is a not-well-defined "atomic radius, "
which is fixed by imposing agreement between
theory and experiment at a given N. On the con-
trary, the negative effect (in atoms with low polari-
zability) is explained in terms of a quantum-
mechanical multiple-scattering model apparently
leading to a collision frequency increased by a fac-
tor of (1+A,qN/m. ), A. being the electron wave-

length. The reduced electron drift velocity W/8'p
is then written to change with N according to the
equation

tude {or t matrix). Braglia and Dallacasa also ar-
rived at Eq. (2.1) for the low-density negative effect
and at an apparently satisfactory explanation of the
positive effect in Ar. In our opinion, this theory
still remains as that which better explains the low-
density negative effects from the conceptual and
mathematical points of view, despite an assumption
of the energy dependence of the scattering ampli-
tude which, probably because of an insufficient jus-
tification, gives place to some criticism. But we
shall return to this question below. The positive ef-
fect in Ar still is explained in terms of a kinetic-
energy shift and an effective scattering length. Of
course, the limits of similar assumptions will also be
reconsidered below. Here, we shall limit ourselves
to mention that Gryko and Popielawski, ' on the
line of a previous work, ' have recently attempted
to extend the Braglia and Dallacasa theory for Ar
to higher powers of N than the first. However, it
seems to us that on the basis of our theory
developed below, this extension is not fully con-
sistent with the orders of the approximations under-
lying our mentioned first-order theory.

Schwarz applied the Eggarter and Cohen per-
colation model with a proper extension of the tech-
nique for the electronic-trapping calculation. In
this way, Schwarz is apparently led to a satisfactory
interpretation of the experimental results in He at
very low temperatures, but in terms of a distance
(over which the potential fluctuations occur) as a
parameter which must be fixed empirically. In
spite of this weakness of the theory and the ap-
parent substantial difference with our approach, we
believe that the two approaches have many more
points of contact than suspected a priori. There-
fore, we shall return briefly to this subject below.

The last theoretical approach that remains to be
mentioned at this point is due to O' Malley' who
proposed an interpretative model of positive and
negative effects. Really, apart from the choice of
the shift and the quantitative agreement with exper-
imental data, the positive effect still is explained in
terms of a kinetic-energy shift in the electron-
collision frequency. Therefore, from a conceptual
point of view the interpretation of the phenomenon
is on the same lines of previous models. However,
the equation that O' Malley arrived at with specula-
tive arguments seems to find better theoretical justi-
fication in our theory, for not-too-small values of
N. This will be shown below. As concerns the neg-
ative effect, the phenomenon is explained in terms
of a modification of the electron energy distribution
to take account of a supposed electron trapping in
spatially localized states with negative kinetic ener-
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gies, as a consequence of the uncertainty principle.
In this way, O' Malley is led to write that'

(kT) —5/2

3 mv~

v '(e)exp
00 (~+I ) d6, (2.2)

0 kT

where g=0+ is an infinitesimal positive quantity
and H=p /2m+V( r ) is the Hamiltonian of an
electron in the potential V( r ). For an electron in a
gas, G(e) is a function of the atom positions
through V( r ). Since the atoms are statistically dis-
tributed, it is useful to introduce the configurational
average of G(e), for example, Ã(e)=(G(e)).
More, in particular, Eq. (3.1) is conveniently
rewritten as'

=8'p exp —I /kT (2.3) 8 (P) = Sp(E') +8 (c)W(c)Sp(6), (3.2)

where e is the electron charge, m the electron mass,
k the Boltzmann constant, T the gas temperature,
v(e) =Nv'2—e/m Q(e) the total electron-collision fre-

quency, and l =(h/nV2m)NQv e. Here, Q is the
total electron cross section and h the Planck con-
stant. As suggested by O' Malley, in Eq. (2.3) I is
taken outside the integral as an average. In the
light of the theory presented below, Eq. (2.2) finds
its justification at the lower densities.

After this brief analysis of the various ap-
proaches that have been proposed over the last ten

years, in spite of the disagreement between the dif-
ferent theoretical models, one is led to conclude that
a correct explanation of the phenomenon must be
possible in terms of a multiple-scattering theory
(both for the positive and the negative effects). In
fact, almost all the authors seem to indicate that
this is the direction that must be taken. Below, we
shall try to show how the positive and negative den-

sity effects can be explained in terms of a general
unifying theory. The conditions will also be dis-
cussed under which the theoretical models present-
ed above can be obtained from the general theory.

where 9p(e) =Gp(e) —= [G(e)]v &» and a (e)
=(T(e)) with the t matrix T(e) defined by the
equation

(3.3)

When writing that V=+,. V, , V, being the contribu-

tion to the potential V from the ith atom (localized
at R;), Eq. (3.3) leads to the following development
of T(e)".

T(e) = g r;+ g t; G, t,
i i'

+ g t(GptlGptk+ ' ' '

i'
j+k

(3.4)

t; being the t matrix of the ith atom. The contribu-
tions from atomic correlations are represented by
the multiple sums of the right-hand side (rhs).
Now, the quantity of major interest for our discus-
sion of Sec. IV, is the diagonal representation
9( k e) of W(e) on the k basis, ie., 9( k e)
=8 z k(e), which will be given here in the canoni-

cal form

Ã( k, E)=[e+iri ek X( —k, e)]— (3.5)

III. FORMALISM AND APPROXIMATION
OUTLINE

A few elements of the mathematical formalism,
which are needed for a better comprehension of the
electron transport theory developed in Sec. IV, will

be given first together with an outline of the ap-
proximations that are useful for effective calcula-
tions.

A. The Green operator approximation

where ez ——(A /2m ) k is the electron (kinetic) en-

ergy and X( k, e) is the self-energy' (note that
XP = ( VG ) ). The appropriate expression of
X( k, e) can be obtained from Eqs. (3.2) and (3.4) or,
directly, from Eq. (3.1). Generally, this is a diffi-
cult problem but useful approximations can be more
simply obtained in some significant cases.

The first case is one where the atom number den-

sity N is sufficiently low so that the correlation
terms may be neglected in Eq. (3.4). In this case,
W( k, e)=Nt( k, e) and from Eq. (3.2), we may also
expect that

G(e) =(@+ig —H) (3.1)

To start with, we introduce the Green operator
G(e) defined as

9( k, e) =(a+i g —e-„)

+(@+ig —e q ) Nt( k,e),
=[@+iri eg Nt( k,e)]— —

(3.6a)

(3.6b)
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where t( k, e)=th h(e) is the t matrix (in the
momentum-basis representation) of a single atom.
A comparison of Eq. (3.6b) with Eq. (3.5) then
leads one to write that, in the low-density limit,

X( k, e) =Nt( k, e) . (3.'7)

e—e k
—6( kp, e)=0,

0
(3.8)

where 5( kp, e)= ReX( kp, e). Similar approxima-
tions and their limits of validity have already been
discussed in the literature. ' Here we are interested
to observe that two distinct solutions of Eq. (3.8)
exist; that is,

6( kp e) = —N5( kp 6)

(3.9a)

k
——E'+N5( kp, &),

0

and

6( k„~)=Nb( k,,~)=0

This result will also be used below to study electron
transport in gases, but its range of validity is gen-
erally very restricted. ' When N is increased from
very low values, approximation (3.6b) becomes in-
valid and correlations can also become important.

Another important case is one where the atom
density still is sufficiently low that the position
W( k, e}=Nt( k, e) is permitted, but elevated
enough to make Eq. (3.7) to fail. This assumption
is generally justified with good accuracy for the
physical situations of interest in this paper as the
correlation terms are expected to contribute to W(e)
when the electron wavelength is of the same order
as the mean-free path I. But situations where this
happens for a non-negligible fraction of electrons
are only found for the uppermost densities and the
lowest temperatures in the experiments of our in-
terest. In fact, for electrons in gases, it turns out
that atomic correlations can still be neglected at
values of N so elevated that the eikonal approxima-
tion' can be retained. In this case, the large ran-
dom variations of the potential over a de Broglie
wavelength will, in a Fourier representation, only
affect the short-wavelength part of the spectrum
and thus be unimportant for the scattering. Under
these conditions, one can assume that the self-
energy, following from a comparison of Eqs. (3.5)
and (3.6a), is a slowly varying function of k such
that X( k, e)=X( kp, e), kp ——kp(E') being an effective
momentum which satisfies the equation

or (3.9b)

Below, the t matrix t( k, e) will be approximated
by its value t(ek ) on the energy shell for any densi-

ty N of interest in this paper. This simplification
could be too drastic for atoms with strong polariza-
tion. For instance, in gases such as Ar, it could
represent only a first approximation. However, the
assumption appears to be entirely justified for gases
where the cross sections are weakly dependent on
the electron energy. But we shall return to this
comment below. Here, we shall restrict ourselves to
the observation that for low electron energies the
following standard result is validi7, 2p.

= 2~'
@&h )=@k&»&)

I shell ++0(&k) ~

m
(3.10)

where the O(e-k) are generally much smaller than
the reported term proportional to the scattering
length a. However, for higher energies, the develop-
ment (3.10) must be modified. To this end, we refer
ourselves to the dispersion relation satisfied by t(z)
on the complex plane, that is 0

(3.11)

where z =e+iri (g =0+ ), and where ( V)
= f d r V( r ) is the average potential, Q(e) is the
total electron-collision cross section, and R(z) is the
contribution from bound states which for our pur-
poses can be neglected. Since t(z) is an analytical
function on the complex plane (apart from the real
positive axis), and the integral of Eq. (3.11) is a
Cauchy integral, the derivative t (z) will exist for
z+e& 0. After some algebra t' is found to be given
by the equation

1 t(z}—5(0)"'2 z

+-1 fiX " Q'(e') ve'Q(e') d,dE'
n 02m o Q(e') z —e'

(3.12a)

Now letting z =a+i g and g~0, we find the fol-
lowing real part of t'(z):

k 0

where 5( kp, e) = Ret( kp E'). There is no reason to
reject a priori one of these solutions. So, both cases
will be studied in detail when the specific problem
of electron transport in gases will be considered.

B. T-matrix approximation
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~ (e)= —+ [5(e)—&(O)] .
Q'(e)

2e Q(e) (3.12b)

The approximation (3.12a) to (3.12b) is valid for
not-too-small energies and slowly varying Q'(e) In.
this case, integration of 5'(e') leads to the following
real part of t(z):

5(e) = ( V) +A ~eQ(e) .2A

v'2m
(3.13)

However, in all of the cases considered in this paper
it can also be assumed that A =1. In fact, the con-
tribution from the term involving the logarithmic
derivative of Q(e) can be neglected with good ap-
proximation. It is interesting to observe that Eq.
(3.13) can also constitute a rigorous result for cer-

Under the conditions of our interest (scattering
from potential fluctuations), the constant A can be
obtained by having recourse to the localization cri-
terium 6'(e, )=1, e, being the mobility edge pro-
posed in some localization theories. ' According
to the Yoffe and Regel principle, this is equivalent
to assuming that the electron wavelength
k=fi/~2m e and the electron mean-free path
1=1/NQ(e) are equal for e= e, . The result is that

A = I/[I+2e, Q'(e, )/Q(E, )] . '

tain cross sections which permit a direct integration
of the dispersion relation (3.11). So for instance, if
Q(e) =Qp(e~/e)" for e & e~ and Q(e) =Qp for e & e],
where n is a positive integer and e& is a fixed (arbi-
trary) energy, from Eq. (3.11) it is found that

t&(0)+Be (e(e&)
6(~)=. 2A(I')+A

&
v eQ(e) (e&e~)

v'2m

(3.14)

(3.15)

1

where 8=2nQp/( —, +n)~e& is a constant. This
result also shows that Eq. (3.13) is only appropriate
for higher energies than those required for the va-
lidity of Eq. (3.10).

As a final observation, it will be noted that in the
presence of a resonance at @=ed, the two previous
representations of 6(e) given in Eqs. (3.10) and
(3.13) both become invalid. The dispersion relation
(3 ~ 11), however, preserves its validity and may be
used for the study of t'(z). To obtain an analytical
result very simply, a model cross section is assumed
such that Q(e)=Q, for e&ez —I ~ /2, Q(e)=Q2
for e&ez+I z /2, and Q(e)=Qp in the resonance
energy region with Q& and Q2 «Qp. In this case,
it is found that

r(g) —$(O) 1 ~ V eg —I g /2 ')/e + I /2
t'(z) = +-

2z a V2m z —(ez —I z/2) z —(@~+Iq/2)
(3.16)

and if z=e~,

6'(z)=6'(ez ) =vz ~g, (3.17)

(1) According to Rubio's theory, the drift velo-
city can be given the form

where v„=+2eqlm NQp is the electron-collision
frequency at the resonance and ~z ——4A'/(2~I z ) ap-
proximately corresponds to the mean life of the
resonant state. This result appears to be a special
case also deducible in the context of the scattering
theory in terms of the time of delay in the col-
lision, which is here assimilated to ~~.

W=eE f de
3~'fi' — d~

X f de-„e+ r(e, k )p(e, k ),

(4.1)

where (note that here 6 is Dirac's 6 function)

IV. DRIFT VELOCITY

The electron drift velocity in the limit E/X~O,
i.e., for thermal electrons, can be obtained by using
the linear response theory of disordered systems.
We shall discuss now two different formulations
which both have recourse to the Green's function
we have discussed in Sec. III.

p(g, k ) = I ( k, e)

[e e-„b,( k, e)) +I—( k,—e)

=77.6(E—6-„—6( k, e)), (4.2)

since I ( k, e)= ImX( k, e) ~X is small for the
atomic densities considered here. Moreover, w(e, k )
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is a time of flight which is given by the equation

r '(ek, )= f f da)de „-+e„-Q,(k, k')
(2~)

X (1—cos@)p(E,k' ),

of Wk k,{E). To the order of the approximations

of this paper, i.e., consistently with Eq. (3.7), it is

k k'( ) k k'(

th t15—25

(4.3)
0( k, k ')=N

~

t
k k, ~

S( k —k '), (4.4)

dco=2n. sind5 being an element of solid angle in

the k ' direction. The transition probability density
0 is the kernel of a Bethe-Salpeter equation'
which can be given in terms of the matrix elements

where t k -k, (E) are the matrix elements of the t ma-

trix of a single atom, and S( k —k ') is the static
structure factor of the gas. Then, in light of this re-
sult and of Eq. (4.2), it can be written that

Bb( kp, E)
'7 (e, k ) =v(e)=I/(2/m )[e—6( ko, e)]Nq(e b( k—o,e))S(0) I+ BE-

k0
(4.S)

E—e„—6( k,E)=0, (4.6)

where q is the momentum-transfer cross section.
As concerns the momentum kp, it is found to be the
root of the equation

5( kp E'). In this case, we have the two solutions,
=E' and E-k =E+N5( kp, E), which by virtue of

0 0

Eq. (4.5), lead to the following alternative equations
for the drift velocity:

which follows from the 5-function approximation
of Eq. (4.2) and agrees with Eq. (3.8). This means

that kp is the effective momentum we mentioned
above.

(2) When the atom number density is sufficiently

low, it is possible to obtain 8' under the condition

(3.7) that X( k, E) =Nt( k, E)=Nt(E). In this case
S(0)=1,while from Eq. (4.5) it follows that

3+2

W=eE CP deg
3+Pi o " v(ek —T&k )

k 1kXe
with T& k =N5(E-k ) and

3+2

W=eE CP deq
3tr fl o v(ek+T)k )

(4.10)

v(e) =v'(2/m)[e —N5(e)]

XNq(E —N5(E) ),
which permits us to write

{4.7)

dT1 k
X 1—

dE k

—~ke

(4.11)

eE m

N 3+%'

f+~ [e Nt(e)] p,—
&0 q(E —Nt(E) )

Ep being the solution of the equation E—N5(E)=0,
Ce + the normalized (Maxwellian) electron-energy
distribution and P= I /kT. Introduction of the new

integration variable u =E—Nt(E) leads us to write

eE m
p

dt(u) u

N 3n R o du q(u)

—P[u+Xt (u)] (4 9)

(3) As mentioned, better approximations at
higher densities are provided by Eqs. (3.9) for

where now T& k =N5(E k +T~ k ). The energy Ep in
the latter equation is the zero of 1 dT& k /dE k =0.
It corresponds to the mobility edge, which
shows that Eq. (4.11) can describe situations where
localization phenomena from potential fluctuations
are possible. Of course, Eqs. (4.10) and (4.11) ap-
pear to be mutually excluding equations since Eq.
(4.10) becomes meaningless for T, -k &0 (as it hap-

pens in He, N2, and H2), while Eq. (4.11) becomes
meaningless for T, -k ~ 0 (as in Ar). Then, it sounds
natural to associate Eqs. (4.10) and (4.11) to the two
distinct real cases where T, k &0 and T, k &0,
respectively. However, it is possible that the general
solution really corresponds to a weighted average of
the two drift velocities.

(4) It is worth noting that Eqs. (4.10) and (4.11) in
general do not lead to Eq. (4.9) in the limit as
N~O. This result confirms that the approxima-
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tions underlying the two results (4.10) and {4.11)
correspond to a different higher range of density

than that involved by Eq. (4.9). However, Eq. (4.11)
can lead to the same Eq. (4.9) in the particular case
when use is made of Eq. (3.13) with ( V) =0 (poten-

tial fluctuations). In fact, for Ti k &0 to the
lowest order in N, both Eqs. (4.9) and (4.11) can be
given the form

3/2v2
p d

u g+ „]

(4.12)

where

2h ~u
I (u) =—— NQ(u) .

3 ~ ~2m

To obtain this result it is also supposed that
Q= const. Equation (4.12) is in agreement with the
proposal (2.2) by O' Malley' according to which the
uncertainty principle allows the electrons to assume
negative kinetic energies, i.e., u &0, in a range of
the order of I (u) with a consequent reduction e
of the electron population e ~", which contributes
to the drift speed W. In light of the present theory,
a similar interpretation appears to be only justified
at the lower values of N while it fails as N is in-

creased.
(5) As mentioned above, we have been led to our

conclusions by following two distinct approaches.
The alternative method which can be used for the
calculation of electron drift velocity is that based on
the coherent potential approximation (CPA)
developed by Velicky, according to which 8' can
be given the form

eE 2v'2m +~
d df

2m' 3~3/3 —~ d e

Rubio, in the form

I (e,k)=, f dp 0( k, p )p(e, p ),
(2~)3

(4.15)

one sees that Eq. {4.13) agrees with Eqs. (4.1) and
(4.3) of Rubio's theory for isotropic scattering, '" in
which case the contribution from the cos5 term in

Eq. (4.3) vanishes. For atoms with a total cross sec-
tion different from that for momentum transfer, the
equivalence of the two theories, which apparently is
not complete, is restored by assuming that the
scattering processes are isotropic and that the total
cross section equals the momentum-transfer cross
section.

V. ANALYSIS OF THE RESULTS
AND COMPARISON WITH OTHER

THEORETICAL MODELS

In this section we shall present a more detailed
analysis of the equations for 8'obtained in Sec. IV
and a comparison with other theoretical models of
the literature will also be done.

(1) The low-density limit will be considered first.
On the basis of Eqs. (3.10) or (3.14) for 5(u), Eq.
(4.9) easily leads us to write that

(5.1)

p(e)= f dkp(e, k )
(2~)3

1/2

The constant C of Eq. (4.9) is determined by the
normalization condition

C f e +p(e)de=1 (5.2a)

with a density of states

X f de „e~zp(e-, k).
1

7TA3
&e—Nt(e), (5.2b)

eE ~2~ I'
d 3+2

3 3g3 J p k k

x f'" df p(ek )

r(~, k)

(4.14)

Finally, using the optical theorem, as proposed by

(4.13)

With the use of the same approximation (4.2) for
p(e, k ), Eq. (4.13) can be given the form

which is correct under the approximate condition
X( k, e)=Nt(e) used to obtain Eq. (4.9). As shown

by Eq. (5.1), depending on the value of O(N), the
density effect is expected to be very small if not
completely negligible under the conditions of validi-

ty of Eq. (4.9). This conclusion seems to be con-
firmed by experiments. For instance, Crompton
and Robertson find that in He the density effect is
zero, within the error of 1%, up to a pressure of
700 torr at 77 K. A very small effect is also ob-
served under the same conditions in parahydrogen
and, particularly, in normal hydrogen. There is, in
fact, a different effect in p-H2 and n-H2 which, in
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the context of the theory we have developed, would
have to be ascribed to a different value of the range
B, depending on the rotational states of the mole-
cule. Finally, vanishing density effects at suffi-
ciently low pressures have also been observed by
Freeman and co-workers in a number of saturated
vapors near the critical point. Our theory also does
not contrast with these and similar effects which
have been recently observed in gases such as Ar by
Huang and Freeman.

(2) Let us now turn our attention to the high-
density limit. We shall first consider Eq. (4.10).
Equations (3.10) and (3.14) can be used with the re-
striction that T, -k ~0, i.e., that a &0, since

p(&) =
2

1/2
1

, ve,
M3

which finally leads us to write

3g2 -~i
4 eEW= — p5~ de k3 mVn '0 " v(ek+N*5(Ek ))

de(&-k)
x 1 —N*

k

(5.6)

In this equation, the last step involves a negligible
error for not too elevated densities. The normaliza-
tion constant C is now properly calculated using a
density of states

T)k ——N5(ek )=2m.(A /m)Na .

In fact, in the contrary case, Eq. (4.10) becomes
meaningless. In this way, Eqs. (5.2) lead us to write
that

3g2 -~k
W= ~ eE P5~~ de-„

3 m Vm o " (ve-„N5(e-„))—

{5.3)

with

T -=N*5(e- )ik k (5.4)

S(~-k+N~S(kT))

6(&-k )
(5.5)

which under the condition 5(ek )=5(0) agrees with

the equation proposed by O' Malley, ' on the basis
of speculative physical argumentations. Equation
(5.3) is then expected to be valid for atoms with
negative scattering length and therefore, in the same
measure as T, k may be approximated by its value

on the shell, for atoms with a (pronounced) Ram-
sauer minimum. Another limit of Eq. (5.3) is, as
mentioned, the atom density N which must be suffi-
ciently elevated since Eq. (5.3) does not lead to the
results (4.9) as N~0, even to the lowest order in N.

(3) It remains to analyze the consequences of Eq.
(4.11) (potential fluctuations). The t matrix of in-

terest in this case is calculated at energies greater
than ek -kT so that the low-energy representation

(3.10) does not appear to be so appropriate as Eq.
{3.13). If we limit ourselves to consider cross sec-
tions that are weakly dependent on the electron en-

ergy, we may write that

ep being the root of the equation 1 —N*
xdt(tp)/dE'p=0. It is of interest to observe that if
the choice 5(t. k )=const would be appropriate, Eq.
(5.6) would lead to the same equation proposed by
Legler' for gases with negative density effect since
N*=N. But the presence of the mobility edge im-

poses that k & 1/l (with the electron mean-free path
satisfying the condition 1/l & 5X10 cm ' for the
typical situations where N & 10 cm ). Accord-
ingly, Eq. (3.13) seems to become more appropriate
than Eq. (3.10) valid at (very) low energies. In fact,
the choice of Legler leads to an unsatisfactory
agreement with experiments while Eq. (3.13), as we
shall see, leads to an almost perfect agreement. In
this latter case, from Eq. (5.5) it is obtained that

1/2

N*=N 1+2 N~g(kT)v'2mkT

(5.7)

which makes Eq. (4.6) well defined for explicit cal-
culations. Finally, it can be observed that our pre-
vious first-order theory also is a particular case of
the above equations. With the choice (5.7) and
neglecting higher-order terms so that N*=N, from
Eq. (5.6) it is easy to find Eq. (7) of our previous pa-
per, which we proposed for a &0. For a ~0, the
linear terms with respect to N of Eq. (5.3) can be
given the form (10) of our previous paper when us-

ing the appropriate effective scattering length.
(4) Another interesting situation which is also

described by our theory, and in particular by Eq.
(5.6), is one where the density effect is due to reso-
nance trapping of the electrons. If we limit our
considerations to the lowest-order terms in N, so
that N*=N, and suppose the phenomenon to be
dominated by the resonance, we may use the result
(3.17). Under these conditions, it is reasonable to
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neglect 6(e) but not d5/dek and infer from Eq.
(5.6) that

0.8
1 VR 7R8'0 (5.8)

which agrees with the equation proposed in the
presence of resonance trapping and, in particular,
with Frommhold's theory . Before concluding our
comparisons with other theoretical models, it still
remains to mention the points of contact that exist
between our high-density theory and the percolation
theory of Schwarz. Both are, in fact, semiclassical
theories leading in particular to a mobility which
vanishes continuously as the electron energy tends
to the mobility edge. This is a known result of the
percolation theory ' and also follows from our Eq.
(5.6) because of the factor (1 —N*d5/dek ). How-

ever, our theory does not involve free parameters.
It is directly deduced from a rigorous transport
theory, contrary to what happens for the theories of
Eggarter ' and Eggarter and Cohen. In spite of
this, we believe that, really, we are concerned with
the same theory as the basic assumptions are the
same.

VI. COMPARISON WITH EXPERIMENTAL
RESULTS

On the basis of the theory presented in Secs. IV
and V, and in particular of Eqs. (4.9), (4.10), and
(4.11), we have seen that it is possible to give
theoretical justification (in terms of t matrix) of a
number of models proposed by various authors.
This confirms the original idea of our previous pa-
per (where Kubo's formula for W was developed in
the low-density limit, for situations of interest in
dense gases) that the theory of the density effect can
be entirely based on properties of the t matrix and
the static structure factor. In this section we shall
present a comparison between theory and experi-
mental data, which not only permits us to assess the
exact limits of our extended theory but also to test
the quantitative agreement with previous theoretical
models.

The first comparison is with experimental data in
He. In Fig. 1 the comparison is with data from
Schwarz at 4.2 K, while in Fig. 2 the data at 77.6
K are from Bartels. ' In this latter figure, some
points at 293 K from Grunberg are also reported.
As concerns the theoretical predictions, dashed
curves M are introduced to represent the drift veloc-
ities provided by Eq. (2.2). These curves do not cor-

0.6

0.4

0.2

0
0 0.5

I IOm I

1 15 2
N (10 cm 3)

FIG. 1. Comparison between theory and experimental

data (0) in He at 4.2 K. Curve M, Eq. (2.2); curve S,
present theory with Wigner-Seitz correction for the gas
density; curve P, present extended theory with N correct-
ed according to Eq. {5.7).

respond exactly to those given by O' Malley' since
ours have been obtained by direct numerical in-
tegration of Eq. (2.2) without taking I outside the
integral as an average, as indicated in Eq. (2.3).
Curve I. is from Legler's theory' with the ap-
propriate scattering length. Finally, curves P (solid
lines) are used to represent the predictions of our
extended theory, i.e., of Eqs. (5.6) and (5.7). For
comparison, curves S, which are obtained by assum-
ing the %igner-Seitz correction for the gas density,
are also reported, in which case N* is numerically
estimated using appropriate equations given by Eg-
garter. As one can see, the agreement between our

30

extended theory and experiments is extremely good

)+ 293 K

oel

0.6—

0.4—

0.2—

0 I I I I I I I

0 2 4 6 8
N (10 crn )

FIG. 2. Same quantities as in Fig. 1 but for 7=77.6
K. Curve L is from Legler's theory. A comparison is
also reported of our extended theory with a few experi-
mental points at 293 K.
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and not only to the lower densities. This conclusion
is also confirmed by the results of Figs. 3 and 4
where the same quantities of Figs. 1 and 2 are re-
ported in logarithmic scale. This is done in order to
show to what extent theoretical models agree with
experiments in the region of the pronounced fall off
of the electron mobility at elevated values of N.
Only for the higher densities is there a discrepancy
between curves P and experimental points, which is
also expected, as our extended theory still remains
an approximate theory. In fact, multiple-scattering
corrections are only approximately introduced
through the use of an appropriate N*. Moreover, a
constant value for Q is assumed in the corrective
terms. In any case, the agreement of curves P with
experimental data is always much better than that
of curves relative to other theoretical models. For
comparison, Figs. 3 and 4 report (represented by
dashed curves M') results obtained by O' Malley'
from the approximate Eq. (2.3), where I is given an
average value I and exp ( —PI ) is taken outside the
integral. As one can see, the agreement between

theory and experiment, at least in this case, is worse
when Eq. (2.2) is used in place of its approximate
form (2.3). The agreement in any case is good at
moderate and low densities.

In Fig. 4 a comparison is also reported between
our extended theory and experimental data from
Bartels ' in H2 at 77.6 K. The agreement still is
very good. This is also confirmed by the results of
Fig. 5. In order to also give the reader an indication
of the extents of the corrections for multiple
scattering and structure factor, in Fig. 5 a curve is
reported (i.e., P1) obtained with S(0)= 1 and
N*=N and a curve (i.e., P2) obtained with

S(0)=1, and the correct value of N* as given by

10

10

10

10

10 i I I

0 2 4 6
N(10 cm )

FIG. 4. Some quantities of Fig. 2 are here reported in
logarithmic scale. Curve M' is from Eq. (2.3). Also re-

ported in this figure is a comparison between our extend-
ed theory and experimental data in H2 at 77.6 K.

Eq. (5.7). As concerns the structure factor, it must
be noted that the correction is introduced by writing
that S(0)=1—2NB, where B is the second virial
coefficient, or directly (as in Ar and CH4) using re-
sults for S(0) of the literature.

Let us turn now our attention to gases where the
drift velocity is found to increase with N. In Fig. 6
the comparison between theory and experiment is
relative to Ar at 297 K. Of course, the notations
are the same we adopted in previous figures. There-
fore, curve L is from Legler's theory' when using
the appropriate scattering length (as obtained by
Milloy and co-workers ). Curve P is from our ex-

10
0.8

10

0.6

8
0.4

10
0.2

-3
10

He
T=4.2 K

0
0 4

N(10 cm )

10
0

I i

0.5
I i I

1

N (10 cm)

I

1.5

FIG. 3. Some quantities of Fig. 1 are here reported in
logarithmic scale. Curve M' is from Eq. (2.3).

FIG. 5. Same comparison between theory and experi-
ment in H2 at 77.6 K as reported in Fig. 4 but on a dif-
ferent scale. Here, Curve P1 is obtained with S(0)=1
and N~ =N while curve P 2 is obtained with S(0)= 1 and
N~ from Eq. (5.7).
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2.5

2.5

2

1.5

1.5

1
0 2

N t10 cm~)

2
N(10 cm )

FIG. 6. Comparison between theory and experiment in

Ar at 297 K. Curve P, present extended theory; curve

Pl, extended theory with S(0)=1; curve L, Legler's

theory with MCRR scattering length; curves

M 1,M2, M3, O' Malley. Curve M is obtained from M3
when introducing the correction for structure factor.

FIG. 7. Theoretical dependence of W(X) on 1V in Ar
at 297 K in correspondence of the various cross sections
reported in the inset. Dashed lines are obtained under
the condition S(0)=1 while the solid lines are obtained
with the correct structure factor. Data at 90 K relative
to cross section D of MCRR are also reported.

tended theory, i.e., from Eq. (5.3). It is obtained by
using the cross section of Milloy and co-workers
(referred to as MCRR cross section) and a proper
correction for the structure factor. On the contrary,
P1 is the result one obtains under the condition
S(0)=1. The three curves M1, M2, and M3 are
the same curves reported by O' Malley. ' Apart
from the apparent discrepancy, they should be ob-
tained with the same equation leading to our curve
P1 but with cross sections which differ from that
of Milloy and co-workers in the region of the
Ramsauer minimum of small extents, so that the
modifications of the classical drift velocity Wo are
always maintained within 1% with respect to the
correct value. In this context, it is particularly in-

teresting to observe that, when correcting M3 with
the proper structure factor, a curve M is obtained
which perfectly agrees with the experimental points
from Bartels. As one can see from the results re-
ported in this figure, the theoretical curves strongly
depend on the behavior of the cross section up to,
and in particular at, the minimum. This is even
more clearly shown by the results of Fig. 7 where
four different curves obtained with four different
cross sections are reported. As shown in the inset,
three cross sections differ only in the region of the
Ram sauer minimum from that of MCRR,
represented by curve D. In particular, cross sections
A and 8 correspond to an increase of the minimum
of D of 12% and cross section C to an increase of
18%. Finally, cross section G is that of Golden.

As expected, the results of this figure show a better
agreement between experiment and theory if the
depth of the minimum is reduced. Also reported in
Fig. 7 are the theoretical predictions obtained with
cross section D of MCRR at 90 K where the effect
in Ar has been found to be negative, at least up to
700 torr.

To this point, we have presented a picture of sub-
stantial agreement between theory and experiment.
This makes us confident that our extended theory is
conceptually correct. The agreement is particularly
good in gases presenting negative effects such as He
and Hz. But there are other considerations, that we
have already done in part, which support our
model. For instance, the suprisingly small effect
observed in a number of gases at sufficiently small
values of N (Refs. 28 and 29) seems also to be in ac-
cord with our model. Only in Ar does the predicted
effect tend to be systematically elevated, indicating
in this way that probably the approximations intro-
duced are slightly too crude or even that different
effects take place simultaneously. Really, this con-
clusion seems necessary to explain the poor agree-
ment between theory and experiment that we have
observed in CH4. In part this disagreement is cer-
tainly due to the imperfect knowledge of the cross
section, but this is not the only reason. As shown in
Fig. 8, we have analyzed the results obtained with
three different cross sections of the literature: (1) a
model cross section first used by Kleban and
Davis which is sometimes adopted when studying
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CH4
T=297 K

1
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I I I
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N(10 cm )

FIG. 8. Comparison between theory and experiment in
CH4. Dashed and solid lines are obtained with S(0)=1
and the correct structure factor, respectively. Curve A,
model cross section of Kleban and Davies; curve 8, total
cross section of Ramsauer and Kollath; curve C,
momentum-transfer cross section of Pollock.

electron transport in this gas ' (curves A), (2) the to-
tal cross section of Ramsauer and Kollath (curves
B), and (3) the momentum-transfer cross section ob-
tained by Pollock from swarm data (curves C). In
all cases, the predicted dependence of W on N is
much more pronounced than observed experimen-
tally. As suggested by Atrazev and Yakubov, a
partial balancing between positive and multiple-
scattering negative effects cannot be excluded.
Also, the use of an effective (i.e., lower) scattering
length can eliminate the discrepancy and could
probably find justification. But it must also be tak-
en into account that, as a rule, use has been made of
the on-shell approximation for the scattering ampli-
tude. It is reasonable to suppose that this is an in-
sufficient approximation in the presence of strong
polarization forces.

VII. CONCLUSIONS

The main conclusions which follow from the
analysis presented in this paper are as follows:

(1) Both positive and negative gas-density effects
on the electron mobility can be explained in terms
of a single (unifying) multiple-scattering theory,
which can be deduced from a general (rigorous)
transport theory in a consistent mathematical way.

(2) For arbitrary values of the gas density N, the
mobility theory is very complicated for both posi-

tive and negative effects but it becomes much
simpler in the limit of very low and sufficiently
high densities, to which we turn special attention in
this paper.

(3) Apart from one or two exceptions, i.e., the
theories of positive effect of Legler' and Atrazev
and Yakubov, all the theoretical models previously
proposed to explain positive and/or negative effects
can be deduced from our extended theory under ap-
propriate conditions.

(4) The agreement with experimental data is ex-
tremely good for gases such as He and Hq, where
the electron mobility decreases with N, over a wide
range of gas densities and for all the gas tempera-
tures used in the experiments. For gases, such as
Ar, where the electron mobility increases with N,
the theory leads to a final equation which agrees
well with models recently proposed by other au-
thors, but the agreement with experiments remains
not so perfect and becomes poor for gases such as
CH4. Different reasons could explain the
discrepancy, but there are elements to suspect that
it is due to approximations which fail in the pres-
ence of strong polarization forces.

(5) In the low-density limit, on the basis of our
extended theory, the extremely small effect (null ef-
fect) which has been experimentally observed in a
number of gases is (qualitatively) explained for the
first time.

As concerns the open problems, we have already
seen that the agreement between theory and experi-
ments is not as good for the positive as it is for the
negative effects. An analysis of the consequences of
the "on the energy shell" approximation for the ma-
trix elements of the t matrix, in the presence of
strong polarization forces, would be necessary.
Also we must emphasize that our theory requires
sufficiently elevated or sufficiently low gas densi-
ties. Even if the range of pressures which is not so
well covered by our treatment seems of limited
practical importance, the extension of our treatment
would be of interest. Finally, another open problem
remains that of extending the theory to higher
values of E/N to (quantitatively) explain the densi-

ty dependence of the drift velocity for nonthermal
electrons. Almost certainly, this extension will not
change the interpretative part of the phe-
nomenon. ' However, in spite of that, the formula-
tion of a rigorous transport theory of electron mo-
bility for hot electrons remains a difficult open
problem to which we intend to turn our attention in
another paper.
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'A synthesis of this paper has been presented at the
Second International Seminar on Swarm Experiments
in Atomic Collision Research, Oak Ridge, Tennessee,

July, 1981 (invited talk) [cf. Electron and Ion Swarms,
edited by L. G. Christophorou (Pergamon, New York,
1981)].
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