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Delayed spectrum of two-level resonance fluorescence
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We compute the time-dependent spectrum of fluorescence by two-level atoms after a

strong resonant exciting laser pulse is turned off abruptly. The behavior of the "delayed"

three-peaked spectrum is shown to be dependent on the natural lifetime of the upper state

and on the bandwidth of the interferometer used in the measurement. A prompt increase

in the central-peak intensity and an oscillating decay in the two side peaks are predicted to
occur immediately after the laser is turned off. These are manifestations of the "undress-

ing" of the atomic states. Our calculation permits consideration of the question of the

speed of the undressing and its observation.

I. INTRODUCTION

II. EQUATIONS OF MOTION

We use here, as far as we can, the notation of
Eberly, Kunasz, and Wodkiewicz (EKW). We de-
fine atomic variables, in the Heisenberg picture and
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FIG. 1. Schematic diagram of resonance fluorescence
experiment.

We consider here resonance fluorescence of a
two-level atom which is exposed to a strong
resonant laser pulse for some time tz and then for
t & tz evolves freely. In other words, we assume the
laser pulse to be switched on at t =0 and switched
off at t =tz. The subject of concern is the time-
dependent fluorescence spectrum of such an atom,
measured at times t &t~. A schematic diagram of
the experiment is shown in Fig. 1. We use the
Eberly-Wodkiewicz counting-rate definition of the
time-dependent physical spectrum. ' The corre-

sponding results while the atom is in the field have
been obtained previously by Eberly, Kunasz, and
Wodkiewicz. It is well known that in the strong-
field limit the resonance fluorescence spectrum has
a three-peak structure and it is interesting to know
how this structure evolves in time after the laser
field is switched off.

the rotating coordinate system, in the usual way:
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With this definition the equations of motion can
be written in matrix form:

=M/+ f, (2.4)

where
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—A/2+i' i/2Q
iQ —A —iQ (2,6)

0 —i/2Q —A/2 —i 5

Here A is the Einstein coefficient of spontaneous
emission (i.e., A =1/~0, where ro is the lifetime of
the upper level, 5 is the detuning of the laser below
the atomic resonance, h=co21 —coI, and Q is the
Rabi frequency: II=(2/fi)d2~ Eo, where d2, is the
transition dipole matrix element, and the electric
field strength is written

E(t) =Eoexp( icoit)+c.c. —

To calculate the spectrum of resonance fluores-
cence we need the dipole-dipole correlation operator

&2i(ti)&iz(t2) =S2t(t&)Su(t2) exp[icot(t~ t2)] . —
(2.7)

Following Milonni, ' we obtain the expectation
value of this operator from the coupled equations
for the expectation values of the three operator
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d'P(ti, t2) n
=M% (t, ,t2)+F,

where now

s»(t, )s»(t, )

0'(ti, t2) = 8'(t, )Si2(t2)

s»(t, )s»(t, )

(2.8)

products S2, (ti)S,2(tz), W(tl)Siq(t2), and

Si2(ti )Si2(t2).
For an atom in the field we can write the result in

matrix form, with the same matrix M given in (2.6),
as follows:

P(t)=Tr[p„.(0) capri Jd(0)g{t)], (2.10a)

% (t, ,t, ) =Tr[p„.(0) 8pr„|d(0)'P(ti,t~)] . (2.10b)

For an atom out of the field the above equations
can be written in the same form, by changing the
matrix M into the diagonal matrix M0 ——M(Q=O).
To calculate the time-dependent spectrum both t&

and t2 dependences will be needed. We are con-
cerned with expectation values of these operator
quantities, which we denote as quantities without
the circumflex

0
F= —AS»(t2) (2.9)

The solutions to (2.4) and (2.8) are easily written in
terms of the matrix M or M0 depending on whether
the atom is in or out of the field. We give some of
the details in the Appendix.

III. TIME-DEPENDENT PHYSICAL SPECTRUM OF DELAYED RESONANCE FLUORESCENCE

According to the definition of the time-dependent physical spectrum, we must evaluate (for t )0)

(3.1)

Here I is the bandwidth of the ideal Fabry-Perot interferometer which has its transmission peak at frequency
co. The detuning of the laser from the interferometer is denoted D —=co —~I. This spectrum can be written as
the first component of a time- and frequency-dependent vector S:

S( r)=r d d
-(r/2-D)(t-t ) -(r/2+'D)(t-t2)q(t t ) (3.2)

0 0

The double integration in (3.2) can be divided into three different regions as shown in Fig. 2. In region I
both integrations are over the interval 0& t & tz, when the atom is in the field and its evolution is governed by
the matrix M. In region III the atom is out of the field and its evolution is due to the matrix M0. Finally, in
region II, which is composed of two parts (complex conjugate to each other), one integration is over the time
when the atom is in the field and the other when the atom is out of the field. In this mixed term the atomic
evolution is due to either the matrix M or M0 depending on whether the atom is in or out of the field. Upon
taking into account these different regions of the time integration, the time-dependent spectrum of resonance
fluorescence, as given by (3.2), can be split into three separate parts:

s(t,~,r) =si(t, ~,r)+s„(t,~,r)+s«i(t, ~,r) .
We can write these three parts as follows:

p p —(I /2 —ID)(t —ti ) —(I /2+iD)(t —2)
S,(t,~,r) =r dt, dt2e ' e '%(ti, t2)

0 0"
r —I (r — )=e 2I Re dt2e ' dec'" +'D'+(t2, ~),

0 0

p —(r/2 —I'D)(r —r, ) —(r/2+iD)(r —r, )

Sii(t, co, I )=21 Re, dt's dt2e ' e ' I'(ti, t2)

p p —(I /2 —ID)(r —r —r
I ) —(I /2+ iD)(r —r2 )=2I Re dt& dt2e ' e ' 0'(t&+ti, t2),

0 0
and

—(I /2 —iD)(r —r, ) —(I /2+iD)(r —r )S„i(t,~,r) =r dt, dt2e ' e '%(t, , t2)
tp tp

=2I Re f dt2e ~ ' f dre'"i 'D'~+(t +t2+r, t +t&) .

(3.3)

(3.4)

(3.5)

(3.6)
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All time dependences in Eqs. (3.4) —(3.6) are of the exponential type as given by (A1) and (A2) with the

proper matrix M or Mo as well as the corresponding initial conditions. All integrations can be performed ex-

plicitly, as in EKW, and for Si their result is obtained, except for the multiplication of an additional overall
(f tp)

decay factor e p, where t —
tp is the delay time, i.e., the time which has elapsed since the laser was

switched off.
The second and third contributions can be evaluated explicitly also, and are given in terms of the matrices

M and Mo in the Appendix. Using the formulas we have found for Si, S&&, and Si&i, the spectrum can easily

be evaluated numerically. There is a wide variety of parameters that the spectrum depends on. To exhibit the

spectrum as a function of all of them is not possible to do briefly. Here we will restrict our attention only to
the case of exact resonance and strong excitation, in the long-excitation limit.

IV. RESONANT EXCITATION BY A STRONG FIELD

If the laser frequency co~ is tuned exactly to the atomic transition frequency co2& (h=coz& —co~ ——0), the laser

intensity is strong (Q &&A), and the pulse duration is long enough so that we can put tp ~ ao, with t —tp finite,

the spectrum (3.1) has the explicit form

—r(t —t )
W(t, co, I )= 4e

I /2+ —A I +A I /2+ —,A

(D —Q) +(I /2+ —,A) D + —,(I +A) (D+Q) +(I /2+ —,A)

2 —(1/2)(I +A)(r —t ) —r(~ —~, )

A I I e ~ cosD(t —tp) —e
+ —

2 2
+-

D +(I /2) D2+ —(I A)2

(I /2+ —,A)(I —A)+2D (D —Q) {V+A)(I —A }+{2D)

(D —Q) +(I /2+ —,A) D + —,(I +A)

(I /2+ —,A)(I —A)+2D(D+Q)

(D+Q) +(I /2+ —A)

A I (I —A)+{2D)+
D +(I /2)

—(1/2)(I +A)(r —t )

I e P sinD(t —tp)+-
D +-, (r—A)

2D(I /2+ —A) —(I —A)(D —Q)

(D —Q) +(I /2+ —,A)

4DA+
D + 4{I +A)

2D(I /2+ —,A) —(I —A)(D +Q)

(D+Q}'+(I /2+ —,A)'

'2
A 2DA+

D +(r/2)

D'+ —,(I —A)'

—A(t —~ ) —(1/2)(r+A)(t —t ) —A(t —t ) —r(t —t )
e ~ —e cosD (t tp )

+ r
2 D2+ —(I A)2

(4 1}

Note that the first square bracket contains the
familiar steady-state three-peaked spectrum, in-

cluding the coherent scattering "delta function" as
the fourth term. Here the delta function is a

Lorentzian because our theory includes the influ-
ence of the interferometer on the spectrum. This
term is damped in a natural way.

The second and third terms are new contribu-
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mentally to the best of our knowledge. We discuss
its meaning in Sec. V. The time dependence of the
central peak as well as the side peaks for different
values of I /A are shown in more detail in Fig. 4.

V. STRONG-FIELD LIMITS

FIG. 2. Regions of time integrations. t~ is the time
duration of laser pulse.

There are two interesting limits which can be de-
rived from our formula (4.1). In the strong-field
case (fL»A, I ) we can obtain from (4.1) the ap-
proxirnate formulas describing the time dependence
of the height of the central peak Hp(t) as well as of
the side peaks H+(t):

tions. They arise from region II of the time integra-
tions. These two terms reflect both the features of
the three-peak steady-state spectrum, which can be
recognized in the denominators of the terms in the
brackets, and the spontaneous emission spectrum,
which can be associated with the extra resonant fac-
tor in front of the brackets as well as the modula-
tion terms. Because of this extra resonant factor
which depends on I —A these terms contribute sig-
nificantly to the spectrum when I =A. The time
modulation in the side peaks then becomes visible. '

The fourth term is simply the spontaneous emis-
sion spectrum of EKW, the linewidth of which is
also described by the difference I —A.

The time-dependent spectrum described by these
four terms is illustrated in the following figures for
different values of I /A (Fig. 3). The spectrum is
the three-peak spectrum, as it should be, in the
strong field. For I /A (&1, i.e., for a narrow-
bandwidth interferometer, this three-peak structure
is clearly resolved [Fig. 3(a)]. The central peak and
the side peaks decay in time with the same rate,
determined by the interferometer bandwidth I, and
the oscillating terms do not contribute significantly
to the spectrum. As I becomes comparable to A

[Figs. 3(b) —3(d)], the time-dependent spectrum
changes significantly. The side peaks now decay
much faster than the central peak. The oscillating
terms are more pronounced and are clearly visible
in the side peaks. Also one can observe the tem-

porary increase in height of the central peak to be
relatively much greater than in the narrow-
bandwidth interferometer case. This sudden in-
crease has been found by Saari in a calculation of
the far-off-resonance Rayleigh line shape in the
weak-field case, and by Courtens and Szoke, in a
calculation for time-dependent fluorescence when
an adiabatic square driving pulse terminates [see
Fig. 3(b) of Ref. 7]. It has not been observed experi-

Hp(t) =
2 (I +A)e +2I e{I—A)

I +3A ——(r+~)(f —f )
1

—2I e
r+A

1 1 —r(f —f )H+(t) =- e
4 r/2+ —,'A

(5.1)

(5.2)

There are two complementary limits to consider:
(i) We have a narrow-band interferometer

(1 «A), where we have

—r(f —f )
Hp{t) =—e

A

H+(t)= e
1 -r(~-f )

3A

(5.3)

(5.4)

H+(t)= e
1 —r(f —f )

2I (5.6)

In this case the side peaks decay very rapidly, as
given by Eq. (5.6). The central peak shows more
complicated behavior. For t —tz ((I ',A ', the
height of the central peak . is I '. For

tp ((A ', the height of the peak reaches
its maximum Hp=2/I, which is twice the height
at time t —t~=O. For time t fp &I ', the peak
starts to decay with the decay constant A. The ratio

Formulas (5.3) and (5.4) explain the time behavior
of the spectrum as shown in Fig. 3(a). Both central
and side peaks decay with the rate constant of the
interferometer and the ratio 3:1 in the heights of the
peaks is preserved. The peak amplitudes are pro-
portional to A

(ii) We have a broad-band interferometer
(I »A), where we have

—r(f —f ) —(rn)(f —f ) —A(t —t )Hp(t)= —(e —2e +2e )r
(5.5)
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FIG. 3. Dealyed resonance fluorescence spectrum for 0/A=6 and different values of I /A: (a) I /A =0.1, (b)
I /A =0.5, (c) I /A = 1, (d) I /A =2, (e) I /A =5. First few lines in the time direction represent the steady-state spectrum
for easier reference. Time is in units of A '. Labeling of the curves in graph (a) applies to (b) —(e).

of the height of the central peak to the side peak at
t =t~ is 2:1 and the amplitudes are proportional to
I '. These features of the time-dependent spec-
trum of resonance fluorescence are illustrated in
Figs. 5 and 6. As I increases, the amplitudes of the
peaks decrease [see (5.5) and (5.6)] and we can see
the relative increase of the central peak shown in
Fig. 6 to be close to the factor of 2.

The initial character of the relative increase of
the central peak can be obtained independent of I
and A by an expansion of Ho(t) in powers of t —tz.
From Eq. (5.1) we find

(5.7)

Spectral line features in Figs. 4(a) and 6 are in
agreement with this result.

VI. EXTREMELY BROAD-BANDWIDTH

INTERFEROMETER

Our formalism also permits a discussion of very
fast (broad-bandwidth) detectors. We consider in
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FIG. 4. Time dependence of the central and side peaks
for 0/A =20 and several values of I /A: I /A =0.2, 1, 5,
15. x coordinate denotes delay time t —tp in units of
A '. x =A(t —t ), and y coordinate denotes normalizedp

spectral peak intensity: y=S(t, co, ~)/~& p,~)IS(t co I ) where
co=~~ for the central peak and to=col+0 for the side

peak.

I 00 010 0 20 030 040 050

FIG. 6. Time dependence of the normalized central-
peak intensity for the case of the broad-band interferome-
ter for various values of parameters: I /A =20, 40, 80,
160 and 0/A =500. Meaning of the coordinates is the
same as in Fig. 4.

this section the case of a very broad-band inter-
ferometer, for which I »Q.

Equation (4.1) and the limit of I »0 »A leads
to a quite simple expression for the delayed physical
spectrum for a two-level system as follows:

2 —A{t—t )P'(t, co, I ) =—e (6.1)

(6.2)

In (6.1) the dependence on the detuning D and the
differences between the central peak and side pea sks
in the spectrum disappear. The overall decay
behavior is just determined by the lifetime of the
upper state of the system.

By comparing (6.1) with (5.2), we find the nor-
malized side-peak intensity H+ „,~(t) defined in
Fig. 4 can be written as

—l{t—t )

H+ „,(t)=e P, for 0» I A

Q/A =60
(a)

I

and

H+ „,(t)=e p, for I »Q»A .
—A{t—t )

(6.3)

0/A = 300
r/A = 50

I I/
(c)

Q/4 = 600
r/n = IOO

FIG. 5. Spectrum obtained using a broad-band inter-
ferometer for different values of parameters: (a)
0/A =60, I /A =10; (b) 0/A =300, I /A =50; (c)
0/A =600, I /A = 100. Amplitude scale has been multi-

plied by a factor of 5 as compared to Fig. 3. The labeling
of the curves in (a) applies to (b) and (c).

There is a wide difference in time decay behavior
for the side peaks in these two limits. In scanning
the values of I from I &&0 to I »0, we find
there is a critical value I, . In the cases with
I & I

„

the normalized side-peak intensity
H+ „,(t) will decay faster with larger I, but in
the cases with I & I „H+„,(t) will decay more
slowly with larger I values.

B inspection of the time dray behavior for they inspec
'

side peaks with various values of I /A for 0/A =20
in Figs. 4(b) and 7, we find the critical value for I
around I, /A =5. A more detailed inspection of
neighboring values shows that I, /A =7 for the case
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P, (t) =—[1+I (t -t )], (7.3)

for spectral power the oscillation terms like
cosD(t —tz) and sinD(t —t~) are absent, and the
power of the spectral peaks decays monotonously.

For times immediately after the laser turned off,
some cancellations occur in (7.1). For
t —tz «A ',I ' we find the power in the central
peak and the side peaks to be

I l ~0
I.O 2.0 P (t)=—[1—I (t t )] . — ('7.4)

FIG. 7. Time dependence of the normalized side-peak
intensity for 0/A =20 and 1 /3 =5, 15, 25, 35. Meaning
of the coordinate is the same as Fig. 4.

of 0/A =20.
The physical reason for the changing decay

behavior is obvious. For the extremely broad-
bandwidth interferometer cases I /A & 0/A »1,
the central and side peaks in the spectrum are dom-
inated by the instrumental width I, and the three
peaks in the spectrum completely overlap each oth-
er. The power that we measure at the side peaks is
partially due to the power of the central peak. This
is why the time decay phenomena for the side peaks

will depart from e
' 'P'. We can also find from

(6.1) that neither the sudden increase in height of
the central peak nor the fast decay of the side peaks
will be preserved in the cases of extremely fast
response filters.

VII. POWER "TRANSFER" PROCESSES
BETWEEN SPECTRAL PEAKS

—r(f —t )
P+(t) =—e

4
(7.2)

It is interesting to note that in these expressions

In the case of the strong-field 0» I,A, the spec-
tral lines of the three peaks are resolved clearly even
for a "bad" interferometer (I »A). Terms corre-
sponding to the central and side peaks are easy to
separate in Eq. (4.1). We perform the integration
over detuning D from —oo to +00, treating the
terms belonging to the central peak and side peaks
separately. We obtain the total power of the central
peak Po and side peaks P+ correspondingly (i.e., the
"area" under the spectral lines in each peak):

—r(f —f ) I —~(f—f ) —r(t —f )
Pp(t) =—e +m. (e —e ),

2 I —A

(7.1)

Note that the sum of the power in the two side
peaks is equal to the power in the central peak.
This is well known to be the case before the laser
turned off. Note also that the time derivative of
Po is positive, indicating a power transfer toward
the central peak.

We discuss the power transfer between the spec-
tral peaks in two limits:
(i) For the narrow-band interferometer (I «A ),

—r(f —t )P (t)=—e0 (7.5)

—r(f —f )P (t)=—e+ (7.6)

(ii) For the broad-band interferometer (I »A ),
—A(f —f )PP()(t) =m.e

'
for t —t, &r-'P,{t)=0.

(7.7)

(7.8)

VIII. COMMENTS

We have made a calculation, in the resonant
strong-field limit, of the delayed time-dependent

For a narrow-band interferometer, the power of
both central and side peaks decays exponentially
with the slow rate constant I '. In broad-band in-
terferometer cases (I »A), the power of the side
peaks decays more rapidly than the central peak.
For I '&t —

t& «A ' the power of the central
peak can jump to a maximum which is twice the in-
itial power value. This behavior can be explained as
a transfer of the power which was associated with
the two side peaks into the central peak after the
laser pulse is switched off suddenly. The faster
time response of the broad-band interferometer
makes the power transfer processes observable (be-
cause the interferometer does not store for long
light emitted into it by the atoms before the laser
was switched off). The increase in the height of the
central peak mentioned in Sec. V is closely related
to such power transfer processes.
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resonance fluorescence spectrum of a two-level sys-

tem, taking the response feature of the interferome-
ter into account. For measuring the time-
dependence of the three resolved peaks, the condi-
tion 0 &~I &~A is appropriate.

When a constant driving field of long duration
terminates suddenly, the ac Stark splitting of the
upper and lower levels disappears, and the popula-
tion in these dressed sublevels transfers to the bare
(field-free) levels. This process of undressing is, in

principle, very fast, and is interesting to consider
carefully. The resonance fluorescence spectrum is,
of course, sensitive to the populations of the dif-
ferent dressed levels, and thus the spectrum offers a
method of observing undressing.

Our calculation shows in a rather transparent
way the limitations inherent in such a measurement,
which are not unexpected. Section V shows that a
broad-band interferometer can observe the undress-

ing by measuring, for example, the prompt increase
in central-peak height after the laser turns off. This
is related to the power transfer of Sec. VII. Howev-

er, Sec. VI shows that any attempt to observe a
"fundamental" limit on the speed of the undressing,

by making the interferometer respond faster (by in-

creasing I ), must fail as soon as I becomes com-

parable with Q. This is because the interferometer
then fails to distinguish the side peaks from the
center peak. One can say, therefore, that the un-
dressing cannot, in principle, be observed to occur
faster than the Rabi frequency, no matter how rap-
idly the laser is turned off.

Williams et al. made a direct measurement of
the scattering lifetime in molecular iodine as a func-
tion of the incident excitation frequency. When the
excitation was on resonance, they observed a spec-
tral lifetime of about 1 @sec, which is the natural
fluorescence lifetime of the upper excited state.
When the frequency was moved off resonance, the
scattering became very short, and hence "Raman-
type" (see Fig. 1 of Ref. 7). The time-dependent
behavior of the spectrum that they experimentally
observed in the resonance case is in agreement with
our "prompt" results for the central peak [see Figs.
4(a) and 6]. As they used a rather weak laser pulse
in their experiment, a sudden increase in height of
the spectrum was not observed.

Finally, although the working expressions
presented here in Sec. IV are valid only for mono-
chromatic strong fields and exact resonance, they
are explicit and fully analytic. Also, they are not
really restricted to the case of a nonadiabatic turn-

ing off of the pulse, because of the integrating char-
acter of the interferometer. Of course the solutions

given in the Appendix are exact and can be applied
on and off resonance and for weak or strong fields.
Rather than pursing the numerical study of these
solutions in all their complexity it seems more in-
teresting to study next the opposite limit to the
present one. In a subsequent note we will discuss
weak nonmonochromatic fields, possibly far from
resonance. We will explore the connections with
the work of Saari, Courtens and Szoke, Knight,
Molander, and Stroud, and Raymer and Cooper. '
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APPENDIX A

In this appendix we derive the explicit expression
of the second contribution Sqi and third contribu-
tion SIII for the vector S(t,co, I ) in (3.3).

The formal solutions of Eqs. (2.4) and (2.8) can
be written as follows:

g(t)=e ' P(to)+ —(e ' —l)f
M

and

(A1)

0'(t, , t, )=e ' "%(t O, t, )

(A2)

%'(ti, t i ) =Tg(ti )+g,
where

0 — 0
I

2

1

2

(A3)

0 0 —l, 0= 0
0 0 0 0

(A4)

For later reference we note that in the field we have

F(t2) =MUQ(t2), (ASa)

where g(to) and %(t,o, t2) are proper initial condi-
tions for a given type of evolution (in the field:
0&t &t~ with the matrix M; or out of the field:
t & tz with the matrix Mo). Equation (A2) describes
the time evolution of 4(t&,t2) with respect to the
first time variable only.

It is useful to note also that
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where

0 0 0
U= —0 01

M
0 0 0

or out of the field

(Asb) and

Up f=01

Mp

1T —f+g=O.
Mp

(A7)

(A8)

and

E(t2 ) =Mp Upf/)(t2 ) (A6a)
We also define, for convenience,

S=g(O)+ f .—1

M
(A9)

00 0 000
Up= 0 0 —A = 0 0 1

1

Mp 00 0 000
(A6b)

(A 10)

The second contribution in (3.3) can be written as
6

Sg(t, p), I')=2I e ' Re g SII~,
i=1

It is also worthwhile to notice that with

(2)
Srr =

( P /2 lD +Mo )( r rp )
e ' ' —I (t I2+iD—M)t—

I /2 —iD+M
(I /2 —iD+Mo)(r —r ) (I /2+iD —M)r

e ' ' —1 —(r/2+I. D —M)t e —1 1P —(T+ U) —.~+
I /2 iD+M— I /2+iD M—

(I /2 —iD+Mo)(t —t )
P

Mr —(I /2+iD)r
e P —e P

I /2 —iD+M I /2+iD+M

(A10a)

(A10b)

(A10c)

(I /2 —iD+Mp)(t rp )
e(4)

Srr =
I /2 —iD+Mp

e P —1
(I /2 —iD)(t —t )

I /2 —iD
(I /2 —iD)(r —t )

e P —1

I /2 —iD

Srr =—(5)

(6)s„=—
where we have defined

—(I /2+iD)t

(U —U)
I /2+iD M"

Mr —(I /2+iD)t

I /2+iD+M
—(I /2+iD)t

e
Up I /2+iD M"

(A10d)

(A10e)

(A10f)

r
P ( I/2+ iD M) t't — Mt 2

0

The third contribution in (3.3) is

4

S((,(t,pt, I ) =Re g SItI

(A11)

(A12)

with S(f)2P(I/2+P()R(e t —tp tp (A12a)

(I +Mo)(t —r )—2I —I'(t —t )
0 p

SIII =
r/2 — e ~ (T+ Uo) R(tp),I /2 —iD+Mp I +Mp

I /2+t'D+M
(P+Mo)(r tp)

(4) 2I —r(t rp )

Srrr =
~/ . e UP R(tp),I /2 —rD r+M,

where we have denoted

( 7/2 +iD +Mo )( r tp )

S(3) 2I —(I /2+iD)(r —r ) e —1

I /2 iD 0 p 7

(A12b)

(A12c)

(A12d)
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and

(,F/2+iD —Mo)t2p(t —t )= dt, e (T+ Up)~
p

R(t, )=f(t, )+ f1

(A13)

(A14)

We have used (A7) and (A8) to eliminate four more terms which formally appear in (A14). Because of the
structure of the matrix Up, given by (A6), with all zeros in the first row, the terms with Up in Eqs. (A10) and
(A12) will not contribute to the spectrum, which is the first component of the vector S(t,co, I ), and we can
drop them. These formulas describe the physical spectrum of delayed resonance fluorescence for any duration
of the laser pulse tz and any delay time t —tz. Using these formulas the spectrum can be easily plotted by a
computer.
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