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The possibility of a system driven far from equilibrium to exhibit multicritical phenom-
ena is discussed. As an example, the laser oscillating in two modes is shown to possess
bicritical and tetracritical points depending on the strength of the coupling between the
two modes. The phase diagrams indicating the regions and the nature of the four possi-
ble phases for the two-mode laser model are presented. The exponents and the scaling
characteristics near the bicritical and tetracritical points are also discussed.

I. INTRODUCTION

Recently it has been recognized that a large class
of systems in a variety of disciplines such as phys-
ics, chemistry, biology, etc., exhibit transitions
from certain disordered to ordered states which are
strikingly similar to the usual phase transitions in
equilibrium physical systems. The remarkable
analogy between the phase-transition behavior of
these “nonequilibrium” systems and systems in
thermodynamic equilibrium has led to considerable
activity in a new field of research named synerget-
ics."2 In synergetics, certain suitably defined con-
trol or pump parameters play the role of tempera-
ture or pressure in a thermodynamic system. As
the control parameters are altered from one set of
values to another, the system may undergo certain
phase transitions and it may be possible to study
the critical properties of the system near such tran-
sition points.

In addition to myriads of examples in other dis-
ciplines,”? in physics itself, phase transitions in
several far-from-equilibrium systems have been in-
vestigated in detail. Examples are single-mode
lasers,*~¢ various types of bistable systems (e.g.,
optical bistability,” bistable behavior of Josephson
junctions®), optical absorption by high-density exci-
tons,” nonequilibrium superconductivity,'® etc. In
each case the “macroscopic” state of the system
may be characterized in terms of certain appropri-
ately defined order parameters which appear in a
generalized potential or a “free-energy” expansion.
The latter has a structure similar to that in the

usual Landau theory of phase transitions, and one
has generally seen either a phase transition of first
order or second order.

Recently however in an interesting paper'! on a
single mode laser with saturable absorbers, Wal-
graef et al., using the model of Lugiato and co-
workers,® have pointed out that the nature of phase
transition may undergo a change from second to
first order at a point in the space of control
parameters. Such a confluence point at which a
line of second-order transition meets one of first
order has been termed a tricritical point, in analo-
gy with similar phenomena seen in equillibrium
systems of ternary liquid mixtures, mixtures of
normal *He and superfluid *He, the so-called
metamagnets,'>'? etc. The example treated by
Walgraef et al. is still characterized by a single-
order parameter albeit the corresponding free ener-
gy has a higher-order coupling,*® which is absent
in the ordinary single-mode laser and which is
essential for the occurrence of a tricritical point.

On the other hand, one believes on very general
grounds that a system described by two or more
coupled-order parameters should exhibit complex
critical phenomena of higher order.'"* We demon-
strate that such multicritical points can indeed oc-
cur in a laser oscillating in two modes,'*'® such as
the Zeeman or the ring laser. We thus provide for
the first time an example of a system driven far
from equilibrium which exhibits bicritical and
tetracritical behavior. The latter, as remarked ear-
lier, is a consequence of the coupling between two
order parameters, which may be identified with the
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amplitudes of the two-mode laser in the present
case. The phenomenon is similar to the multicriti-
cal behavior observed in the equilibrium phase
transitions of certain anisotropic antiferromagnets
in the presence of external magnetic fields.!” The
latter have been discussed quite extensively in re-
cent years and may serve to elucidate the impor-
tant features of multicritical points in nonequilibri-
um systems too. These features include the ex-
ponents and scaling behavior of the free energy
which will be discussed at length for the case of a
two-mode laser.

II. MULTICRITICAL BEHAVIOR
OF THE TWO-MODE LASER

The semiclassical and quantum theories of a
laser oscillating in two modes'>!®!® have been
worked out in detail. In order to analyze the
phase-transition characteristics of the two-mode
laser, we shall recall here some of the basic results.

A. Basic equations for the two-mode operation

The complex amplitudes €, and €, associated
with the two modes of oscillation are known (cf.
Ref. 16) to satisfy the Langevin equations

e=(a,— & | —&le|De+f1(1), 2.1

e=(a,— |&|’—&|& | e+, (2.2)

where a, and a, are the dimensionless pump
parameters that could be either positive or negative
and £ is a (positive) coupling parameter between
the two modes. The structure of a,, a,, and £
depends on the details of the laser which are dif-
ferent, for instance, in ring and Zeeman lasers.'*
The complex quantities f;(z) in (2.1) and (2.2) are
Gaussian, delta-correlated random-noise terms with
zero mean, i.e.,

(FR(Ofi(t) =28;8(¢—1") . (2.3)

The probability distribution of €; and €, can be
calculated either from (2.1) and (2.2) or from the
corresponding Fokker-Planck equation. The
steady-state distribution turns out to be

P (€),6;) <exp(—P) , (2.4)

where the generalized potential or the free-energy
function ® has the structure

1 1
b=—za,|€ | —5a ||+ 5| |4+ &)Y
1
+?§|61|2f€2|2- 2.5)

Equation (2.5) constitutes a Landau-type expansion
of the free energy in terms of two order parameters
€; and €;,. The phases of the complex quantities ¢,
and €, do not appear'® in ® unless a field is inject-
ed externally. From a knowledge of ® and hence
of P, all the steady-state characteristics, e.g., mo-
ments like ( | €, |?"|€,| *™), which depend on the
values of a|, a,, and §, can be evaluated.

B. Stable solutions
of the order-parameter equations

In order to establish the multicritical behavior of
the two-mode laser, we examine the extrema of the
potential (2.5). The condition

—=—=0 (2.6)

yields the following values of |€;| and |e;]:
(a) if | €| =0, then

0 for a, <0,
le|?=

a, fora,>0; 2.7)
(b) if | e, | =0, then
0 fora; <0,
€| *= {al for a; > 0; 2.8)
(© if | €| 540, | €, |40, then
€1 |?=(Eay—a)) /(E2-1),
€| *=(£a1—a)) /(€= 1) . (2.9)

As | € |? and |€,|? are positive, Eq. (2.9) leads to
the following conditions on the parameters a,, a,,
and &:

(i)é<1, a,>&a,, a;>E&a,, (2.10)
and
(i) §>1, &ay>a,, &ar,>a, . (2.11)

The steady-state solution obtained above are “lo-
cally” stable, i.e., they represent local minima of
the potential if the Hessian matrix

%D R
e 0€,3€  O€ 36} (2.12)
3P REL)
36,0€} 3065
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is positive definite. The condition of “global” sta-
bility, which must be satisfied in order to have sta-
bility rather than metastability, requires, of course,
that the solutions correspond to absolute minima

of the potential. The form of the potential (2.5)
and the requirement of local stability lead to the
conditions

(1+36 & |2+ | &] D> 1(a,+ay) (2.13)
1
(—3a1+ €& N—3a+ €D+ 7& e | *+ €| *—Fa; | & | *—5a2 | ] >0 (2.14)
T
We examine now cases (a), (b), and (c) [see Egs. tions
(2.7)—(2.9)] separately. It may be noted that the
] separately d a;>a§, ay>af, .21)

stability analysis presented here in terms of Hes-
sian is new. Sargent et al.'® have discussed stabili-
ty using macroscopic equations.

i. Solution: |€;| =|€;| =0 (Phase I). Equa-
tions (2.13) and (2.14) lead to

a]+02<0, alaz>0, (215)
which implies that
a; <0, a,<0. (2.16)

We can easily check that under the condition
(2.16), the solution | €, | = |€,| =0 corresponds to
the only possible minimum of &, and hence, are
stable.

ii. Solution: |e€;| =0, |€;|°=a, a;>0 (Phase
1I). The inequalities (2.13) and (2.14) now yield

at—a; >0, a(1+&)—a;>0.

Thus the region in the (a;, a,) plane in which the
solution |€,| =0, | €,|*=a, yields the only possi-
ble stable phase is given by

a2§—al>0. (217)

iii. Solution: |€;|*=a;, |€;| =0,a;>0 (Phase
1II). Following the argument leading to (2.17), the
solution |€,|2=a;, |€ | =0 is found to be stable
provided that

a;E—a,>0. (2.18)

iv. Solution: |e€;|*=(Ea,—a;)/(E°—1)>0,
|€;|°=(Ea;—a;)/(E*—1)>0 (Phase IV). Equa-
tions (2.13) and (2.14) result now in the inequality

lei]?|ex](1-£%)<0. (2.19)
Thus phase IV is stable provided that
E<l1. (2.20)

Of course, one should additionally have the condi-

since |€,|2>0and |€|2>0.

C. The phase diagrams

The stable phases derived above are represented
in Fig. 1 by means of a phase diagram in the space
of the pump parameters a; and a,. As argued
above, one may observe four distinct phases in dif-
ferent regimes of the parameter space when the
coupling constant £ < 1. Phase IV corresponds to
coherent lasing action in which the intensities of
both the modes (I;= | ¢; |2, i=1,2) are nonzero.
The phase boundaries are marked by heavy solid
lines along which the stable values of the order
parameters on both sides of the boundary merge
into each other in a continuous fashion. These
lines represent therefore lines of second-order phase
transition.

On the other hand, for £ > 1, the inequality

E<1
a, 1
4y &
"
o
1 n/w  _4\9%
or”
m
T [«1)
1 i

FIG. 1. Phase diagram displaying the four possible
phases in the space of the pump parameters a, and a,.
For the coupling constant § < 1, four (heavy) lines of
second-order phase transition meet at the point T, called
the tetracritical point.
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(2.19) is violated and phase IV becomes unstable.
We now have just three different phases I, II, and
III indicated in Fig. 2. Applying the condition
(2.17) one now finds that phase II extends beyond
the a, =a, line up to the line defined by a,£=a,.
Similarly, phase III extends beyond the a, =a, line
up to the line a,£=a, [cf. Eq. (2.18)]. However,
on evaluating the respective free energies:

(DII: ——%a% , (I’III: — %a% , (222)

it becomes evident that in the lower half of the
shaded region bounded by the lines a;£=a, and
a,§=a,, phase II is metastable, while in the upper
half phase III is metastable. The coexistence curve
on which ®;; and @y match is simply defined by
the dashed line a; =a,. Across this line the set of
order parameters undergoes a jump discontinuity
and there is a first-order phase transition.

Based on the above considerations, we find that
two distinct possibilities?’ exist as far as the shaded
region is concerned: (i) Bistable behavior and hys-
teresis effects: (ii) Simple jump behavior across the
line of first-order phase transition a; =a,. The
first feature has been discussed at length by Man-
del and co-workers?! and by Singh.!® In what fol-
lows we shall ignore the question of metastability
and address the stable regions of the phase dia-
gram, indicated in Fig. 3.

We are now in a position to compare the phase
diagrams for the two-mode laser with those for an
equilibrium system having multicritical properties.
Consider, for instance, a weakly anisotropic (uniax-
ial or orthorhombic) antiferromagnet in a magnetic
field applied along the easy direction of antifer-
romagnetic order.!” Below a certain set of values

1 n/

FIG. 2. For &> 1, the fourth phase disappears and
there is a first-order transition between phases II and III
across the (dashed) line a;=a,. The regions in which
stable (s) phase II (III) coexists with metastable (ms)
phase III (II) are also indicated by light hatched lines.

E>1
a
2y LN
oV
1 n 7
//
- 1
8 q

FIG. 3. Stable portions of the phase diagram for
&> 1. The point B which is the confluence of two
(heavy) lines of second-order transition and one (dashed)
line of first-order transition is termed the bicritical
points.

of the temperature T and the magnetic field H, the
system is in the antiferromagnetic (AF) phase
characterized by “up”-“down” ordering of the
spins (Fig. 4). If one now keeps H fixed but in-
creases T, one goes over into the paramagnetic
(PM) phase across the line AB of second-order
transition. On the other hand, starting from the
AF phase and increasing H while keeping T fixed
(< Tp), one marches into the so-called spin-flop
(SF) phase in which spins switch over from their
low-field alignment parallel to the easy axis into a
perpendicular alignment transverse to the field.
The line BD, which is the boundary between the
AF and the SF phase, is a line of first-order phase
transition. The SF phase is separated from the
PM phase by the second-order line BC. The con-
fluence point B of the two second-order lines AB
and BC and the first-order line BD is a multicriti-

FIG. 4. Phase diagram (schematically) for a weakly
anisotropic antiferromagnet in the thermodynamic space
of temperature T and applied magnetic field H. The
Neel point Ty marks the antiferromagnetic (AF)
paramagnetic (PM) transition for H=0. The point B
(Hpg,Tp) at which the AF, PM, and the spin-flop (SF)
phases meet is referred to as the bicritical point. The
inset on the right shows the three lines of phase transi-
tions in the region asymptotically close to the bicritical
point B.
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cal point at which the basic characteristics of the
phase transition are quantititively different from
that near an ordinary critical point. It is evident
that the multicritical point B occurs as a result of
the competition between fwo distinct sorts of order-
ing, namely, parallel and perpendicular in the mag-
netic context. For this reason the point B has been
termed the bicritical point by Fisher and Nelson.!?
Comparing Fig. 3 and the inset in Fig. 4 we find
that a quantitatively similar situation exists in the
case of a two-mode laser for which phase I, located
symmetrically with respect to phases II and III,
plays the role of the paramagnetic phase. By anal-
ogy, the point B may be referred to as the bicritical
point of a two-mode laser.

The case £ < 1 has its counterparts also in anti-
ferromagnetism. Here, a fourth intermediate phase
in addition to the flop-phase shows up. One now
has four lines of second-order phase transitions
meeting at the point T (see Fig. 1), which is anoth-
er instance of a multicritical point and is known as
the tetracritical point (borrowing again the termi-
nology of Fisher and Nelson'!”). The significant
feature of the tetracritical point is that, at T, the
pump parameters conspire in such a manner as to
make the four distinct phases identical.

III. SCALING AND MULTICRITICAL
EXPONENTS

We have remarked earlier that a multicritical
point (bicritical and tetracritical, in particular) is a
special point on a line of critical points at which
the basic features of the transition change abruptly.
In order to investigate such characteristic changes,
it is instructive to examine the scaling behavior of
the free energy and the values of the exponents?
near the multicritical point, a task addressed to
briefly in the following.

In the free-energy function

1 1
P=—7a |61|2—7‘12|52|2

o
+ileal*+ el +3Elellel?, G

one may note that the pump parameters a, a,,
and £ are the “field” variables (same in the coexist-
ing phases), while the order parameters |€;| and

| €;| are the “density” variables (different in the
coexisting phases), in the sense of Griffiths and
Wheeler.?® The scaling properties of ® can be con-
veniently discussed in terms of field variables. To

this end, we may introduce the “ordering” fields,
or the fields conjugate to the order parameters €,
and €, as (the numerical factor 2 arises due to
complex nature of the order parameters)

E =222 _(Cay+ e |2 +E e Der
661
(3.2)
and
Ep=232 — (a4 |62 4E] @ | Ve -
662
(3.3)

In the multicritical region in which | €| and
| €;| are small, it is possible to invert (3.2) and
(3.3) and write the approximate relations

E E,|? E,|?
SV FU TN L 21 l (3.4)

a) aj a, a;

E E,|? E, |?

a, a; a, aj

On substituting (3.4) and (3.5) into (3.1), the free
energy can be shown to have the scaling form

E1 Ez aj

A a6
a;' a* %

®(E|,E,,a,,a;)~(a)* °F

(3.6)

Imagining the field variable a, to play the role of
temperature of an equilibrium system, we may
identify a as the “heat-capacity” exponent, A’s the
exponents associated with the ordering fields, and
¢ the so-called “crossover ” exponent?* associated
with the switching of the behavior from second-
order-like to first-order-like at the bicritical point
B (Fig. 3). For the two-mode laser model the ex-
ponents, of course, have their classical values a=0,
A,=A2=%, and ¢=1. These can be readily de-
duced by expressing the free energy (3.1) in the
structure of (3.6) with the aid of (3.4) and (3.5).
Regarding the other exponents, if one ap-
proaches either the tetracritical point T in Fig. 1 or
the bicritical point B in Fig. 3 along a line of
second-order transition, the order parameter | €, |
goes to zero as (a,)!/2. Hence the exponent S3,, (m
referring to multicriticality) has the value one-half.
On the other hand, 3°®/0€,3¢€] goes to zero as a;.
Thus the “susceptibility”” exponent y,, =1. These
exponents satisfy the usual scaling relation?*

YM =2_am _2Bm ’ (3.7)
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Am=2_am _Bm ’ (38)

where in the present case of a two-mode laser,

a,, =0 and A,, = as mentioned before. We may

obtain the additional exponent §,, from the rela-
.24

tion

8 =—1+(2—a,,) /By, - (3.9)

In the present case, §,, =3.

Turning now to purely bicritical behavior (Fig.
3), one may introduce the “subsidiary exponents”
which come about if one regards the bicritical
point as the terminus of the line of first-order
phase transition. The subsidiary exponents specify
how the discontinuity in certain density variables
(defined below) across the first-order line vanish at
the bicritical point B. The corresponding ex-
ponents are denoted by the subscript u, adopting
the notation of Griffiths.”* We thus introduce the
density variables

3, _ 3

Alz'aal ) 2—aa2 »

(3.10)
out of which 4, may be viewed to play the role of
the magnetization in the corresponding bicritical
phenomenon in antiferromagnets discussed earlier.
It is clear that the discontinuity in 4, across the
first-order line a; =a, (Fig. 3) is proportional to
lex |2 As |e,| itself goes to zero at the bicritical
point as (a,)!/?, the discontinuity in 4, vanishes as
(a,)B, where the exponent 8, =1. The correspond-
ing “susceptibility” exponent is y, =0. These
values are of course consistent with the scaling re-
lations?*

Bu.=¢(1-a,,), (3.11)
Yu=9apy . (3.12)
Until now we have discussed only the static ex-
ponents. It is possible also to evaluate the dynamic
exponents which determine the relaxation behavior
of the two-mode laser near the multicritical point.

These exponents are obtained from the eigenvalues
of the Hessian matrix in (3.12) which are given by

Ay=7[—b+(b2—4c)], (3.13)
where

b=75(a;+a)—(1+5E) | & |2+ ||,
(3.14)

and

c=(—7a;+|€e|N—1a,+ | &|?
126l € | X —5a+ |€|D
+ &M —5a:+ & D] . (3.15)

We may now study the behavior of the A’s as the
tetracritical or the bicritical point is approached
along one of the lines of phase transtions. We
quote the results.

a. Tetracritical point (§ < 1).

(1) }‘+=%Ial| , A_=0,
ifa,=0, a;(<0)—0; (3.16)
(2) Ay=7lay| , A_=0,

ifa; =0, a,(<0)—0; (3.17)
(3) Ay,=va,, A_=0,
if ay6=a, ; (3.18)

(4) Ay=va;, A_=0,
ifa;§=a, . (3.19)

b. Bicritical point (§> 1). The results (3.16) and
(3.17) hold also if one approaches the bicritical
point B along one of the two lines of second-order
phase transition (cf. Fig. 3). Along the line of
first-order phase transition, however, one has

hi=7a,[E+(E+E-1V?], ay=a, .

Thus the relaxation behavior of our system in the
mean-field approximation is rather simple. The
exponents presented in this section are valid in the
mean-field limit and in practice there might be
departures due to field fluctuations (rather than
spatial fluctuations) becoming large, see, however,
Ref. 25, where the mean-field behavior of a single-
mode laser has been seen by careful experimenta-
tion.

IV. SUMMARY

In this paper we have analyzed the nature of
phase transitions in the nonequilibrium system of a
two-mode laser. We might mention here that the
laser serves as a prototype model for the under-
standing of most nonequilibrium phase transitions.
The reason is that, for a laser, unlike many other
synergetic systems in biology, sociology, etc., the
mathematical route one has to follow and the na-
ture of approximations one has to make in deriving
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the macroscopic order parameter equations from
microscopic equations of motion of various atom-
field operators, are very clearly laid out. The ex-
ample of laser is therefore ubiquitous in any dis-
cussion of nonequilibrium phase transitions.

To this date, the second-order phase transition
and the accompanying critical-point phenomenon
in a single-mode laser are very well investigated,
both theoretically,>*> and experimentally.?®> Now,
a significant advancement in the last decade in the
area of critical phenomena in equilibrium physical
systems has been the understanding of higher-order
critical points, especially tricritical points. It was
therefore interesting to see also an example of a
tricritical point'! in a laser with saturable ab-
sorbers. A more complex situation in higher-order
critical phenomena arises however when the free
energy is a function of competing order parameters
and possesses certain symmetries, such as those im-

plied by the dependence of the potential only on
the modulus of the order parameters [cf. Ref. 19].
In that case, there is the possibility of the oc-
curence of “symmetrical” multicritial points, e.g.,
the bicritical and tetracritical points. The latter
have also been widely studied in equilibrium physi-
cal systems, both from classical as well as renor-
malization group theories.'” The question there-
fore naturally arises: Is there a situation in the
laser also wherein one may observe multicriticality?
The present work provides an answer to this query.
We should conclude by remarking that the laser
system has the advantage that spatial fluctuations
in the order parameters are negligibly small and
hence simpler classical theories (as discussed here)
would seem adequate for the description of phase
transitions. It would be interesting therefore to
test the predictions with regard to exponents and
scaling behavior as made in this paper.
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