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It is shown that with use of some assumptions the cross sections for the broadening of
optical lines originating from Rydberg levels can be interpreted with a simple model which
takes into account the elastic and the quenching cross sections of the corresponding Ryd-
berg states. The validity of the model is extensively discussed. Good agreement is observed
in most cases between the values derived from the model and the available experimental
data for the broadening and quenching cross sections of a wide set of Rb and Na Rydberg
levels perturbed by noble gases. It is clearly demonstrated that inelastic processes can signi-
ficantly affect the broadening cross sections even for large values of the principal quantum

number n.

I. INTRODUCTION

Experimental studies of Rydberg atom-atom in-
teractions started a half century ago when Amaldi
and Segré' measured the shift of spectral lines asso-
ciated with transitions between the ground-state and
highly excited nP states of alkali atoms. Fermi, in a
famous paper,? laid at the same time the founda-
tions of the theoretical treatment of Rydberg atom-
atom interactions. This treatment was based on the
fact that the outer electron and the ionic core, being
far away from each other on the average, behave as
separate scatterers during an atomic collision. Re-
cently, due to the development of new experimental
techniques, there has been a strong revival of in-
terest in the physics of Rydberg atoms. Apart from
a justifiable curiosity, due to the fact that most of
the properties of Rydberg atoms exhibit quite
unusual orders of magnitude, more practical
reasons also justify the interest of the scientific
community because Rydberg states play an impor-
tant role in laboratory and astrophysical plasmas.
Their collisional properties may also affect the
overall efficiency of laser isotope separation.

Basically two ways of investigating collisional
processes involving Rydberg levels have been used’:

(i) Measurements of the inelastic cross sections
for the total depopulation (quenching) of a given
Rydberg level, which have been widely performed
for alkali Rydberg states colliding with noble-gas
atoms.

(ii) Measurements of the broadening and shift of
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spectral lines involving Rydberg levels.

It is a tradition to consider the first type of inves-
tigation as belonging to collision physics, and the
second to spectroscopy. However, especially for
highly excited states, the border between these two
fields is not very clear.® There exists a wide set of
Rydberg levels [Na(nD) and Na(nS) states, Rb(nD)
and Rb(nS) states] for which both types of investi-
gations have been performed. It has been already
demonstrated®> that, in some cases, inelastic col-
lisional processes can contribute significantly to the
broadening of the corresponding Rydberg lines. It
seems thus of great interest to investigate under
which assumptions a clear theoretical connection
between the two types of measurements can be es-
tablished and to see how the available experimental
data compare under these assumptions. This is the
main goal of this paper. Finally such a work
should also provide valuable tests for the theoretical
approaches used for both types of processes (i) and
(ii) leading to an overall better understanding of the
basic physics of collisional processes involving Ryd-
berg atoms.

The paper will be organized as follows. In Sec. II
we recall the basis of the line-shape theories with
special attention paid to the validity of the neces-
sary assumptions. It will be shown that, under
some assumptions, the broadening cross section cor-
responds to the sum of elastic and quenching cross
sections of the involved Rydberg state. The validity
of our simple formula as well as its physical mean-
ing will be extensively discussed. In Sec. III we
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summarize the specific theoretical approaches that
are used in Sec. IV, devoted to the detailed compar-
ison and discussion between the data available for
both types of processes. Some concluding remarks
end the paper.

II. THEORETICAL BACKGROUND

In this section we first recall the general equa-
tions of the impact line-shape theory. Under proper
assumptions that are well fulfilled for Rydberg op-
tical lines, we show that there exists a simple con-
nection between the broadening and collisional cross
sections. The contribution of both elastic and in-
elastic collisional processes on the broadening cross
section are then discussed within the frame of a
Fermi-type model.> Though some expressions con-
cerning the shift of the Rydberg lines are also given,
we mainly focus our discussion on the broadening
process for reasons that will be briefly mentioned at
the end of this section (Sec. II G).

A. Impact approximation for optical lines
involving Rydberg states

According to the impact theory, the intensity dis-
tribution I (w) of the line corresponding to a transi-
tion between the initial level a and the final level 3
is given by the Lorentzian profile
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where w, is the unperturbed frequency of the a—f8
transition. ¥,g and A,g denote the half-width and
shift of the line, respectively. In the impact approx-
imation, both y,g and A, are linearly dependent on
the perturber density N and can be written as

Yap=2N00%y , 2
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where a ) and a“) are the effective cross sections®

for the lmpact broadening and shift of the line,
respectively, and 7 is the mean relative velocity of
the interacting atoms.

The general nonadiabatic formula for the effec-
tive cross sections af,ﬁl and o y were first derived by
Baranger’ and thoroughly dlscussed by Sobelman
et al.® It can be written as

cr“}}—taa klz (21 +1)
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where k is the wave vector of the perturbing atom.
Here ., and Yfgl}, are the diagonal elements of the
scattering . matrix for a particular / value of the
angular momentum number for the relative motion
of the perturber.

It should be emphasized that the shift and
broadening of an optical line corresponding to the
transition between the Rydberg state a and the
low-lying state [ (e.g., ground state) is entirely
determined by the perturbation of the upper state.
Thus it is a very good approximation to ignore the
perturbation of the lower state by simply putting
fg};—l for all / in Eq. (4). In this approximation,
which was used in all the theoretica] treatments so
far proposed, the o ) and a y cross sections depend
only on the quantum numbers a of the Rydberg lev-
el. Then we can ignore the 8 index and write, ac-
cording to Eq. (4),

=—’T—22 (21 +1)Ref1—#L) (5)

and

o= 2 2 +DIm{ 7Ly . (6)

Note finally that the diagonal elements %)), can

always be written as
S =exp(—2r? —2inl), 7

where 27 is the real phase shift and 2T\ denotes
the total probability of collision-induced transitions
from the state a to all other energetically accessible
states, for a given / value.

B. Connection between broadening
and collisional cross sections

According to the theory of scattering,® Eq. (5)
can be rewritten as

(b) (tot)
Oq =% %a ) (8)

where Q\° represents the fotal cross section for
both elastic and inelastic scattering of the atom in
the Rydberg state a on the ground-state perturbing
atom. It is generally assumed that Q" can be ex-
pressed in the form
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ixtot (el)+Q(mel) , (9)

where
T < (2
:—22 QI+ 1=F gl (10)
is the cross section for the elastic scattering and

Qlinel) — 22(21+1){1—1y |2} (11)

is the cross section for the inelastic scattering of the
atom a on the perturber, i.e., the quenching cross
section.

Using Egs. (8) and (9) one can directly connect
the results obtained from pressure-broadening ex-
periments on spectral lines involving Rydberg
atoms with those obtained from studies on elastic
and inelastic processes. We have to keep in mind
that the simple relation given by Eq. (8) is only
valid if the perturbation of the lower state can be
neglected. This condition is always well satisfied
for spectral lines connecting Rydberg levels to the
ground state of an atom. If the contribution of the
lower state cannot be neglected (for example, in the
case of radio-frequency lines between two Rydberg
levels), Eq. (4) cannot be significantly simplified

C. The Fermi-Alekseev-Sobelman model

For sufficiently large values of the principal
quantum number n there are, according to Fermi,?
two factors responsible for the broadening and shift
of the spectral lines involving highly excited states.
The first factor is the scattering of the atomic elec-
tron on the perturbing atom [hereafter referred to as
(e —P)] and the second factor is the effect of polari-
zation of the perturbing atom due to the ionic core-
perturber interaction [hereafter referred to as
(C —P)]. In the Fermi model these two factors are
treated as statistically independent.

Applying this model, Alekseev and Sobelman’
have formulated a more general treatment based on
the impact theory. The fundamental assumption in
this treatment is that the contribution to the
broadening and shift caused by inelastic collisions
of Rydberg atoms with the perturbing atoms can be
neglected. This corresponds to put Q" =0 in Eq.
(9). It follows that I'=0 in Eq. (7). Thus ¢'?’ and
o' can be expressed [using Eqs. (5)—(7)] in terms
of elastic scattering phase shifts nﬁ,’ )

According to the separation between the (e —P)
and (C — P) interactions, one can write [see Egs. (8)

and (9)]

Uizb)=%( (ehe—P 4 o(e)C—P) (12)
The first term accounts for the contribution to the
broadening due to the (e — P) interaction. Alekseev
and Sobelman’® derived its explicit expression in
terms of phase shifts describing the elastic scatter-
ing of the quasifree electron on the perturbing atom
by combining Egs. (5) and (7) (with T'{’=0) and
averaging over the momentum distribution of the
Rydberg electron. The second term of Eq. (12)
represents the contribution to the broadening due to
the (C —P) interaction. Its explicit expression has
been derived’ in the following way. The classical
expression of Eq. (5) can be written as

oP'~27 f [1—cos2n,(b)]bdb , 13)
where b is the impact parameter and 7, the phase
shift due to the total interaction potential ¥, as de-
rived from the formula (a straight-line trajectory is
assumed)

2=t [

where R (2) is the internuclear distance for a trajec-
tory corresponding to a given b value. Alekseev and
Sobelman derived the Q'™ ~F values [Eq. (12)] by
using the polarization potential

V(R (t))dt , (14)

2
ape

2R*

for the evaluation of the phase shifts. In Eq. (15)
a, is the polarizability of the perturbing atom and e
the electron charge. The final expression of

BC—P a5 derived from Egs. (13)—(15) will be re-
called in Sec. II1.

In a quite similar way Alekseev and Sobelman’
derived the expression for the contribution of both
(e —P) and (C —P) interactions to o¢. In the limit-
ing case, when the s wave is only taken into ac-
count, i.e., for extremely low electron velocity v,,
the contribution of the (e —P) interaction to the
shift can be related directly to the asymptotic value
oy of the effective cross section for the elastic
scattering of an electron by the perturber for v, —0,
in the same way as in the original Fermi approach.

Earlier studies on the collisional broadening and
shift of the principal series lines (S — P transitions)
in an alkali atom perturbed by noble gases'®~!?
have shown that, for large n, the purely elastic
Alekseev-Sobelman treatment leads to a good agree-
ment with experiment. On the other hand, howev-
er, recent experiments or the two-photon (S —S)

Ve_p(R)=— (15)
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and (S —D) transitions of Na (Refs. 4 and 5) and
Rb (Refs. 13—15) perturbed by noble gases have
suggested in some cases the need for the inclusion
of inelastic processes in the interpretation of the ex-
perimental data.

D. Inelastic collisions

In most theoretical treatments of quenching col-
lisions (i.e., of Q%) involving highly excited
atoms, only the (e — P) interaction is taken into ac-
count, the (C —P) interaction being completely
neglected.'®~2! This approach leads in general to a
reasonable agreement between calculated and mea-
sured values for Q{"". Thus, when needed, we will
use theoretical approaches taking only into account
the (e —P) interaction in order to calculate Q™.
More specific details on some of these approaches
will be given in Sec. III.

We should note, however, that the problem of the
contribution of the (C — P) interaction to the Q"
cross sections has become a source of some contro-
versy in the literature.’>~2® Results of coupled-
channels calculations recently performed by Hick-
man® indicate that the inelastic cross sections are
insensitive to the (C —P) interaction, whereas the
elastic cross sections may depend significantly on it.

E. Extended Fermi model

Adapting the Fermi model to the inelastic case,
i.e., treating the (e —P) and (C —P) interactions as
statistically independent, we can express both aﬁ,b)
and oY as a sum of two terms due to the (e —P)
and (C —P) interactions, respectively. In the gen-
eral case, the cross sections should be calculated
from Egs. (5) and (6) by computing the diagonal ele-
ments .#'2¢ ~P and #)° P of the scattering matrix
separately for the (¢ —P) and (C —P) interactions,
respectively. Following Hickman®® we can neglect
the inelastic contribution to the #'°C~F elements
by putting I'’°~P=0 in Eq. (7). This means that
the broadening and shift due to the (C —P) interac-
tion will be assumed to be of purely elastic nature
and thus will be calculated according to the
Alekseev-Sobelman treatment.

Combining Egs. (8), (9), and (12) we finally ob-
tain?®

Uizb)=—;'(ane”+Q£:”e_P+Q¢(z:-P) , (16)

the two last terms of the right-hand side being the

same as in Eq. (12). Equation (16) will be extensive-
ly used in Sec. IV.

F. Limitations of the extended Fermi model

It is generally believed that the assumption of sta-
tistical independence of the (e —P) and (C —P) in-
teractions, which is the essence of the Fermi model,
is well justified for highly excited states, i.e., for
large n. For intermediate-n values, i.e., in the re-
gion where, as we will see, the maximum of
broadening cross sections occur, this assumption
may cease to be valid. To our knowledge the only
attempt to extend the high-n broadening treatment
down into the intermediate region is that given by
Omont.!” To calculate o', he neglects the inelastic
collisions [i.e., I‘i,”:O in Eq. (7)] and uses the semi-
classical Eq. (13), 1,(b) being the total phase shifts
due to the total interaction potential V,(R), i.e., in-
cluding both (e —P) and (C — P) interactions, as cal-
culated from Eq. (14). V,(R) is taken to be the sum
of the polarization potential [Eq. (15)] and the Fer-
mi potential Vy [approximating the (e —P) interac-
tion by a 8 function'’]. In such a way the statistical
dependence between the two interactions is approxi-
mately taken into account. The final expression of

02 can be written!” as

o~ Prosh, 17

where the first term is the polarization term and the
second accounts for the (e —P) interaction.

The numerical value of the first term does not
differ significantly from the Q' ~* value derived
by Alekseev and Sobelman.’ Thus one can conclude
(this will be confirmed in Sec. IV) that the Omont
result should not differ significantly from what can
be expected when the statistical independence be-
tween the two interactions is assumed. This is
probably due to the rather crude approximations
used to derive Eq. (17). Nevertheless it seems that
for the intermediate-n region the statistical indepen-
dence can still be applied. The inaccuracy inherent
to this assumption is certainly less than that caused
by neglecting the inelastic collisions. Therefore in
the present work we assume the validity of the ex-
tended Fermi model also for the intermediate-n re-
gion, i.e., our analysis of broadening data will be
based on Eq. (16). The comparison developed in
Sec. IV will allow us to check this assumption.

G. Line-shift cross sections

With the approximations used in the present
work only the cross section o' ~% for the line shift



due to the (e —P) interaction can be affected by in-
elastic collisions. One can always write this cross
section as the sum of the elastic and inelastic contri-
butions. However, there is no direct relationship
between Q1 [Eq. (8)] and the line-shift cross sec-
tion. No simple formulas analogous to Egs. (8) and
(16) exist for the shift. Therefore in the present
work the data concerning the shift of Rydberg lines
are not analyzed. We should only mention that the
elastic contribution to the shift is identical to that
derived by Alekseev and Sobelman® and can be ex-
pressed in terms of e ~-perturber elastic phase
shifts.

III. SOME THEORETICAL APPROACHES
We summarize in this section the theoretical ap-
proaches that are used in Sec. IV for the detailed
comparison, along with some general remarks on
their validity.
A. Evaluation of Q5 °

We use the Alekseev-Sobelman formula’

2 2/3
_ a,e
a (=200 =114 (18)
which reduces to
a 2/3
C-P-7.18 —v"—l , (18")

in atomic units. This formula was derived using
the JWKB phase shifts for the polarization poten-
tial [Eq. (15)]. Omont’s approach!’ (Sec. II F) leads
to a slightly different numerical coefficient [10.1 in-
stead of 11.4 in Eq. (18)] for the polarization contri-
bution to the broadening [first term of Eq. (17)].
Equation (18) has already proved very good agree-
ment with experiment when the two other terms of
Eq. (16) are negligible.'®!" Finally it is important
to note that the Q€ % term is n and / independent.

B. Evaluation of Q' —*

We use the elastic first Born approximation as
developed by Hickman'®!® and by Hugon et al.?
All our computations can be summarized in a sim-
ple way for S and nD states of alkali atoms collid-
ing with noble-gas atoms:
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2
0,8 F=2.32x 1083—;‘ n* =357 (19)
and
2
Q,(,eD”e_P=5-64X 108 E; nt —4.032 . (20)

The cross sections are in A2, p is the reduced mass
of the alkali—rare-gas pair, T the temperature (in
K), and L the diffusion length for the elastic
e~ —rare-gas scattering in atomic units. n* is the
effective quantum number (n* =n —§, where 8 is
the quantum defect of the considered level). The
accuracy of these scaling formulas is better than
2% when compared to the exact computation using
the first Born method.?’ Note that we use for the
numerical calculations an effective diffusion length,
as defined by de Prunelé and Pascale,?’ given by
4rL*=(0,(v,)), where the brackets indicate the
average of the elastic cross section o, for the
e~ —rare-gas scattering over the velocity distribu-
tion of the Rydberg electron. The validity of the
Born method has already been widely dis-
cussed.'”?%2® We just recall here what seems im-
portant for our purpose.” The method is only valid
for n high enough, say n>10 in the He case, for
which the diffusion length approximation used to
derive Eqgs. (19) and (20) is clearly valid. For the
other rare gases, even if an effective diffusion
length is used that takes partly into account the en-
ergy variation of o,, a lower-n limit for the validity
of the method is difficult to define but it is certainly
greater than for He. For these reasons we will only
quote the results of our model for n values greater
than 10.

Omont has also evaluated this term [Eq. (17)].
The numerical results'’ are, in general, close to
those obtained by the Born method. Thus for con-
sistency we will restrict our calculations to the
method previously described. Note finally that the
Q=P term can be written approximately as
A(Dn*~* where A(]) is a weakly I-dependent fac-
tor.

C. Evaluation of Q"

When available we use the experimental data for
Q') Otherwise we use two approaches that take
only into account the (e —P) interaction and have
already been proven to provide reasonable agree-
ment with the experimental data.'®*® The Qin"
term depends on both n and 1.

The first one is the inelastic first Born approxi-
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mation developed by Hickman.'®!® The numerical
procedure can be found in Hugon et al .2 Its valid-
ity has been widely discussed and the same remarks
as those quoted in Sec. III B can be repeated here.
Finally, as mentioned by Derouard and Lombardi,*’
its use should be limited to processes of small
inelasticity (AE <15 cm™").

The second theoretical approach is the scaling
formula derived by Hickman.*® It provides a con-
venient and easy way to evaluate the inelastic pro-
cesses involving Rydberg atoms. First developed
for the angular momentum mixing process,’"** it
can be extended to other inelastic processes provid-
ing its validity requirements are fulfilled. For our
purpose it is sufficient to say that it is valid for the
Nal(nd) states for all rare gases even at low-n values.
For the Rb(nS) states it can be used only for n
values greater than about 22, 36, 46, 62 for col-
lisions with He, Ne, Ar, and Xe, respectively. For
Na(nS) and Rb(nD) levels that are energetically well
isolated from the neighboring levels (their quantum
defects being about 1.3), the scaling formula cannot
be used in the range of n values (n <45) of interest
here.

D. Other theoretical approaches

The model of de Prunelé and Pascale,”’ also
based only on the (e —P) interaction, provides a
convenient way of directly evaluating the sum

tineh , glebe =P Thus adding the polarization
term leads to a quantity that is to be compared to
20'Y, according to Eq. (16). We refer the reader to
the original paper?’ for the detailed expressions de-
rived from this model.

Finally we will also quote crf,b’ theoretical values
computed by Wu and Stwalley>*** using a classical
purely elastic approach identical to Eq. (13). It
must be emphasized that this approach is quite dif-
ferent from those developed in this section since the
Fermi model is not used, the phase shifts 1,(b) be-
ing computed using a modified van der Waals
long-range potential.

IV. COMPARISON BETWEEN BROADENING
AND QUENCHING DATA

All the experimental o'’ data exhibit the same n
dependence. They first steeply increase with » in a
low-n region before they reach a maximum, in what
will be called the intermediate-n region, after which
a decrease towards an asymptotic limit for higher-n

values is observed. The position of the maximum
as well as the whole shape of the a'?(n) curve de-
pends strongly, as will be shown, on the relative im-
portance of the three terms of Eq. (16). This sec-
tion is divided into two parts, one devoted to the
discussion of the data concerning the sodium Ryd-
berg states and one devoted to the rubidium Ryd-
berg levels. Before beginning the discussion it is of
interest to mention that, for a given perturber, the
Q"D values strongly depend on the quantum de-
fect & of the considered levels.?%3"2 The Na(nS)
and Rb(nD) states have a quantum defect of about
1.3 indicating that they are relatively well isolated
from the neighboring states in the energy spectrum.
In that case, small-Q™ values have been mea-
sured. The Rb(nS) states (8~3.1) and Na(nD)
states (5~0.02) exhibit a quantum defect close to
an integer value. They are thus energetically close
to hydrogenic states of high degeneracy (n —3)
F,G,H, etc., levels for Rb(nS) states or n,F,G,H,
etc., levels for Na (nD) states. In that case, large-
Q' values have been reported. More details on
the effect of the energy position of the Rydberg lev-
els on their quenching cross sections can be found
in Refs. 3, 19, and 20.

A. Sodium data

The broadening cross sections of (3S —nS) and
(3S —nD) lines due to collisions with He, Ne, Ar,
Kr, and Xe from n =5 to 38 (S states) and n =4 to
40 (D states) have been measured using a trilevel
echo technique.*’ We use all the o' data pub-
lished in Ref. 5 for our comparisons. The authors
have compared their results with Omont’s ap-
proach.'” The o'% cross sections have been shown
to agree with the theoretical calculations in the de-
creasing part of the a'®(n) curve, except for Ne.
They have also qualitatively shown that, the Ui,'},)
cross-section values, which are much larger than the
corresponding a(,,l_’g) cross sections, especially in the
intermediate-n region, exhibit the clear influence of
inelastic collisions.

Measurements of Q""" are available for low-nS
states (n < 10) colliding with He, Ar, and Xe,» for
higher-nS states (20 <n <48) colliding with Ar
(Ref. 36), and for nD states (n < 15) colliding with
He, Ne, and Ar.}! Using our model we can extend
somewhat the analysis of Kachru et al.’> In partic-
ular, we will show quantitatively that the inelastic
collisions account very well for the difference be-
tween the o'% and 0% measured values.

Let us consider the case of the nS states. These
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states are nonhydrogenic (6~1.3) and thus the cor-
responding ol yalues reported are small*>3®
(<100 A?). One can consider that the contribution
of inelastic collisions should be negligible for all n
values. For example, at n ~30 in the Ar case,’® one
has Q%) _130 A2 to be compared to a
polarization-term value of about 2000 A% Only in
the xenon case, for which inelastic cross sections
can be large at high-n values [Hugon et al. for
Rb(nS) states’’], a small contribution to o' should
perhaps be considered. But no measurements are
available at high-n values for the Na-Xe pair. We
thus neglect the inelastic term of Eq. (16) and com-
pute the two remaining contributions according to
Egs. (18) and (19). The results (that are close to
those obtained by Kachru et al.’ following Omont’s
approach'®) are in good agreement with the o'4
data for all rare gases (except Ne). Typical exam-
ples are shown in Fig. 1 for Ar and Kr. Similar
agreements are observed for He and Xe.

Note that (as mentioned in Sec. III) the first Born
approximation is unable to provide reasonable esti-
mates for the elastic part due to the (e —P) interac-
tion at low-n values.’® This part contributes signifi-
cantly to the aff’,g) values for n values lower than
~14 and ~20 for Ar and Kir, respectively. As
pointed out by Kachru et al.,’ the case of Ne (Fig.
2) is puzzling. There is a discrepancy of about 1.5
for all n values (n > 10). But the measured values
are less than the computed ones, which seems

surprising since the polarization term [Eq. (18)]

0 20 30 40 0 20 30 40
n n

FIG. 1. Broadening cross sections for Na(nS) states
perturbed by argon and krypton. (A) and (O) are the
measurements of Kachru et al. (Ref. 5). Some typical er-
ror bars are shown. Full line ( ) indicates the result
of the model computed according to Eq. (16). Dashed
line (— — —) shows the theoretical results of Wu and
Stwalley (Ref. 34). Dot-dashed line (—-—.—- ) indicates
the result of the de Prunelé-Pascale model (Ref. 27) with
addition of the polarization term. This constant term is
indicated (CP) on the figure.

FIG. 2. Broadening cross sections for Na(nS) and
Na(nD) states perturbed by Ne. The experimental results
are those of Ref. 5. Other notations are the same as in
Fig. 1. No results are available from Wu and Stwalley.

should provide a lower limit for o'?’. No explana-

tion (except perhaps a hidden error in the Ne mea-
surements, as suggested by the authors®) has up to
now been proposed to account for this discrepancy.

Also reported in Fig. 1 are the results of the de
Prunelé-Pascale model?’ (with the addition of the
polarization term) and the calculation of Wu and
Stwalley’* for low-n  values. The de
Prunelé —Pascale model exhibits a maximum for
the o%s(n) curve (slightly shifted towards high-n
values when compared to the experimental data) but
a large discrepancy arises at high-n values, probably
indicating that the elastic part due to the (e —P) in-
teraction is noticeably overestimated. The Wu and
Stwalley calculations exhibit a satisfactory agree-
ment at low-n values (n <9) but clearly the exten-
sion of this approach to higher-n values will fail, no
decrease being expected. However, it shows that a
molecular approach is convenient in the low-n
range.

The situation appears quite different for the nD
states. These states are almost hydrogenic
(8~107?) and large inelastic cross sections (angular
momentum mixing process) have been reported.’!
Kachru et al.’ have shown that the large inelastic
cross sections explain the o'%) cross-sections values
they observed. But their comparison was limited to

He, Ne, and Ar for which experimental data up to
n ~ 15 are available. We extend their comparison to
larger-n values and to all perturbing gases by com-
puting Q,(,iD“e” using the scaling formula of Hick-
man,*® the two remaining terms of Eq. (16) being
evaluated according to Eqgs. (18) and (20). Typical
results are shown in Fig. 3 for He and Xe. For
n>12 (He) and n >15 (Xe) the computed values

agree within less than 20% with the experimental
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FIG. 3. Broadening cross sections for Na(nD) states
perturbed by He and Xe. Experimental results
[(0) and (A)] are those of Ref. 5. Full line ( )
shows the result of the model computed according to Eq.
(16). (é) are the results of the model when using Q"
values reported in Ref. 31 instead of values computed ac-
cording to the scaling formula of Hickman (Ref. 30).
Dot-dashed line (—-—-—- ) indicates the results of the de
Prunelé-Pascale model (Ref. 27) with inclusion of the po-
larization term. This constant term is indicated (CP) on
the figure.

data.®® Much closer agreement is observed in the
high-n range. It is not surprising that the agree-
ment observed is better for He than for Xe at
lower-n values because Q.5 should be more
for higher-n values in the Xe case than in the He
case as already discussed in Sec. III B. Note, how-
ever, that the intermediate as well as the high-n
range is well predicted by the simple model in the
Xe case, displaying clearly the large inelastic contri-
bution to o' (Xe). The same is also true for Kr
and Ar, for which the same type of agreement for
He and Xe is observed, and to a less extent for He
because in that case the Q,(,i[)’e” values are smaller
than for the heavier rare gases. The relative influ-
ence of the three terms of Eq. (16) is displayed in
Fig. 4. As mentioned previously, our model cannot
be used in the low-n range due to fact that the Born
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FIG. 4. Relative contributions to the o'? values of the
three terms of Eq. (16) in the case of Na(nD) states per-
turbed by He and Xe (see Fig. 3). Full line ( ) indi-
cates the n-independent polarization term, dashed line
(— — —) the elastic part due to the (e —P) interaction,
and dot-dashed line (—-—-—- ) shows the inelastic contri-
bution calculated according to the scaling formula of
Hickman (Ref. 30).

approximation is not valid in that range. The neon
case leads to exactly the same remarks for the S
states (Fig. 2): the calculated values for n > 10 are
about 1.5 times larger than the measured ones. Fi-
nally, as was the case for the S states, the de
Prunelé —Pascale model (more precisely its lower
limit?’ for the nD states) with addition of the polar-
ization term provides reasonable agreement in the
low-n and intermediate-n region, while it noticeably
overestimates o'\ in the high-n range.

B. Rubidium data

Extensive measurements of o'*), performed by a
two-photon Doppler-free technique, are available
for Rb(nS) and Rb(nD) states colliding with He, Ar
(7 <n<35) and Xe (7<n<60). This set of
data'!® serves as a basis for comparisons. Other
o'® data are also available for some Rb(nS) and
Rb(nD) states (n~25) colliding with rare gases.'’
Measurements of Q'™ have been performed by
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Hugon et al.?® for nS and nD states colliding with
He for intermediate-n values (9<n <18). One
value is also available for the 16 S level colliding
with Xe.?® More recently these measurements have
been extended to the high-n region (32 <n <45) for
nS states colliding with He, Ne, Ar, and Xe and for
nD states in collisions with He and Xe."’

For our comparison we mainly use the experi-
mental Q" values. We recall that the scaling for-
mula of Hickman®® cannot be applied in most cases
(see Sec. III). We quote also the results of Omont’s
approach. !’

Let us begin with the nD states. The measured

,‘,‘3‘” cross-section values are always smaller than
the corresponding Q,(,iq"e” values, due to the fact that
the nS states (8~3.1) are energetically close to the
(n —3)F,G,H, etc., levels. Figure 5 shows the data
for He and Xe. The model provides good agree-
ment in the He case in the intermediate-n range. It
is interesting to note that in this range the three
terms of Eq. (16) contribute significantly to the
broadening cross section, as shown in Fig. 6 where
the inelastic part has been computed for n <20 ac-
cording to the first Born method.”’ In the high-n
range, a small contribution of the inelastic collisions
is also present, and the results of the model (experi-
mental Q""" values from Hugon et al. are
used’®?’) are lying slightly above the asymptotic
value, due to the polarization term, computed ac-
cording to Eq. (18). The effect of the inelastic col-
lisions is, as expected, even more clear in the xenon
case. At high-n values (n ~40—50) the broadening
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cross sections are significantly larger at the polari-
zation limit. The results of the model, using the ex-
perimental Q'™ values given by Hugon et al.?” are
in good agreement with the measurements of Refs.
14 and 15. For both He and Xe the purely elastic
approach of Omont!” leads to underestimated
values. The de Prunelé and Pascale model?’ (with
addition of the polarization term) exhibits overes-
timated values for n > 10 (the results are not shown
in the figure) as was the case for the Na Rydberg
levels.

A clear effect of inelastic collisions appears also
for nS states (Fig. 7). It is, as expected, even greater
than for the nD states. This can be inferred from
the fact that, for corresponding levels, the differ-
ence between the measured o'® values and the
values deduced from the purely elastic model of
Omont are larger than for the nD states. This is not
surprising in view of the fact that the nS states are,
as mentioned above, energetically close to the
(n —3) F,G,H, etc., levels. In the He case, for
intermediate-n values, the results of the model, us-
ing the experimental Q" values of Hugon
et al,>3"* agree well with the experimental o'*’
values'*'S (we do not quote in Fig. 7 the o® values
of Ref. 13 since they agree satisfactory well with
the more extensive data of Weber and Niemax'®).
For the highest-n values the influence of inelastic
collisions, though small, appears not negligible.
The conclusions of the comparison are basically the
same for the Xe case. The only Q'™ value avail-
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FIG. 5. Broadening rate constants (left scale) and cross sections (right scale) for Rb(nD) states perturbed by He and Xe.
The experimental results of Weber and Niemax (Refs. 14 and 15) (with some typical error bars) are indicated by the trian-

gles (A). Full line (

) shows the result of the model (in the helium case) computed according to Eq. (16). First Born

approximation is used to evaluate Q. Circles (O) are derived from the same Eq. (16) when measured Q""" values
from Ref. 37 are used. Dashed line (— — —) indicates the result of the purely elastic approach of Omont (Ref. 17). Also

shown is the constant polarization term (CP).
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FIG. 6. Relative contribution to the o'® values of the
three terms of Eq. (16) in the case of Rb(nD) states per-
turbed by He (see Fig. 5). Full line ( ) indicates the
polarization term, dashed line (— — —) the elastic part
due to the (e —P) interaction and dot-dashed line
(—e—o—- ) shows the inelastic contribution calculated ac-
cording to the first Born approximation.

able in the intermediate-n range (n =16) leads to a
computed o'® value, according to our model, in
close agreement with the one measured by Weber
and Niemax.'> At high-n values (n ~40—45), the
results of the model agree well with the measured
o'® values and display a clear influence of the in-
elastic collisions. For n ~45 the inelastic contribu-
tion to o' is about 1.5 times the polarization term
[the elastic part due to the (e —P) interaction being
almost  negligible]. Once again the de
Prunelé — Pascale model,2’ with addition of the po-
larization term, noticeably overestimates the o'?
values for n > 10 (results are not shown in Fig. 7).
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Unfortunately no measurements of ‘' have been
performed for Rb Rydberg states colliding with
neon. They should be of great interest in order to
see if the situation observed for the Rydberg Na
states still occurs, i.e., if the o'®’ values are notice-
ably smaller than the theoretical high-n limit pro-
vided by the polarization term. Note, however,
that, for Ne, the contribution of the inelastic col-
lision to o'? should be negligible (as was the case
for Na Rydberg levels) in view of the small-Q ‘")
values reported by Hugon et al.’’

V. CONCLUDING REMARKS

We have shown that, if, according to Fermi, the
statistical independence between the (e —P) and
(C — P) interactions is assumed, there exists a sim-
ple relation between the broadening and the quench-
ing cross sections (this holds only if, as is always as-
sumed, the influence of the lower state of the Ryd-
berg optical line is neglected). This relation pro-
vides a useful connection between two different
types of measurement, i.e., the line-profile studies
and the experiments on collisional inelastic process-
es. This extended Fermi-type model has been tested
in various situations for which the three contribu-
tions to o'® [Eq. (16)] have been observed to be of
different relative magnitude, and has been proved to
provide good agreement, except in the Ne case, with
the measured o'® cross-section values in both
intermediate- and high-n regions. The low-n region
clearly requires a more elaborate treatment. In this
region the Wu and Stwalley approach as well as the
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FIG. 7. Broadening rate constants (left scale) and cross sections (right scale) for Rb(nS) states perturbed by He and Xe.
The experimental results of Weber and Niemax (Refs. 14 and 15) (with some typical error bars) are indicated by the trian-
gles (A). Circles (O) show the result of the model computed according to Eq. (16), the Q " values being those reported in
Refs. 20, 37, and 41. Dashed line indicates the result of the purely elastic approach of Omont (Ref. 17). Also shown is the

constant polarization term (CP).
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de Prunelé —Pascale model show qualitative agree-
ment with the experimental data. Finally the agree-
ment observed between the measured and calculated
o' cross-section values indicate that in the
intermediate-n region the possible interference ef-
fects due to the breakdown of the hypothesis of sta-
tistical independence between the (e —P) and
(C —P) interaction should be small.

It is believed that the extended Fermi model
should allow one to obtain quantitative informa-
tions on collisional inelastic processes from line-

broadening measurements and vice versa. This
somewhat erases the traditional border between the
two fields.
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