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If the left (0,/=0) and right (8,/=180) rotationally inelastic differential cross sec-

tions are measured for the magnetic transitions, then in general the two results are not

identical. It is shown, for a two-dimensional model and for linear molecules, that the ori-

gin of this asymmetry is due to multiple-collision effects of the atom with the molecule.

I. INTRODUCTION

In a typical atom-molecule collision experiment,
with only rotational excitations, the differential
cross section is measured for a particular transition
(0,0)~(j,m) (for simplicity we assume that initial-

ly the molecule is not rotating) and at the given
scattering angles (8,$). In most of the experiments
the azimuthal angle tI) is fixed while 9 (the scatter-
ing angle) is variable, but one can also analyze the
cross sections for a variable P and fixed 8. Unlike
a spherical target, when the cross section is P in-

dependent, for a molecule, i.e., the nonspherical
target, the cross sections will be P dependent. In
the (() dependence of the cross sections, two posi-
tions are of particular interest: P =0' and (() =180',
which is formally equivalent to the positions 8
(right) and —0 (left) for the polar angles. In gen-
eral, the two cross sections are not equal and the
reason for this will be investigated in this work.
We will find that the origin of this asymmetry has
physical meaning, since it is due to multiple-col-
lision effects of the atom with the molecule. To
show this we will make use of the models for the
rotational excitations. Let us therefore make a few
comments on their use in the atom-molecule colli-
sions.

Rotationally inelastic collisions of the atoms and
molecules have been very thoroughly studied, both
theoretically and experimentally. ' However,
when the theory is analyzed in more detail, we find
two distinct approaches: one which deals with

developing a suitable method for calculating accu-
rate cross sections and the other which uses simple
models to explain typical features of the cross sec-
tions. The latter approach is less accurate and not
necessarily suitable for accurate comparison with
experiment, but it has an advantage when we are

interested in understanding the physics of the in-

elastic collision process. The former subject will

not be of our immediate interest since nowadays
there are powerful methods for computing the
cross sections, although some further improve-
ments must be taken into account.

The use of simple models for explaining the
features of the cross sections, in terms of some

typical parameters of the potential surface, have
not attracted great attention. Only recently this at-

tempt was made using the hard-core ellipsoid
model in connection with rotational rainbows. '

The rotational rainbows were also studied using the
Infinite-order sudden (IOS) limit of the
Schrodinger equation ' and when applied to hard-
core ellipsoids, similar relationships were found as
in the classical model.

What is the physical justification for using such
models? A typical atom-molecule potential con-
sists of two parts: the tail and the intermediate re-

gion (where the well of the potential is included)
and the highly repulsive core for small atom-
molecule separation. Using order-of-magnitude es-

timates we will now show that, for the case of ro-
tational excitations of molecules, the tail and the
intermediate region do not give important contri-
butions.

Any rotation is caused by a torque, and classi-
cally if this torque is applied in the time interval.
At, the final rotational momentum of the molecule
1S

A/j/ =«/Rxfv/,
where R is the vector from the center of mass of
the molecule to the incoming atom, and V' V is the
gradient of the potential. We immediately notice
that at large distances the vector product in (1 ~ 1) is
almost zero since the potential is almost spherical.
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At the intermediate distance, i.e., around the posi-
tion of the minimum of the potential, V V can
have an angular component and we will assume
that it is constant during the time ht, in which
case

Aj =Et av
a

{1.2)

where we have also assumed that the collision
takes place in two dimensions. The expression
(1.2) gives the maximum possible change in the ro-
tational quanta j, in the intermediate range of R.
If for ht we give a typical value At —10 ' s {we
should take into account that riV/BP is large in a
relatively small range of R) and j=2, i.e., the
minimal change in the rotational quanta for the
homonuclear molecule, then BV/BP-1 eV/rad.
This value is very large and only potentials with

deep wells, e.g., ion-molecule potentials, can satisfy
this condition. Otherwise this part of the potential
indeed does not contribute very much to the inelas-

tic transitions.
Therefore, only the short-range part of the po-

tential, where the gradient is very large, will deter-
mine the essential structure of the cross sections.
Of course, the details of the potential, i.e., the tail
and the intermediate part, will contribute to the ex-

act shape of the differential cross sections but will

not alter the overall features such as the number of
possible transitions, spacing of the broad oscilla-
tions in a differential cross section, and the posi-
tions of the peaks of the rotational rainbows.
Therefore it is reasonable to replace the potential

by a hard core, which is determined by the line
where the kinetic energy of the system is zero. As
has been argued, ' the shape of the hard core, in

many cases, is almost an ellipsoid, e.g., for the
homonuclear molecules, but there are obvious cases
where it is not. However, it turns out that the re-

sults of this work, where we investigate the left-

right symmetry of the cross sections, are also valid
for a more general topology of the target. In fact,
the proofs of Sec. III of this work can be repeated
for a general shape of the target, but we have only
shown it for the ellipsoid.

We will further simplify the ellipsoid model by
assuming that the scattering occurs in two dimen-

sions. The two-dimensional model greatly simpli-
fies the mathematical part of the problem but at
the same time does not neglect the basic structure
of the scattering process. There are obvious limita-
tions of the 2D models, but some properties of the
differential cross sections are not altered by reduc-

ing the reducing the dimensionality. For example,
the position of the rotational rainbows and the
broad oscillations of the differential cross sections
will remain unaltered when compared with the 3D
calculations' and experiment. " Furthermore, the
number of maximally accessible transitions is ex-

actly predicted in 2D. The physical reason for this
has already been discussed. It was also recently
shown that there is a propensity for preserving the

j, quantum number in 3D rotational collisions, '

which is an indirect indication of the relevance of
the 2D models.

From this short discussion we can safely assume
that the 2D ellipsoid model has predictive power.
Therefore, using this model, we will study in this

paper one feature of the cross sections which will

contribute to our understanding of rotationally in-

elastic collisions. One of the results of the study
of the ellipsoid model in 2D is that the kinetic en-

ergy of the system can never be totally transferred
into rotation if

~=q)r &1)(a —B)',
where p is the reduced mass of the system and I is
the momentum of inertia of the ellipsoid. The
large and small axes of the ellipsoid are A and B,
respectively. This conditions was derived under
the assumption that initially the molecule was not
rotating.

However, when e=(A —B) all the kinetic en-

ergy is transferred into rotation and the atom does
not move away from the molecule. It is waiting to
be hit by the other end of the rotating molecule.
After this second collision the atom absorbs some
of the rotational energy and Aies away. The ques-
tion is: What is the effect of this process on the
cross sections? For brevity we will refer in the fu-

ture to this effect as the MC (multiple collision) ef-

fect. Hence, how will the MC effect be observed
in the differential cross section? In this paper we

will show that the MC effect causes the left-right
asymmetry of the differential cross section.

In Sec. II we will give more general conditions
for the MC effect than {1.3), and in Sec. III we

will discuss under what circumstances, both in
classical and quantum mechanics, the left and

right cross sections are symmetric. As will be
shown, indeed the MC effect is the prime cause of
the asymmetry.

II. CLASSICAL CONDITION FOR MC EFFECT

We have described in the Introduction the essen-
tial idea of the MC effect. However, the situation
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when the molecule absorbs all the kinetic energy is
rather special. Let us therefore generalize the MC
effect to all the processes when after the first colli-
sion the particle will have kinetic energy but may
be scattered in such a direction that the ellipsoid
will hit it a second time. The effect is not exactly
the same as described in the Introduction but the
chain of events is identical.

In the Introduction we have given the condition
for the simple MC effect and here we will derive
the condition for this more general effect. Let us
first define a suitable coordinate system. In the
center of the ellipsoid we place the coordinate sys-
tem with its negative y axis pointing towards the
incoming particle. The coordinates of the point
where the particle hits the ellipsoid are

x=b,

y& [b (A ~———8~)sina cosa AB(A—cos a+8 sin a b)'/—]l(A cos a+B sin a) .
(2.1)

kx =b+h —t cosset,
p

k
y =yb+A —t sino),

p

(2.2}

where fi is the reduced Planck constant and k is
the wave number after collision, i.e., k =(ko
—ej )' . lt is assumed that the time t =0 is de-

fined at the moment of impact.
The ellipsoid, after collision, is in the rotation

state j. During time t it will rotate by an angle

P—a, given by

(2.3)

lf the value of t, obtained from (23), is replaced in
(2.2) we obtain

(
.e

)
2 1/2

x =b+ ' „(P—a)sin8,j
[1 e(j» )2)1/2

y =yb+, (P—a)cose,j

(2.4)

After collision the particle is scattered in the direc-
tion co with respect to the x axis. The equation of
motion is

l

that at the orientation P of the ellipsoid the coordi-
nates (2.4) of the particle are equal to (2.1), where
b is replaced by x of (24) and a by P. Figure 1

shows one such possibility. If we want to find the
general condition for the MC effect in terms of the
parameters of the ellipsoid, the set of equations of
motion should be solved, together with the condi-
tions already mentioned. However, in general, this
is not possible because the equations, although ana-
lytic, are difficult to solve. We can only derive an
approximate condition which can be obtained from
the following physical reasoning. For the impact
parameter b =A —B, the angle cos(2ao) =(A
—B)/(A +B), ao &0, and arbitrary e, the incoming
particle, is always scattered in the backward direc-
tion. At the same time the ellipsoid will acquire
the maximal possible rotation. Therefore, if the
particle, while flying back, escapes the zone of the
maximal reach of the ellipsoid before the tip of the
ellipsoid comes to the particle, there will be no MC
effect.

The point which can be maximally reached by
the ellipsoid on the line of impact x =b is when

where 8 is the scattering angle, related to co by
co =(m/2) —0. We have also used the notation for
the reduced rotation quantum number j'=j/ko,
and henceforth we will assume that j*& 0. It
should be pointed out that in two dimensions there
are only two projections of the rotational angular
momentum of the molecule on the z axis: +j. For
simplicity, from now on we will assume the posi-
tive projection, but this restriction is not essential.

The necessary condition for the MC effect is

I

I

I
Pe

I

I

{a) (b)

FIG. 1. MC effect. After the first impact (a) the
atom is scattered in direction Og 180' with momentum
p. The second impact with the ellipsoid (b) changes
direction of the atom once again.
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the end of the large axis is exactly on this line.

They value of this point is

y = —A siny= [8—(2A —8)]'~~, (2.5)

where y is defined as the angle between the axis A

and the positive x axis. The angle y is given by

cosy=(~ —Bt/~

and is related to P by

P=n —y.
As we have mentioned, the condition for the

MC effect is that (2.5) should equal (2.4), i.e.,

(2.6)

(2.7)

j ' =2(A —8)/[1+@(A —8) ],
we obtain the value of e which satisfies (2.8)

(2.9)

e=(P—ao)

[d[28(v'A +d —v A )+d(p —ao)]]

where P is given by (2.6) and (2.7) and d =A 8—
It can be shown that e, given by (2.10), is always
smaller than e=(A —B), the condition derived in

the Introduction. Therefore, for an ellipsoid with e
smaller than (2.10) there will be no MC effect
while for e greater than (2.10) we will observe the
effect. In this respect (2.10) is the lower bound on

—[8(2A —8)]'i = (AB)'i—

[1—(j')']' '
(P ) (2 g)

Ej

where we have taken into account that for the an-

gle ao, the point of impact (2.1) is equal to y~
= —~AB. Since the value of j* in such a case is

j ' =2b„cos((())/(1+ eb„),

where

(2.11)

and

b„=b cosP+ybsinP (2.12)

e which gives the MC effect. However, this limit
is only approximate for two reasons: (a) Because
of the curvature near the tip of the ellipsoid, the
lowest point in the negative y direction on the line
x =b is not (2.5). As a result the bound (2.10) will

be somewhat lower but not significantly so. (b)
The most favorable condition for the MC effect is
not when the particle is scattered in 0=180'. For
example, if the particle, after the first impact, is
scattered in 0& 180' it will go towards the ellipsoid
(because of our assumption that j is positive), and
the chance of the second impact will be greater
than the chance when it is scattered in 0=180'.
On the other hand, if the particle is scattered in
8 & 180' the ellipsoid must catch up with the parti-
cle, in which case the ellipsoid will not be able to
hit the particle the second time. Therefore,
scattering in 0& 180' gives more favorable condi-
tions for the MC effect than scattering in 8=180'
or t9 & 180'. As the result, the bound (2.10) on e
will be lower, about 10—20%.

We have given in (2.10) the lower bound on e
The upper bound can be obtained in a similar
manner. I.et us assume that for large e there are
parameters b and a for which all the energy of the
incoming particle is transferred into the rotation of
the ellipsoid. The spin of the ellipsoid will be in
such a case j'=1/v e. From the general expres-
sion for the final rotational state

tan(()=[(A —8 )sinacosa+ABb/(A cos a+8 sin a b)'~ ]/(A c—os a+8 sin2a), (2.13)

where P is the angle between the initial momentum
of the particle and the normal to the ellipsoid at
the point of impact, we find two solutions: P=D
and b„=1/v e. From (2.12) it follows that
b =1/v e and from (2.13)

a- 8/[A —8—) e], (2.14)

III. SYMMETRY OF DIFFERENTIAL
CROSS SECTION

We have seen that the MC effect is essentially a
double collision effect. Furthermore, we have seen

where we have assumed a-0. Therefore, for large
values of e there are always conditions for the MC
effect.

I

that the greatest chance for this effect is when the
particle, after the first impact, is scattered in
0 & 180'. We have also found that below a certain
value of e, given by (2.10), there will be no such ef-
fect. There are several conclusions which can be
deduced from these facts. (a) If the value of e is
below the critical value for the MC effect, the left
and right differential cross sections are equal, but
if the value of e is greater than the left cross sec-
tion will be smaller compared to the right cross
section for large inelastic transitions. (b) The posi-
tion of the first maxima in the differential cross
section (the rotational rainbow) is the same for the
left and right space in the absence of the MC ef-
fect. If the effect is present, the left position of
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the maxima will be shifted towards larger angles
(for a pictorial explanation see Fig. 1). (c) After
the second impact the ellipsoid will lose part of the
rotation energy; therefore in the left space the
small transitions, including the elastic one, will

have non-negligible contributions from the higher-
order process such as the MC effect, in addition to
the direct process. The last effect is difficult to
check but the first two can be, in principle, verified
in an experiment. However, we still have to prove
that the MC effect is the cause of the left-right
asymmetry of the differential cross section. Our
conclusion was based on the assumption that in the
absence of the MC effect the left-right cross sec-
tions are identical. Therefore we must prove that
indeed this is true.

One particular situation when there is no MC ef-
fect is for e=O, i.e., in the static limit. In such a
case the momentum of inertia of the ellipsoid is in-

finite and on impact the ellipsoid will not rotate
(hence the name static limit), therefore there will

be no chance for the MC effect. Let us prove that
in such a limit the differential cross sections are
symmetric with respect to change t9~ —0, which
is equivalent to going from the left in the right
scattering space. We will prove this for a general
potential which has an axial symmetry (i.e., for the
linear molecules), and therefore the same will apply
also for an ellipsoid.

The 2D equation for the scattering of an atom
on a molecule is

a' a' a' =+e =( V k—')f
Bx By BP

(3.1)

where V is a function of cos(P —8) (the assumption
of the axial symmetry). If we replace 1( by an ex-

pansion

1 cc ao

r )eiIH+ij (P 8)—
J=—oo J=—oo

(3.2)

we obtain, in the static limit (e=O), a set of cou-
pled equations for tpJ.

..
2 ~ 2

2 Jk &i+XViidl' 7'

y (+1)eikr+ yJ ( 1)
—ikr (3.4)

From the form of the equation (3.3) we can deduce
this symmetry property of yJ'

J+4 J
+i i' =+i+&,i' (3.S)

where 6 is some integer. The Jost functions also
have this symmetry, hence

~J+5 ~Jii' i+~i'
The S matrix, which is defined as

(3.6)

(3.3)

where V~i J ~

are independent of J. We can now
define the Jost functions from the asymptotic limit
of qz for large r.

S&~
——

I Y(+1).[Y( —1)] '
]&iexp i (2J —j——j'+1) (3.7)

will therefore have the following symmetry:

I

tude in 2D is

~J+& 2imh~ J
SJ+~i '+~ (3.8) Fi,'(8)= y (S,',' B, ,.)e-

J=—oo

(3.1O)

which can be easily checked from (3.6) and (3.7).
However, it should be emphasized that in the
derivation of (3.8) we have implicitly assumed that
the set of equations (3.3) are defined with the ini-
tial conditions at some r =R+0, for which g&z

——0.
Similarly, we can also prove another symmetry

of the S matrix, which comes from the fact that
the set (3.3) is symmetric to the simultaneous
change J~—J and j~—j. It follows that

Si ~' =S
z ~'exp[ 2iJrr i(j +j ')n] . —(3.9)—

For jQj' we make the change 8~—8 in (3.10),
hence

Fj,r ( 8)=XSi',i'—
J J

If we use (3.19) we obtain

(3.11)

and after using (3.8) with 5= —j—j',
(3.12)

F,( —8)= gS i ~'exp[iJ8 2iJni(j—+j ')m. ], —
J

Let us now show the 8~—8 symmetry property
of the scattering amplitude. The scattering ampli-

F '( —8)= '(J+J'~s" J J' ue
JJ ~ JJ

J
(3.13)



26 ORIGIN OF THE LEFT-RIGHT ASYMMETRY IN. . . 821

or when the summation index is shifted:

FJ J'( 8—) =F; i (8)exp[ i(j+j ')8+i (j +j ')w]

where P is the angle (2.13) and (t)„ the recoil an-

gle, is

1+eh„
tan(()„= 2 tan(t .

1 —eb„
(3.16)

The final rotational angular momentum of the el-

lipsoid is

2b„cos(()
J

1+eh„
(3.17)

(3.14)

We have therefore proved that the left and right
scattering amplitudes, in the static limit, are identi-

cal except for a phase which disappears in the dif-
ferential cross section. The phase in (3.14) only in-

dicates that the waves contributing to the left and

right scattering space have a different flow. The
symmetry (3.14) is valid for any potential which
has an axial symmetry.

Indeed in the static limit the left and right cross
sections are identical. When @+0but small, the
symmetry will be preserved simply because the
cross section will not change appreciably. ' How-

ever, for large e, the syrnrnetry will be broken if
for no other reason than the MC effect. We have

already hinted that this symmetry comes entirely
because of this effect by proving the symmetry of
the cross sections in the static limit. We would

like to give now a better indication that this is
indeed true. The hard-core ellipsoid model offers
such a proof because we can distinguish two dif-
ferent processes: single and multiple collisions. In
fact, the equations of motion for the ellipsoid
model were obtained in a single impact case, ' and
the MC correction of this article determines the
equations in the double collision. Therefore if we

can prove that the equations of motion in a single
collision case produce the symmetric cross section
then all the asymmetry comes from the MC effect.
To be more rigorous we will show this in the semi-

classical limit.
After the first impact the particle is scattered in

the angle'

(3.15)

Fo .{0)=N +N

where N& and Nz are two Jacobians, given by

(3.18)

a0
Bb;

'

N; =Det

a2

Bj
Bb;

i =1,2
OJ

Ba;

(3.19)

and 5& and 62 are the phase shifts corresponding to
these two trajectories. However, the absolute
values of 5& and 62 are not essential for the dif-
ferential cross section, only their difference.
Therefore, to prove the symmetry of the cross sec-
tions under the reflection 0~—0, obtained from
the equations (3.15)—(3.17), we must show that

and

N(8) N( —8)
g

(3.20)

(3.21)

where we have introduced the index to indicate
formally that the two expressions (3.20) and (3.21)
are evaluated for the left and right scattering an-

gles.
Since the particle is freely moving before and

after the collision, the phase difference (3.20) is
equivalent to the requirement that the "optical
path" difference for the left and right scattering
should be the same. If we designate the two im-

pact parameters which lead to the scattering angle
0 by bi and b2, and the appropriate y coordinate
of the impact with the ellipsoid [given by (2.1)] by

yl and y2, respectively, then it follows that

I
5( —52

I
is a function of

I b, b2
I

and—
I y, —y2 I

. If we replace 8 by —8 then for the
equality (3.20) to hold it is sufficient that

of the ellipsoid a. Therefore, if we fix the final j*,
then for a given b we can find a so that (3.17) can
be satisfied. Within this value of a we obtain the
scattering angle 0 for a given b. The functional re-

lationship 0 (b) which we obtain is analogous to
the deflection function in elastic collisions, but
here it has an additional index corresponding to
the chosen transition. In fact, there are two deflec-
tion functions leading from two different impact
parameters to the same 0 for a given j'. Hence
the scattering amplitude is given as a sum' '"

where it was assumed that initially the ellipsoid is
nonrotating.

The scattering angle 0 and j* are functions of
the impact parameter b and the orientation angle

and

I

b(()) b(())
I I

b( —()) b( —())
I

Iy(" —y2"
I

= Iy'( "—
y2 "I

(3.22)

(3.23)
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Therefore we have to prove (3.21)—(3.23) in order
to establish the symmetry

ae ay a((„ay a((„ab„ap, ay
ab ab ab ab ab„ ab ay ab

0.0,(0)=O.o,-( —0), (3.24) (3.32)

and hence the role of the MC effect in the left-
right asymmetry of the cross sections.

Let us therefore look at some symmetry proper-
ties of the equations of motion. From (3.15) we
find that 0~—0 is equivalent to

0+(('. —(4+0.» (3.25)

and by noting that (() and ()I„are of the same sign
[see Eq. (3.16)] we can assume that

(3.26)

As will become obvious from further discussion,
(3.26) is the necessary and sufficient condition for
the transformation 0~—0.

Since j* is the same for both 0 and —8 by our
assumption, then it follows from (3.17) that

b(8) b( —8)
b n

(3.27)

(8) (8)
) )

( —8) ( —8)
)

(3.28)

From the definition of b„(the shortest distance be-

tween the line perpendicular to the surface of the
ellipsoid at the point of impact and the center of
mass of the ellipsoid), it follows from (3.27) that
the two points of impact from which the particle is
scattered in the angles 0 and —0 are identical.
Therefore it is trivial to show that in such a case

Similarly we can write all other derivatives. In
such a case the Jacobian (3.19) is

N= ay ab„ay ab„

Ba Bb Bb Ba

y a4 aJ O' aJ aJ
a(( ab„ab„ay ab„

ay ab„a(t) ab„

Ba Bb Bb Ba
cosP . (3.35)

B By

Ba
L

In the next step we calculate By/Ba from (2.1).
After some lengthly algebra it can be shown that

(3.33)

The second factor can be evaluated explicitly, using
the definitions (3.16) and (3.17). We find

a0. aj* a0. aj* aj'
a ab„ab„ay ab„

(3.34)

However, the first parenthetical expression in (3.33)
is more difficult to evaluate. Let us first use (2.12)
to calculate the derivatives Bb„/Bb and Bb„/Ba.
We find

and

)

b(8) b(8)
) )

b( —8) b( —8)
)

(3.29)

ay/aa cosg =b„.
Therefore the Jacobian is

(3.36)

which are exactly the requirements (3.22) and
(3.23).

Since the same point on the ellipsoid scatters the
particle into the angles 8 and —8, the two orienta-
tions of the ellipsoid are related through the equa-
tion

N= 4 cos(() abn

(1+pb2)2 Bb
(3.37)

We can now use the definition (2.12) and (2.13) to
obtain the final form of the Jacobian

a' '=a' ' —2~ (3.30) (A cos a+8 sin a —b ) (1+eb )

while the two impact parameters are related by

b' '=b'8'cos2$+y' 'sin2$ . (3.31)

With these results we can proceed to prove the
remaining requirement (3.21) for the symmetry of
the differential cross sections. We will have to
evaluate the appropriate derivatives of 0 and j with
respect to b and a. Let us first observe [from
(3.16) and (3.17)] that both 8 and j are explicit
functions of )t) and b„. Therefore we can write

(3.38)

Although (3.38) is given in a closed form it is
difficult to prove its symmetry with respect to
0~ —0. It is much easier to do this for (3.37). If
we rotate the point on the ellipsoid (b,y), together
with the whole ellipsoid, by an angle —a, the
value of b„will not change (which is obvious from
the definition of b„given earlier). In such a case
the large axis of the ellipsoid will coincide with the
x axis, and b„will be given by
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bo(A —B }(A —bo}t~2
b„=

A [A
4 b2(A 2 B2)]1/2

(3.39)
o(e)

2-

where bo is the impact parameters of the new posi-
tion of the rotated point (b,y). It is easy to show
that bo is given by 2-

bo ——b coscz+y sina .

Therefore the derivative in (3.37) is

ab„tab =ah„tab, ab, tab = ""
abo

(3.40)

(3.41)

2-

Ca5

x
x~

x x x
X

We can now look at the transformation property
of X under the reflection 8~—8. In such a case
P~ —P and b„' '=b„', and we obtain

( s) 4cos(a'-"+(()
[1+(b(—s))2]2 (3.42)

The derivative Bb„/Bbo is independent of a and
taking into account (3.30) we indeed obtain

~(—8) ~(8) (3.43)

IU. SEVERAL EXAMPLES

and also the symmetry of the differential cross sec-
tions under the reflection 8~—8, since we have
proved (3.20) earlier.

The result obtained is more general than only
the proof of the symmetry for the classical cross
sections, since we also take into account the quan-
tum effects. Therefore we conclude that the only
explanation of the asymmetry in the differential
cross sections arises from the MC effect. As will
be shown in Sec. IV, the exact quantum cross sec-
tions are in a very good agreement with the predic-
tions.

Ke4

x I «a

~»
804

Kx3

'104

o(e)

2-
x

Ca&5

2-
g =75

C = 6.5

FIG. 2. Atom-ellipsoid differential cross sections for
transition j=0~j=2. The large axis of the ellipsoid is
A =2.26 A. and the small axis is B =1.875 A. . The ro-
tational constant e is variable. The onset of the MC ef-
fect is for e-4.3 I

We will now give a few illustrative examples to
verify our discussion. Since the onset of the MC
effect occurs when the ratio e=p/I satisfies cer-
tain conditions, as discussed in Sec. II, we will

make a model calculation for a fixed A and B and
variable e. We take A =2.26 A and B= l.875 k,
which are the parameters for Li-H2 at E=0.4 eV.
These values were obtained from the potential sur-
face calculated for the same system. ' The energy
E in units of k is therefore k =299.37 A
The value of e for the same system if @=5.659

From the formula (2.10), and the given parame-
ters of the ellipsoid, we can evaluate eo for which

2-
x

pe 5

2- CxI

2-

x I

20e 80o

x

f-3

Qo 14Q 0 leOo

FIG. 3. Atom-ellipsoid differential cross sections for
transition j=0~j=4. The parameters are the same as
in Fig. 2.
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C =75

X X

X

204

~X~~X

604 100' li0 180 4

we have the onset of the MC effect. This value is

Ep =4.99 A. , Whleh 1S Well belOW E fof Ll-H2. Ep

is even lo~er, for the reasons discussed in Sec. II,
about cp 4.3 A . Therefore we expect that the

FIG. 4. Atom-ellipsoid differential cross sections for
transition j=0~j=6. The parameters are the same as
in Fig. 2.

MC effect will be observed, i.e., the left inelastic
differential cross sections will not be equal to the
right ones. In Figs. 2, 3, and 4 we give the inelas-

tic differential cross section 0~2, 0~4, and 0~6
(the elastic cross section is always symmetric) for a
range of e, from @=3 A (no MC effect) to
e=8.5 A [above the value 1A —B) -6.5 A ].
The quantum-mechanical calculations were done
using the method developed especially for the
particle-ellipsoid system.

The solid line is the right differential cross sec-
tion (8)0) and the crosses are the left (8(0). We
notice that for e below the critical value for the
onset of the MC effect, the left and right cross sec-
tions are almost identical. The deviation is small
and can be attributed to purely quantum effects.
The true e for Li-H2 is between @=5 A and

0
@=6.5 A in the same figures, and by a simple

interpolation we notice that for the same system
the left and right cross sections are not equal. The
most obvious asymmetry is for the transition 0~4,
as seen by comparing the position of the first max-
ima (the rotational rainbow) ~
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