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Variational principles for inhomogeneous scattering equations
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As a generalization of the Schwinger variational principle (VP), the normalization-

independent feature of the VP derived from inhomogeneous scattering equations is stud-

ied. An optimum form of the VP is derived which contains the "free" Green's function

Go. Quasipotentials are then introduced to improve the efficiency of the variational pro-

cedure. Various extensions are discussed to include the composite-system scattering, mul-

tichannel processes, and the exchange effect.

I. INTRODUCTION

Variational principles (VP) for scattering pro-
cesses of the Kohn' and Hulthen types are well

known, in which the non-Hermiticity of the Ham-
iltonian H in the space of scattering states is ex-

ploited to construct simple variational functionals.

By contract, the Schwinger VP (Ref. 4) and the
variational bound formulation treat inhomogene-
ous (integral or differential) scattering equations
with the distinct advantages that the trial functions
can often be square integrable and the variational
functionals are "normalization independent". That
is, the overall normalization of the trial function is

completely controlled by the "known" inhomogene-

ous terms, so that the functional can be written in

a form which is independent of this normalization
factor.

In this paper, we consider the general problem of
formulating VP for the inhomogeneous scattering
equations. The Schwinger VP is first generalized

by projecting the Lippmann-Schwinger equation
with an arbitrary operator 8'. Different choices
for W are then considered, and some of the results

obtained are shown to follow from special choices
of W.

The quasipotential formulation is introduced in

Sec. III to improve the efficiency of the VP. The
formulas are compared with the result of Ref. 6
and also with the Sasakawa-Austern approach. '

A variational treatment of the latter is formulated.
Various extensions of the results of Secs. II and III
are considered in Sec. IV, in particular, the
composite-system scattering, multichannel process-
es, and the exchange effect. The main result of the
VP is contained in Eqs. (2.10)—(2.12). The quasi-
particle modifications (3.5) and (3.17) are also of
interest. The simple form (4.12) is without Gp but
with the full exchange effect.

We begin with the nonrelativistic potential
scattering described by H = Hp + V. Extensions
of our result to composite-system scattering with

full exchanges and multichannel complications will

be considered in Sec. IV. The scattering function
u with the standing-wave boundary conditions sa-

tisfies

(H —E)u =0,

or the integral equation

(2.1)

u =up+Gp Vu,

i.e. ,

with

(1—Gp V)u =up

(2.2)

(Hp —E)up ——0,

(H, —E)G,= —1,

(2.3)

where Gp satisfies again the standing-wave boun-

dary condition. If we define

then

u =up+N (N =Gp Vu) (2.4)

(H —E)co= —Vup =—Bp. (2.5)

The scattering amplitude K (reactance matrix) is
given by

K —= (u
~

V
~
uo) =(uo

~

V
~

u)

where

Kp+Kc ~ (2.6)

II. INHOMOGENEOUS SCATTERING EQUATIONS
AND VARIATIONAL PRINCIPLES
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I

V
I
uo}

E, =(up
I

V
I
co).

(2.7)
(up

I
V

I
cu, )(co,

I
V

I
up)

(a)
I

V Iup)-
(co,

I
E 8—

I
co, )

(2.14b)

Au =—W(1 —Gp V)u = Wup=B (2.8)

or

The scattering equations (2.2) and (2.5) are both in-
homogeneous so that the overall magnitudes of u

and co, respectively, are completely determined by
the inhomogeneous term with up.

Equation (2.2) is often treated by first projecting
it from the left with an arbitrary weighting opera-
tor W, as

It is important to note that the variational esti-
mates on the right-hand sides of (2.14) and (2.12)
are only for the quantities on the left-hand side of
the equations. The wave functions co, or u, thus
determined may nevertheless be used in the evalua-
tion of other integrals, in which case the error is
no longer of the (5u) order. In this case, the re-
sulting integrals are not variational estimates.

Now, we consider several specific choices for the
operator W, with the requirement that the resulting
A be symmetric: (This is not necessary but con-
venient for our discussions below. )

Ace= WGp Vup=C. (2.9)

J,[u, ]=2("
I

W
I
"o}—(u l~ lu, ), (2.10)

In general, the operator A is not symmetric, so that
its left inverse, for example, can be different from
the right inverse. A bilinear spectral expansion of
A and A ' can be constructed using the eigenfunc-
tions of A and A+. In the following discussion,
however, we will choose W such that A is always

symmetric.
Variational treatment of (2.8) requires the con-

struction of a functional (for a symmetric A)

A. IY= V

This choice gives

A=V —VGpV,

B=Vup ——Bp,

and thus, from (2.12),

(Bo I u~)(ui I Bo}
(u,

I
V —VGpVlu, )'

(2.15a}

(2.15b)

and the variations

KI, [u, ]/5u, =0

gives an estimate of J, where

(up I
W

I u, )(u,
I

W
I
up)J=(u IB)-J,=

(u, lA Iu, )

(2.11)

(2.12)

If we set u, = u + 5u, J, obtained from (2.10)
and (2.11) is such that

J,—J=o((5u) }; (2.13)

that is, J, is a Uariational estimate of J. The im-

portant characteristic of (2.12) is that J, is normal-
ization independent in the sense that the overall
normalization of u, is irrelevant in (2.12). This is
of course the direct consequence of the inhomo-

geneity of the scattering equation (2.8).
Alternatively, for (2.9) we have, with

C = WGpVup,

which is the Schwinger variational principle (VP).
As is well known, only the short-range behavior of
u, is relevant in (2.15b). However, the asymptotic
boundary conditions on u and u, are already incor-
porated in (2.15b) and (2.2) when Gp and up are
constructed. Therefore, it is not entirely correct to
assert that the asymptotic boundary conditions are
not involved in the Schwinger VP. Secondly, the
explicit evaluation of Gp is not trivial in general
except in a simple potential scattering. Thirdly,
the exchange effect, which has been neglected thus
far, can seriously complicate the problem, as will

be discussed in Sec. IV. An expansion of u„
N

up= &n n~
n=1

gives

J(a) ~ (B a)
(cg';

I
V —VGpV I/i)

(c
I
a), )(co,

I
c)

(cg
I

WGoV Iuo)-
(co, A co, )

and also for (2.5),

(2.14a)

x(+ IBp), (2.16)

where the large parentheses indicate that it is the
inverse of a matrix with elements given by the i,j
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J,"'-J"'=(u
i

V
i
up)=K. (2.17)

indices. Obviously, (2.16) is an approximation provides a stronger constraint on u, in the interac-
tion region than (2.15b). Finally, (2.22) can be ap-
proximated by first setting, in the interaction re-
gion,

B. $Y = VGpV
1Go=Gor= IA}E Epr

(2.24)
This makes A symmetric, as

A = VGp V —VGpVGpV,

8= VGp Vup,

and (2.12) becomes, with co, = GpVu,

yNb yb

N
J(b) ~ (E b)

(Q; ~
E H~ (I).)—

(2.18)

(2.19)

{0r IHo I A)=Eor

which gives in turn

—Hp=
I
rtrr){E E—or)(rtrr ~. (2.25)

Equations (2.24) and (2.25} can be generalized by
including additional (f)r s generated by the diagonal-
ization of Hp with a set of square-integrable bases
functions. Substitution of (2.24) and (2.25) into
(2.23) provides an approximation to J,'" and thus
to J'" =K

Similarly, the present choice for IV gives (2.9) in
the form {Hermitian}

(With d'or, E H is Her—mitian. ) Of course (2.19) is
also obtained from (2.5) directly, and has been
studied recently as a variant of the Schwinger VP.
The important feature of {2.19) is that Gp no
longer appears. However, the asymptotic boundary
conditions on ())„and cor are now important. We
have

(E —Hp —VGp V)~=( V+ VGp V)up =—C

and (2.14) becomes, with ror = g„b„rfr„,
N

J(rr( g (C
~

pb )

(2.26a)

(b( J(b( ( i
V iu

Incidentally, we also note that the choice

O'= Gp ——E —Hp
—1

in (2.14) gives A = E —H and thus (2.19).

C. $V=E —Hp + V

Equation (2.8) becomes

(2.20)

(2.21)

x b b ((I) ~C)
(()I(;

i
E Hp VGp V—

i
(f)J~)—

J

(2.26b)

Once it is assumed that an explicit Gp is available,
then {2.26) are presumably more sensible to use
than (2.23) and (2.15). Of course, (2.19) does not
require Gp, but then J,' ' can be more sensitive to
the asymptotic boundary conditions. J,' ' is an esti-
mate for J' ', where

(E —Hp —VGp V)u = Vup, (2.22) J(+=(ro
~

C) =2K, —K, , (2.27)

which obviously is a combination of (2.1) and
(2.15a). Equation (2.12) then assumes the form

(up )
V

( ur)(ur (
V

( uo)
Jr

(u,
~
E Ho —VGo V

I
ur)—

J( (=(u
~

V
~
up)=K. (2.23)

(With u„E—Hp is not Hermitian. ) Since u& is
needed in the interaction region for (u,

~ pup), the
expression J,"' is not expected to be sensitive to the
asymptotic behavior of u„just as in the case of the
Schwinger VP (2.15b). On the other hand, the ex-
plicit appearance of E —Hp in the denominator

where K, = (co ~Pup) and K( ——(up~VGpgup),
thus stressing the K, part of the calculation. Thus,
without Gp we have (2.5) and (2.19), while with Gp
we have (2.16), (2.23), and (2.26), among which
(2.26) may be the most efficient in estimating the
amplitude K.

III. QUASIPOTENTIALS AND VARIATIONAL
PRINCIPLES

Since the scattering problem with separable po-
tentials can be treated exactly, many different pro-
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cedures have been developed in the past to facili-
tate the solution using such quasipotentials. We
study in this section the possibility of improving
the variational formulation of Sec. II by introduc-
ing the quasipotential of the form

nator in (3.5), thus avoiding the usual stabilization
problem associated with the Kohn and Hulthen
variational principles.

In a recent paper, we have considered an itera-
tion procedure formulated with V,

" given by

(3.1)

In (3.1), g and g are so far arbitrary, but square-
integrable functions. Then, (2.5) for example can
be modified to a form

V,"=VIu)I {gI V,
V u)

and the exact relation

(Hp —E+ V")u =0.

(3.7a)

(3.7b)

(H —E—V, )z = —Vup = —Bp, (3.2)

z =ace, (3.3)

where z satisfies the same boundary conditions as
rp and Gp. For a=1 and g = B 0

——Vup we

have the simple case V,"=V
I
co) (g I

V,
(gI vIco)

in the differential equation (2.5)

(3.8a)

{Obviously, the solution of {3.7b) requires an itera-
tive procedure. ) A similar procedure may be dev-
ised for co, as

where (E —H, —V,")~=Vu, . (3.8b)

a =1—(g Iz)= 1

1+(g
I
co)

(3.4)

The main advantages of introducing V, are two-

fold: Firstly, the operator (E —H+ V, )
' in

z=(E —H+ V, )
'

Vup = aha is sufficiently modi-

fied such that a perturbative treatment of (3.2) may
be possible. The effect of the driving term Vup is
magnified by a '. Secondly, possible spurious
singularities in an approximation to (E —H) may
be avoided by V, as it shifts the position of the
singularities for a fixed E.

On the other hand, (3.2) may be efficiently treat-
ed variationally

N

J,"=g (Bp If„)

n, m

However, the variational principle (3.5) may be as
effective when a sufficient number of terms are in-
cluded in (3.1).

Instead of the differential equation {2.5), we now
consider the integral equation (2.2) for u and intro-
duce a separable form, ' as

u=u, +[I~,)(y, I+a„]vu, (3.9)

&pq —=Gp —
I q )({{}q

I

.

Equation (3.9) can be written as

(1—8p V)u =up+co&C&,

(3.10)

(3.11)

where rpq and pq are arbitrary but known functions
and

X b

1

{p; I
E HV,

I
{(}J~)—

(3.5)

where Cq ——(Pq I
VIu), which is of course unknown.

If we solve, for given coq and Pq,

1X= up,
1 —Sp V

Of course J,"is an approximation to (zI VIup) to
order O(5z ), but not necessarily to that order for
(co

I VI up). We have

(coI VIu )
J,"-(z

I
V

I up) =
1+(g I

co)

= (Cp
I

V
I
up)[1 —{gIz)].

(3.6)

So far the form of g is left arbitrary, and may be
adjusted to shift the spurious zeros of the denomi-

then

and

1Y= COq,
1 —eo V

({{}qI
V IX)

u X+ YCq X+Y
1 —(yqI VI Y)

& = (u
I
v

I
up)=(up

I
v

I
»

(u
I

V
I Y)(P

I
V IX)

1 —(PqI VI Y)

(3.12)

(3.13)

(3.14)



812 YUKAP HAHN 26

For Pq = uo, we have

K= (uo i
V iX)

I —(uoi Vi Y)
(3.15)

(E cP q
)co:Vuo+(E A Oq )coqCq:Bq (3.21)

where Cq
——(Pq ~

V~u), and the right-hand side is

known except for the Cq. When coq
——Go Vup we

have

=—E—Ao. (3.18)

Define

The convergence of the series expansion of (1-
%of V)

' has been studied in detail by Coester. '

Austern formulated an iteration procedure for X
and Ywith the choice cuq = GOVu/Cq and

Pq =uo. Such procedure is found to be much
better than the simple Born series obtained by
(1-Gp V) but requires modifications when V gets
too large. In the present discussion, we consider a
variational treatment of (3.12). As in Sec. II, we

may set

W(1 —$0 V)X= Wuo,
(3.16)

W(1 —Sp V)Y= Wcoq,

and construct the functionals for a symmetric
W(1 —Sp V):

Ji"'= —(X~
I

W {1—&~ V)
I
X~)+2m'i

I
W

I
uo»

(3.17)

JI '= —(Y,
i

W(1 —9'pq V)
i

Y, )+2(Y,
i

W
i
coq).

Different choices for W are now possible, such as
W= V and W= V Soq V, etc. Instead, we first
derive differential equations equivalent to (3.16) by
inverting Soq, that is,

= Gp Go ~coq) ) (Pq ~
Gp

—1 —1 —1 1 —1

1+((('q
I
Go

'
lq)

(E Aq )—co = V
~ up )Cq,

where

(3.23)

1+((1'q
I

V
I
uo)

' (3.24)

which is consistent with (3.2), (3.3), and (3.4),
P.

We have thus shown that (3.2) has the same
structure as (3.8) and (3.20a). In particular, the
variational treatment of the Sasakawa-Austern pro-
cedure is similar to the approach of Ref. 6 con-
sidered recently.

IV. MULTICHANNEL SCATTERING
AND EXCHANGE EFFECTS

The results of Secs. II and III for the potential
scattering may be extended to composite-system
scattering with or without the full exchange effect
and also to multichannel scattering. Our discus-
sion will be brief, as most of these extensions are
straightforward except for the exchange effect.

A. Composite-system scattering —single-channel

process

(E Ap—)ci)q ——V
~
up), (3.22)

1

1+{ q
V up)

and the right-hand side of (3.21) simplifies to

W'q=A oq+ V,

X=uo+x

Y=coq +y,

(3.19)

H = T+Hg + V=Ho+ V (4.1)

When the antisymmetrization between the in-

coming electron and target electrons is neglected,
the Hamiltonian of the system can be written as

then,

(E —4 q)x= Vuo,

(E —4 q)y= Vcoq,

(3.2Oa)

(3.20b)

which are equivalent to (2.5) with the quasipoten-
tial and are identical in structure to (3.8). Inciden-
tally we note in {3.15) that for Pq = up, (y~ V~uo)
= (coq

~
V~x) so that an approximation to x will be

enough to evaluate the amplitude E. But such es-
timate will not be variational. A slightly simpler
procedure may be to combine the two equations in
(3.20). With u =—uo + co as before, we can get with

+=4+6,VQ, (4.2)

where T is the kinetic energy of the projectile elec-
tron, Hz is the internal Hamiltonian of the target
atom (or ion), and V is the projectile-target interac-
tion. As will be considered later, this separation of
H into the Ho and V parts is not possible if the ex-
change effect is to be included. Ho can include the
central part of the long-range Coulomb interaction
in case of ionic targets. The full scattering func-
tion + may be written as
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(Hp —E)4=0 and (Hp —E)Gp = —5.

In terms of the target functions g„generated by

Hq, we have 4& = /pup', where up" is the "free"
wave function (including the static long-range
scattering part. ) Except for the fact that the trial
functions now carry all the coordinates of the elec-
trons involved, the formalisms for the composite
particle scattering are identical to the potential
scattering case, with the replacements up~@,
u ~+, and Hp ——T + Hq. Thus, for example,
(2.26b) becomes

N

N0—=Gp V%= ga„P"„.

Alternatively, for (3.23), we have

(E—Mq)Q= V+Cq,

where

1 —($q l
vlQ)

I+(Qq
l
v

l
4) '

and

4 q=H (Hp —E) leap—q)

(4 4)

n, m

(y„'l c),
(P& l

E —Hp —VGp V
l

Pj~)

X
1

(Pq l
Hp E). —

I+(Pq l

E Hp
l

co—q)

B. Multichannel scattering
(4.3)

where

C=(V+ VG V)4,

and the basis functions P„are introduced through
an expansion

Neglecting again the exchange effect and the
ionization channels, " we can formulate the mul-
tichannel case in a trivial way by generalizing I P; ],
4, %,and Gp to multicomponent forms in which
all the open channels are included. Thus, for ex-
ample, J,' ' of (4.3) becomes

g =ggg( al 14'a n(y'l(E H y VG Vl& ) +P 4P'ml (4.5)

where

V p=(V+VGpV) p= V+ g V(Gp) V
a' aP

In (4.5), a and P are the channel labels. Similar
generalizations can also be made for (3.21).

C. Exchange effect

I

ed in the Schwinger VP and all the other formula-
tions above. Since a symmetric V is not readily
available, modification of the formulas derived in
Secs. II and III to incorporate this effect is not
trivial.

Before modifying (2.5) and (2.8), we first consid-
er a way to construct the symmetric V. For a
specific choice of the projectile electron, we have
for example,

For scattering of electrons by atomic (or ionic)
targets, the total scattering wave function of the
system should be completely antisymmetric under

the exchange of any pairs of electrons. This in

turn requires that all the operators we have dealt
with in our discussion thus far should be sym-
metric under the electron pair exchanges. Obvi-

ously, H is completely symmetric, but as soon as
we write H = Hp + Vwhere Hp ——T + Hz,
Hp and V are not separately symmetric any more,
even though the target electrons are still treated
symmetrically. Thus, the exchange effect between
the projectile and target electrons has been neglect-

and

Hp =T( rp)+Hg ( r] r2 '
&g )

(Hp —E)(fp( r& r2 . rz )u p
'( rp)) =0. (4.6)

Now define the antisymmetrized function'-

{H —E)e=O. (4.8)

a(rpr] ' ' ' rg)=W(1//p(r] ' ' ' rg)up (rp))

(4.7)

and construct implicitly a new Hp such that 4 is a
solution,
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In general, Ho is a complicated operator but is
symmetric under the exchange of any electron
pairs. Thus the desired V is

(E—~, )X= VC =De,

where

(3.20)

(4.9)V —=H —Ho and Ho ——H —V.
A more direct way is to combine (4.8) and (4.9)
and write

V~ = (H —E)4/4:—D4/4, D:—H —E. (4.10)

The expression (4.10) for V" can be evaluated for a
given form of 4, (4.7), and thus the formulas de-
rived in Secs. II, III, and IV above can be retained
with V replaced by V" of (4.10). At least, formal-

ly, Ho ——H —V and Go ——(E —Hp)
From a practical point, it is more desirable if a

particular formula is rewritten in terms of 4 and
H alone, without ever introducing V and Ho expli-
citly.

I. Schwinger VP (2 15b) .The .right-hand side
of (2.15b) can. be written as Bo ——V4 = D4. On
the other hand, the denominator (4,

~

V—VGp V~%', )

cannot be transformed to an expression with only
D. Thus, we need V and Ho explicitly in accor-
dance with (4.10) and (4.9). For (2.15a), we have

(, )
(4

/

V"
/
4, )(4,

/

V"
f
4)

(4,
/

V"—V"Gp V"
/
4, )

(4.11)

(„D@),
(p; )E H~ pj.)—

(4.12)

where D implies the operator D to act on functions
to its left. For square-integrable basis functions

P„, however, this restriction is not necessary.

3. Equation (3.20a). The equation for X = X—
@is

This is probably too complex to be of practical use,
and the situation is similar with J,'" of (2.23) and

J,' ' of (2.26b).

2. Equation (2.19). J,' ' can be written without

explicitly evaluating V and Ho, as

N

J,' '= g (@~DIP„)
n, m

(3.18')

For specific choice of coq
——GOD+, (3.18') be-

comes

1 —1~q=D+D lt ) )~(~ ~D ~~)(kq IGp (4.13)

Noting that Gp is not Hermitian if (()q is not

square integrable, we have to have Ho for the last

(((q ~Gp
' factor in (4.13). On the other hand,

(3.20b) cannot be transformed into a form indepen-

dent of Ho and V . The situation is similar for
(3.9) and (3.11).

An alternative approach for the exchange
scattering is to regard the exchange channels as
special rearrangement channels and to extend the
scattering function space to a multicomponent ma-

trix space. ' ' The structure of the theory then

becomes formally identical to that of the potential
theory of Secs. II and III. With proper identifica-
tions of the Vs and D s, explicit variational princi-

ples can be formulated.

V. DISCUSSIQN

A unified variational treatment of the inhorno-

geneous scattering equations has been presented
which clarifies the relationship between the various
formulations considered previously. In particular,
the results of Refs. 6, 7, 8, and 9 are shown to be
closely related through the quasipotential approach
of Sec. III. The general approach adopted here in
terms of the W operator suggests many other pos-
sible forms of VP, specially of the asymmetric A of
(2.8). Possibilities of bound principles and the in-

clusion of the ionization channel" within the
present formalism have not been discussed here,
and will be treated extensively elsewhere.

Mq=H E+—Gp
~
cpq), (P ~

Gp '.
&+(P,

~
G, ' ~, )

W. Kohn, Phys. Rev. 74, 1763 (1948).
2H. Hulthen, Kgl. Fysisgraf Saltshapet. Lund Forn. 14,

No. 21 (1944).
Y. Hahn, NASA Lecture Note X-641-69-295 (1969)

(unpublished).
4J. Schwinger, Phys. Rev. 78, 135 (1950).

5Y. Hahn and L. Spruch, Phys. Rev. 153, 1159 (1967).
6K. Takatsuka and V. McKoy, Phys. Rev. A 23, 2352

(1981);23, 2359 (1981).
7Y. Hahn and R. Luddy, Phys. Rev. C 24, 1 (1981).
T. Sasakawa, Prog. Theor. Phys. (Kyoto) Suppl. 27, 1

(1963).



26 VARIATIONAL PRINCIPLES FOR INHOMOGENEOUS. . . 815

N. Austern, Phys. Rev. 188, 1595 (1969).
' F. Coester, Phys. Rev. C 3, 525 (1971).

Y. Hahn, Phys. Rev. A 14, 1709 (1976).
M. L. Goldberger and K. M. Watson, Collision Theory

(Wiley, New York, 1964), p. 145.
' Y. Hahn, Phys. Rev. 142, 603 (1966).
'4Y. Hahn, Phys. Rev. 169, 794 (1968); Phys. Rev. C

14, 446 (1976).


