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We report model-potential calculations of the elastic and absorption cross sections for e-
Ne scattering at 10, 30, 50, and 100 eV. Altogether nine different model potentials are
studied; these include the variational matrix-effective-potential method, an absorption po-
tential calculated ab initio from a real energy-dependent polarization potential and a disper-
sion relation, and two different phenomenological absorption potentials. We get good
agreement with experimental results by several methods at 30— 100 eV and by one method
at 10 eV. The tests of the various methods establish useful trends and expectations for fu-

ture work.

I. INTRODUCTION

A serious difficulty in quantum-mechanical cal-
culations of electron-atom and electron-molecule
scattering in the intermediate-energy range is the
accurate representation of the dynamic effects of
charge polarization during the collision. One gen-
eral approach, the close-coupling method and its
modifications, is to expand the system wave func-
tion in terms of eigenstates and/or pseudostates of
the target. This leads to coupled-channels equations
for the relative motion wave functions whose solu-
tion includes all dynamic effects that can be
represented within the chosen basis.! For some pro-
cesses, especially at low energies, the basis may be
taken large enough to converge the collisional attri-
bute of interest, e.g., a particular differential cross
section at some impact energy, but for many others
this is not practically possible. A second approach,
the one studied here, is the use of effective poten-
tials. In particular we consider application of effec-
tive potentials to calculate integral and differential
cross sections for elastic scattering and total (elastic
plus inelastic) scattering cross sections for electron-
neon scattering at the intermediate energies 10— 100
eV.

We consider and compare two quite different ef-
fective potential approaches to this problem. Both
approaches are recent suggestions, and both take the
adiabatic polarization potential (APP) as a starting
point. The recent implementation of general varia-
tional techniques for calculating electron-atom and
electron-molecule adiabatic polarization poten-
tials’~7 means that the approaches presented here
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may be considered as general ones, i.e., not limited
to simple atoms. The first approach involves a
complex-valued single-channel optical-model poten-
tial and the second involves a real-valued matrix ef-
fective potential (MEP).

Two approaches to the optical-model potential
have been explored computationally by other work-
ers: the phenomenological approach®~!? and the
eikonal optical model."* The optical potential may
also be approximated in a nonmodel context, e.g.,
by many-body perturbation theory'* or the Fesh-
bach projection formalism.!* The new approach ex-
plored here has been suggested only recently and so
far applied only to electron-helium scattering.'® In
this approach, the real part V?(r,E) of the target-
response contribution to the optical-model potential
is an energy-dependent polarization potential, and
the imaginary part V4(r,E) is obtained by an ap-
proximate solution'® of the dispersion relation!’
that relates V?(r,E) to V4(r,E). In the present ap-
plication the energy-dependent polarization poten-
tial (EDPP) is a model potential'® based on the APP
and a leading nonadiabatic term.'%2°

The MEP model'®2! is another new method. So
far it has been applied only to electron-helium
scattering at 12—400 eV,!3?! electron-neon scatter-
ing at 150—700 eV, and atom-vibrator col-
lisions.”> In the MEP method one determines the
matrix potential in a set of coupled-channels equa-
tions by the requirement that it agree with the
static-exchange potential in the decoupling limit
and with the static-exchange-plus-APP in the adia-
batic limit. In the application to electron-helium
scattering,'®?! the available APP (Refs. 24 and 25)
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was determined by second-order perturbation theory
so the adiabatic limit of the coupled-channel equa-
tions was taken by second-order perturbation
theory. For neon the available APP is a variational
one’ so we take the adiabatic limit consistent with a
variational APP. In the application to helium we
considered both two and three-channel versions of
the theory,'®?! and we have also considered pertur-
bative and variational multichannel versions in an
application of the same idea to vibrational excita-
tion in atom-molecule collisions.?* In the present
work we limit ourselves to the variational two-
channel implementation.

The results of the two new approaches will be
compared to each other, to new phenomenological
optical-potential calculations, to previous theoreti-
cal calculations,”!!"26=32 and to recent experimental
results. >4

We use Hartree atomic units in which the unit of
energy is the hartree (E,); distance, the bohr (a,);
mass, the mass of an electron; and action, #.

II. THEORY

A. Energy-dependent polarization potential
and dispersion-relation absorption potential

In the EDPP of Onda and one of the authors,!®
we begin by examining two of the leading terms in
the large-, i.e., small-perturbation, limit of the real
part of the optical potential. The real part of the
optical potential consists of the static-exchange part
VSE(r,E) and the rest, where the latter is the contri-
bution due to target response and will be called
VP(r,E). At large r the leading contributions to
V¥(r,E) may be computed in the dipole approxima-
tion. The leading term is the adiabatic dipole term
vPad)(7) and the leading energy-dependent term
will be called VP4 (r,E). Making the average-
excitation-energy approximation, with average exci-
tation energy o, yields

S

VPa(di)(r) _ __4 , (1)
r— o wr
) 2
VPe(dl)(r’E) . 6‘S;k6 , (2)
r—-wo @°r
where
5=3'zul?, 3)
n

z, is the z component of the transition dipole ma-
trix element between state n and the ground state

(n=1), and the impact energy in Hartree atomic
units is E =k?2/2 where k is the initial relative wave
number. Combining (1) and (2) yields

VPa(di)(r) + VPe(di)(r’E)

6k?
w*r?

_ VPa(di)(r) ‘1_ (4)

r—- o

The assumption of the EDPP is that relation (4)
may be generalized to the polarization potential at
all r as follows:

6k?
w2r2

P, B)— () / 1+ )

since the right-hand side of (5) tends to the right-
hand side of (4) at large r. The nonadiabatic polari-
zation (Pna) potential of Eq. (5) is called the EDPP
or the Pna potential, depending on the context. No-
tice that since V'F(r) tends to a finite value at » =0,
VPna(, E) tends to zero there.

To specify o in (5) we examine the large-r limit
in more detail. The leading energy-independent
terms of the polarization potential are?®4?

. 3B
VP(dl)(r) _ _a 5B , (6)
T 2t S
where
2
z,
a=22’-—' ;l' , )
n n
, |z 1|2
n n

where w, is the excitation energy of state n. Mak-
ing the average-excitation-energy approximation to
(6) yields

. S 3S
Ry « =4 . 9
r£—_>:g wr4 co2r6

Using calculated values a=2.359 (Ref. 7) and
B=1.27 (Ref. 43) for Ne, we eliminate S and obtain
®©=0.9288. This is the value we use for » in the
rest of this paper. (For cases where an accurate
value of B is unavailable, it is probably sufficient to
set w equal to the ionization potential; for Ne this
would have yielded w =0.9705.%)

The dispersion relation between the polarization
potential and the absorption potential (which is
what we call the imaginary part of the optical po-
tential) is'® !

o UA
VP“"(r,E)zlﬂf Mde

T € €—E ’ (10
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where €, is the lowest excitation energy of the tar-
get. In principle, we should solve this equation on
the domain E =(0, ). For the EDPP, however, we
can obtain an analytic solution if we limit the range
t0 E =(€pr, 0 ). The analytic solution is'®

VPna(r,E)(E _ethr)l/z

VA4an(r, )=
[€me+(w?r?/12)]'2

, (11)

where V*"(r,E) is given by (5). Notice that the
only input to both V"(r,E) and V4(r,E) is V(r)
and o or, in the present case, ¥'?(r) and B. Since
both ¥?2(r) and B are obtained from ab initio calcu-
lations,”*3 the whole optical-model potential is ab
|

_1d*
2 dr? 2r?

I(I+1)

initio, i.e., nonempirical, except for the steps leading
to Eq. (5), which is ultimately justified or not at
small r by its success or lack thereof in scattering
calculations.

The real part of the complete optical potential is
the sum of ¥*"(r,E) and the static-exchange poten-
tial VSE(r,E). The exchange part of the latter is
evaluated by the semiclassical exchange*® approxi-
mation. The static potential and the target charge
density needed to calculate the exchange potential
are evaluated from the analytic fits of Strand and
Bonham.*’

The calculations by this method are finished by
solving the single-channel optical-model-potential
Schrodinger equation

+——— 4+ VSE(r,E)+ V¥(r,E)+iVA(r,E) | f(r,],E)=0 (12)

for the scattering wave function f(r,/,E) and extracting the complex phase shift 7(,E) from

F(rLE) ~ (const)sin[kr — Sl +n(LE)] . (13)

Alternatively we obtain 7(/,E) by solving the complex phase equation.*®*
B. Matrix effective potential
In the MEP method we replace (12) by a two-channel effective Schrédinger equation,
_%;_:2 LZ:-ZQ 4 VSE(r,E)~—kTi2 f,-(r,I,E)=]§i V(r,E)f;(r,E) (14)

with boundary conditions

f1(r,LE) ’:wexp[ —i(kyr —51m)]—(ky /k )\ 2expl 2in,(LE) +i (kyr — Sim], (15)

f2(r,,LE)~(const)exp(ik,r) . (16)

r

The static-exchange potential FS¥( r:,E ) is the Solving (17) yields
Foms 1o be Hermtian with V120 eal and eqal t V)= ([VOF-ab ™02 g

V,31(r). Thus the only quantity not defined yet is
V1,(r). We determine it so that the adiabatic polar-
ization potential implicit in (14) is equal to the vari-
ationally computed adiabatic polarization potential
VP(r,E). This yields

—VP(r) V()

det| p (1) w—VP(r)

=0, (17)

where o is the effective excitation energy

o=(k3/2)—(k3/2). (18)

Since VF(r) is attractive, both terms in the radi-
cand of (19) are positive everywhere; thus V,,(r)
may be taken as real and positive everywhere. In
the perturbation theory limit (19) reduces to the re-
sult used previously.'®?! We take »=0.9288 as in
Sec. A.

C. Phenomenological optical potentials

In this paper we consider two phenomenological
approaches to obtaining the absorption part of the
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optical potential, namely, the form suggested by
Green et al.’ and a form based on the work of Fur-
ness and McCarthy!” and McCarthy et al.!! The
real part of the optical potential for both these
models was taken as

ReVP'(r,E)=VSE(r,E)+ VI™(1E) , (20)

where VSE(r,E) and V™@(r,E) are the static-
exchange and nonadiabatic polarization potential of
Sec. ITA.

The absorption potential of Green et al. will be
called A,. Its energy dependence is based on the re-
quirement that it approach the high-energy limit of
the inelastic cross section, and its » dependence is
based on an analogy to the static potential. The
energy-dependent factor contains parameters adjust-
ed to the experimental® absorption cross section.
Further details and the values of parameters are
given in Refs. 9 and 22.

The second phenomenological model considered
here for the absorption potential will be called 4,.
It is based on the suggestions of McCarthy et al.!!
This model assumes that the absorption potential at
a given point is proportional to the radial density of
the highest-energy valence orbital and the energy-
dependent Rutherford cross section at the point,
where the relevant energy is the local kinetic energy
estimated on the basis of the real part of the optical
potential at the given point. We take the real part
of the optical potential to be the same as in Sec.
ITA. The proportionality constant is adjusted to
yield agreement with the experimental® absorption
cross sections. The resulting absorption potential is

gy T E | rapner) |2

[E — VSEPra(, )2 (21
where*
rérpNe=Nr(0.71507r ¢ =2 0514
+0.37089r ¢ —4-67477r) 22)

and N is the radial normalization constant
(N =9.759624). We further write W*%(E) as

W'NE)=C(E)E —ey,) (23)

and we adjust the parameter C(E) at each energy.

Equations (21)—(23) are based on and are very
similar to those used by McCarthy et al.,'' but
those workers did not give enough information for
us to reproduce their potential. Furthermore their
published absorption cross sections do not agree
with experiment. Thus we independently adjusted
the parameter C(E), and hence WAZ(E), for the
above specified functional form in order to compare
their method to the new methods studied here.

III. CALCULATIONS, POTENTIALS,
AND RESULTS

The numerical methods used for the calculations
are the same as used in our previous work.'®?? The
adjusted values of WAZ(E ) for three impact energies
are given in Table I, and the three different absorp-
tion potentials for these energies are shown in Figs.
1—3. These figures also show v*(r,E) and
V*%(r,E) at these energies.

Some values of the calculated phase shifts are
given in Tables II—IV where they are compared to
experimental values® at 10 eV, previous theoretical
values?®—2831 at 87—-54.4 eV, and each other at
30—100 eV. The calculated integral cross sections
o0 and momentum-transfer cross sections ol for
elastic scattering and the absorption and total cross
sections 0,,, and oy, are given in Tables V—VII,
where they are compared to experiment.??—3%37-42
Table VII also includes some comparisons to previ-
ous theoretical calculations.!?*3° The differential
elastic cross sections are given in Table VIII and
Figures 4—7; comparisons to experimental®*—37:3
and previous theoretical'"?® work are given in both

TABLE I. Empirical values of the proportionality constant and pre-radial-density factor in

the absorption potential 4,.

A

4, w2
E w m (a.u.)
(ev) (a.u) r=0.5a, 1.0a, 2.0a, 3.0aq
30 4.10 6.39(—2) 6.52(—1) 2.94 3.32
50 29.5 3.93(—1) 3.04 8.21 8.69
100 241.5 2.25 10.5 17.5 17.8
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FIG. 1. Absorption potentials for 30-eV impact ener-
gy as functions of the distance of the scattering electron
from the nucleus. Curve corresponding to the
phenomenological potential 4, of Green et al. is labeled
“1,” the phenomenological potential 4, is labeled “2,”
and the potential obtained from the dispersion relation is
labeled “disp.”

places. (The experimental differential cross sections
in Fig. 4 were regenerated by the prescription of
Williams,* i.e., we use his tabulated phase shifts for
s, p, and d waves and polarized Born phase shifts
for /=3—20. The theoretical results at this energy
are based on numerical phase shifts for /=0—7 and
polarized Born phase shifts for /=8-20. At
higher energies the theoretical results are based on
increasingly more partial waves, as required for
convergence.)

Before beginning the discussion, we summarize
our notation. Capital letters are used for the four
types of potentials: static (S), exchange (E), polari-

0.000

-0.010

-0.020)

VA(EL)

-0.030

-0040|

FIG. 2. Same as Fig. 1 except for 50 eV.

0.00

-008|

-012

(0] ’ 0.8 A;\.6 ‘ 24
r(a,)
FIG. 3. Same as Fig. 1 except for 100 eV and the ab-

sorption potential obtained from the dispersion relation
has been magnified seven times for this plot.

zation (P), and absorption (A). The S and E parts
are always the same. Polarization, when included,
is either adiabatic (Pa) or nonadiabatic (Pna, i.e.,
EDPP). Absorption, when included, is given by the
model of Green et al. (4,), by our adjustment of
the form used by McCarthy et al. (A4,), or by the
nonadjusted potential calculated from the Pna po-
tential and the dispersion relation (A4 ,). The ma-
trix effective potential includes polarization and ab-
sorption implicitly rather than through P or A
terms, and it is denoted MEP.

IV. DISUCSSION AND COMPARISON
TO EXPERIMENT

A. Above threshold

1. Phase shifts

Tables III and IV compare phase shifts for
small-/ and for some typical larger-/ values. The
tables show that the real parts of the phase shifts
are not strongly affected by the absorption potential
but depend mainly on the real part of the polariza-
tion potential. As expected Ren; is largest for the
adiabatic polarization potential and smallest for the
static-exchange case in which the real polarization
potential is neglected. In fact, these two models,
SEPa and SE, provide physical limits for the max-
imum and minimum contributions of charge polari-
zation. For E <30 eV and small /, the SEPna re-
sults are midway between these limits, but at higher
energies the SEPna results for small / are very simi-
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TABLE II. Comparison of phase shifts at 10 eV for s, p, d waves for various theoretical

models and experiment.

Phase shift (rad, mod =)

l SEPa SEPna SE MEP Expt.?
0 2.528 2.307 2.242 0.470 2.342
1 3.112 2.870 2.814 0.096 2.922
2 0.106 0.081 0.046 0.137 0.076

*Williams, Ref. 39.

lar to the SE ones. At large / the SEPna and SEPa
results are very similar to each other but differ from
the SE results. This is a consequence of the fact
that the large-/ scattering depends mainly on the
large-r tail of the potential where the SEPa and
SEPna potentials both tend to —a/(2r*) but where
the SE potential is much smaller.

The real part of 7; as computed by the MEP
method is large; in fact, it sometimes even exceeds
the SEPa value. This is somewhat surprising in
light of the fact, already mentioned, that we would
expect the SEPa model to yield the maximum possi-
ble amount of polarization. Yet the MEP model,
which takes polarization into account in a dynamic
way, leads to an even more attractive effect on the
phase shift. A similar effect was found in previous
work on He (Ref. 18) and on high-energy scattering
by Ne,?? and we also note that the eikonal optical
model leads to a polarization effect that exceeds the
adiabatic one.”® This calculated effect is surprising,
and it requires further study before we can accept it
as a true description of the physical dynamics.

Next consider the imaginary parts of the phase
shifts. These are always less than the real parts.
The imaginary parts calculated using 4 45, decrease
least rapidly with /, and for large /, Im7; calculated
by this method exceeds the values calculated by oth-
er methods by an order of magnitude or more. This
result is consistent with Figs. 1—3, which show
that A4, is longer in range than 4, and 4,. The
MEP method yields the largest imaginary parts of
the phase shifts for /=0, but Imm, calculated by
this method decreases very rapidly with increasing
L

Finally we note that the choice of real polariza-
tion potential has more effect on Imz; than the
choice of absorption potential has on Ren;. Com-
pare, for example, the /=0—2 phase shifts calculat-
ed by the SEPa4, and SEPnad; methods. This ef-
fect is larger at 30 eV than at the higher energies.

2. Differential cross sections

Next consider Figs. 5—7 and Table VIII. Figure
5 shows that the MEP differential cross section has
a qualitatively incorrect shape at 30 eV. In contrast
the SEPnad 4, model leads to excellent agreement
with experiment at this energy for 6>40°. For
6 <40° this model overestimates the cross section,
with the error increasing to 37% at 20°. The
SEPnad, and SEPnad; models predict results simi-
lar to the SEPnad 4, model at 30 eV. The overall
good agreement of the SEPnad 4, calculations with
experiment at this energy is very encouraging be-
cause, unlike the SEPnad, and SEPnad, models,
the SEPnad 4, model has no adjustable parameters.
We note that the SEPnad 4, model is also very suc-
cessful for e-He scattering at low energies.'® In
contrast, however, we note that the SEPnad; model
underestimated the differential cross sections at
both small and large O for e-Ne scattering at
150—700 V.2

Figure 6 shows that the MEP model is becoming
more accurate as the energy is raised. However, the
MEP differential cross section is significantly too
large for 6<30° and significantly too small for
6> 105°. Again at 50 eV the SEPnad,, SEPnad,,
and SEPnad 4, results are in good agreement with
each other and with experiment. Although the two
sets of experimental results are in generally good
agreement with each other, they do differ by a fac-
tor of 1.12 at 120°, 1.37 at 60°, and even more near
the minimum. If we consider the experimental un-
certainty to be 37% in general, and larger near the
minimum, then all three SEPnad models agree with
the experimental results within experimental error.
The agreement of the SEPnad gy, results with the
experiments is the best. The SEPad; potential
predicts more forward scattering than the SEPna4,
and SEPnad 4, potentials. The SEPa4, results do
not agree as well with experiment as the SEPnad4 re-
sults do, but the difference appears to be only
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TABLE IV. Comparison of phase shifts (rad, mod ) for selected / values for various potentials.
SE

SEPna

! SEPa

E (eV)
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TABLE V. Integral and momentum transfer cross

SN T® Ot T AN~ —a sections (a(z,) at 10 eV (at this energy, oq=0o)-
g=811 28311 23288
LRRYIT LS8R 89889 m
S i e S e ol S S e d 7d
0 O v aNNO <+
AER38 75388 2828=38 .
~— 0000 ~NOOS ocooo o Experimental results
AT <ot oo “ Salop and Nakano® 11.9
222 L2323 2ag i b
55238l 53388 2==88 Stein et al. 12.2
SSSS¥ 333338 3333 Williams® 11.8 8.23
tHARE FEEEE THATT
gl (o] .
LIRSS ¥88L8 2547 § S Previous theoretical results
—~NANCSS ~ANSSS Sao oo
Fon and Berrington® 12.5 7.92
QRMIX VCONTO amoa F
8 83 1l 883811 858 | Present theoretical results
fReID 22T 22288
O TP T A S S v i SEPa 6.77 6.23
83382 884588 25488 SEPna 137 9.17
TNeee —~aococ odoso SE 16.0 9.67
MEP 159 15.5
aE 3o =
§§§J’\|’ g§§ I gggT | aReference 33.
eSS Y SSS28 SISFR ®Reference 38.
L - S s Ttrrd “Reference 39.
R gg§| | 2588 | 9Reference 32.
—~ANOANAN ~dOod—= SdooX
28879 sx2 77 ¥88 2 slightly larger than the experimental uncertainty.
eSSl SgoT% SSoSdN At 100 eV there again appears to be considerable
++++F intv i - S en.
Trdgd M S g uncertainty in the experimental values. At this en
BIIE8 35888 25588 ergy the accuracy of the MEP calculation for
TNeee ~aooco ocdooo 0 <40° is much improved. Beyond 40° though the
MEP results appear to be too small except near the
2887 5 229 ;"l\ ? 228 § f minimum. The SEPnad 4, model again appears to
SSSTN Soom® Sooossd be the overall most accurate one at this energy al-
+++++ +++++ +++ 4+ though it may be beginning to underestimate the
=988 ~-A3¥8 5-.3828 f d k
$x288 Fovuss 20888 orwarg peax.
—NOOOS ~dOSOSS oSNNS OO
% § I i 5 g I E § 8 § § 'T 3. Integral cross sections
— NS AN ~NOo&d~= SaooX
Now consider Tables VI and VII. At 30 eV the
v Aava o waa average experimental value of the elastic integral
[=A)
323583 82883 25588 cross section is 11.8 3. The SEPna and the various
- OO —_ANOoO OO O NO OO . .
SEPnad models overestimate this by 10— 13 %, the
SEPa and SEPad; models underestimate it by
5= § 8 § =z @ g § Sasd ‘é § 8—10%, and the MEP model underestimates it by
~NCCSS ~dddS Saooo 21%. The absorption cross section proves to be
harder to calculate. Both totally ab initio models
C—~aNVvE ol o—~awv?® (SEPnad 4, and MEP) overestimate it by a factor
of 2.8 or more.
At 50 eV the average experimental value for the
=] Q S elastic cross section is 11.2a§. The MEP model un-
. derestimates this by only 11%, but it still overesti-
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TABLE VI. Integral and momentum-transfer cross section at impact energies 30— 100

eVv.

SEPna4 g, Experiment?

E (eV) Ol O abs O'tot Ol O abs Otot
30 13.2 2.48 15.6 11.3 0.754 12.1
40 11.9 2.36 14.2 10.7 1.35 12.1
50 9.76 1.81 11.6 10.8 1.85 12.7
60 9.90 2.05 11.9 10.4 2.24 12.6
70 9.17 1.90 11.1 9.99 2.53 12.5
80 8.55 1.78 10.3 9.57 2.71 12.3
90 8.03 1.66 9.69 9.15 2.85 12.0
100 7.57 1.56 9.13 8.74 2.92 11.7

*Wagenaar and deHeer, Ref. 41.

mates the absorption cross section by a factor of
1.8. In contrast the SEPnad 4, predicts o within
4% and o,,, within 19%.

At 100 eV the average experimental elastic cross
section is 8.82a5. The MEP and SEPnad 4, models
underestimate this by 17% and 14%, respectively,
and they incorrectly estimate o, by larger factors,
a factor of 1.32 for MEP and 0.53 for SEPna4 gip.
The trend is clear that the accuracy of the MEP is
increasing as the energy is increased, and the
SEPnad 4, potential is shifting from overestimat-
ing the cross sections at energies a little above the
inelastic threshold to underestimating them at the
upper end of the intermediate energy regime. The
latter trend is very clear in Table VI.

Table VII shows that ignoring the absorption po-
tential does not affect the elastic cross sections very
significantly at these energies; compare, for exam-
ple, the SEPna results to the SEPnad, or
SEPnad 4, results. This is very interesting because
we found previously?? that the neglect of absorption
has considerable effect of o for e-Ne scattering at
higher energies.

4. Absorption potentials

Now consider Fig. 1—3 and Table I. The first
interesting feature is the different shapes, as func-
tions of r, of VA‘(r,E) and VAz(r,E). As a conse-
quence of the different shapes, when the two poten-
tials are adjusted to both yield the experimental ab-
sorption cross sections, they have different energy
dependences. Potential A4; factors into an E-
dependent coefficient and an r-dependent shape fac-
tor, which is strong at small r. Potential 4, is non-
separable with peaks in the range 1.2—1.6a,. Both

Table I and Fig. 1—3 show that VAz(r,E) is rela-
tively longer ranged at lower energies.

An important point to be emphasized here is that
one can take an arbitrary functional form for the
absorption potential and adjust the parameters to
yield experimental absorption cross sections. With
such a procedure the strength and shape of the po-
tential will depend on the constraints on its func-
tional form. Nevertheless, Figs. 1 —3 show that the
A, and A4, absorption potentials are very similar
only in the 1 —1.5 a range.

In contrast to the 4, and A4, potentials, whose
form is fixed, the shape of the Agisp potential is
determined by solving the dispersion relation. It is
an indirect consequence of the shape and energy
dependence of the real Pna potential rather than a
consequence of directly modeling the imaginary po-
tential. The present results seem to indicate, how-
ever, that the 4, potential has an incorrect energy
dependence and is too long ranged. We attribute
this to deficiencies in the Pna potential. It would be
valuable to develop new models for energy-
dependent real polarization potentials and use these
with the dispersion relation to attempt to predict
more accurate absorption potentials.

B. Below threshold

Tables II and III compare the phase shifts calcu-
lated by the SEPa, SEPna, SE, and MEP models for
E <€y, where these phase shifts are real. Table II
also compares these phase shifts to the experimental
values of Williams. As expected®' the SEPa phase
shifts are too large, which is consistent with the adi-
abatic polarization potential being too attractive.
(The SEPa method in the present notation is called
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TABLE VIII. Differential cross sections at 50 eV.
dog/daj/sr)
Theory Experiment
McCarthy Williams and Dubois and  Fon and

0 (deg) SEPad, SEPnad; SEPnad, SEPnady, MEP et al? Crowe® Rudd® Berrington®

10 5.04 3.46 3.73 3.75 7.05 4.50 4.33 4.26

15 4.07 3.10 3.35 3.21 5.43 3.78 3.38

20 3.25 2.76 2.97 2.78 4.14 3.17 2.67 2.75 2.86

30 2.00 2.10 2.23 2.07 2.33 2.26 2.13 1.96 1.99

60 0.736 0.836 0.852 0.913 0.596 0.904 1.06 0.812 0.882

90 0.206 0.128 0.127 0.150 0.197 0.138 0.156 0.211 0.199

120 0.152 0.197 0.250 0.253 0.0739 0.246 0.229 0.260 0.201

150 1.44 1.93 1.42 1.53 1.10 1.49 1.87 1.74 1.65

*Reference 11.
®Reference 35.
‘Reference 37.
dReference 32.

AET by Callaway, and our findings here are similar
to his conclusions for e-H triplet scattering.) The
SEPna phase shifts are much more accurate and
differ from the experimental values by less than 2%
for s and p waves and by 7% for d waves at 10 eV.
(We should not neglect to mention the possibility of
experimental error. The / =2 phase shift is particu-
larly sensitive to the type of analysis used by Willi-
ams, and it is not clear whether we can exclude a
phase shift as large as 0.09 on the basis of his re-
sults. This could change our conclusions to a small
degree.) Assuming no significant experimental error
we see that the low-energy SEPna phase shifts are

~
v
Sof
~o / ~
=] ’ \
~ / EN
c / BN 1
A / X\ S
T / N e
D S ; " Fx
Y / PN
© \ i XN S 4
Y / 2
i\ M ~
oY) ENS U S R EO
0 30 60 0 120 150 180
6(deq)

FIG. 4. Differential cross section for 10-eV impact
energy as functions of scattering angle. Theoretical
curves are shown as solid (MEP), dash-dot-dash (SEPa),
and dotted (SEPna) curves. Experimental results of Wil-
liams are shown as X’s.

remarkably accurate for Ne, and we recall that this
was the case for He too.'® As a consequence of the
accurate phase shifts the low-energy differential
cross section predicted by the SEPna method is in
excellent agreement with experiment; see Fig. 4.
The integral and momentum-transfer cross sections
predicted by this model are about 10— 15 % high at

5.0—T———T——T———T—7—1—50.0

2
5/sr)

do, /dS(a

[ ——SEPnaa, \1
[ —-—SEPnaA, \ /
e SEPROAGey \o
0.01 S8 WU T R NI R o} |
030 60 90 10 B0 180
8 (deg)

FIG. 5. Differential cross sections for 30-eV impact
energy as functions of scattering angle. SEPnad, (long-
short-long dashes) and SEPnad g, (dotted) curves and
the experimental results of Williams and Crowe are
shown in the top part of the figure for which the scale
is given on the left. MEP (solid) and SEPnad, (long-
short-short-long dashes) curves are shown in the bottom
half of the figure for which the scale is shown on the
right. Experimental results are also repeated in the bot-
tom for comparison.
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© - 4
N
o .
)
O H -
C e-Ne | ]
F 50 eV : .
- ——— MEP A f 1
[ —-— SEPnaA, 4 J 7
- —-— SEPnaA, e 1
RS SEPnaAgs, 1B |
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00— —35""60 90 120 10 180
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FIG. 6. Differential cross sections for 50-eV impact
energy as functions of scattering angle. Present theoreti-
cal results are shown as a thick solid curve (MEP),
long-short dashed curve (SEPnad;), long-short-short
dashed curve (SEPnad,), dotted curve (SePnad 4,), and
dash-dot curve (SEPad;). Theoretical results of Blum
and Burke for 27°—180° are shown as a thin dashed
curve, they did not publish results for 6 <27° at this en-
ergy. Experimental results of Williams and Crowe are
shown as squares and those of Dubois and Rudd are
shown as diamonds.

10 eV; see Table V. Tables II and V and Fig. 4 in-
dicate that the MEP model is not very accurate at
10 eV for Ne.

The error in the SEPa cross sections at 10 eV is
exaggerated by the fact that the SEPa p-wave phase
shift is accidentally very close to 7 at 10 eV. When
examined in detail this explains why the SEPa cross
sections are actually smaller than the experimental
ones at this energy.

V. COMPARISON TO PREVIOUS
THEORETICAL WORK
The present results are compared to the results of
some previous theoretical calculations'!**=32 in
Tables III, VII, and VIII and in Figs. 6 and 7.
Some of the real polarization potentials used by pre-
vious workers are compared to those used here for
an impact energy of 100 eV in Table IX. We will

20-0 T [ T ] T ] T I T ] T
R
eV -
10.0 MEP 3
—-— SEPnaA, ]
—--— SEPnadA, 1

T TTITT T T T I

T
z
Lo O
1

T TR R R SR R
00163680 90 10 B0 WO

8 (deq)

FIG. 7. Same as Fig. 6 except for 100-eV, SEPa4, is
not shown, the Blum-Burke results are available for
0°—150° at this energy, the Byron-Joachain eikonal-
optical-model calculations are shown as filled-in circles,
and two additional sets of experimental results are
shown: those of Gupta and Rees as circles and those of
Jansen et al. as +’s.

discuss these comparisons in chronological order of
the previous approaches.

Thompson®® used an SEP-type model with an
adiabatic polarization potential based on the polar-
ized orbital method. A theoretical problem with
the polarization potential he used is that it includes
only dipole contributions whereas our results in-
clude all multipoles. For low / Thompson’s phase
shifts are intermediate between the SEPa and SEP-
na phase shifts of the present work.They are closer
to the SEPna phase shifts at low energy where the
SEPna phase shifts are very accurate, and they are
closer to midway between the SEPa and SEPna
phase shifts at 35—54 eV. At higher / Thompson’s
phase shifts do not decrease as rapidly as the SEPa
and SEPna phase shifts.

Garbaty and LaBahn®’ performed full polarized
orbital calculations, still including only dipole ef-
fects. The full polarized orbital method takes some
account of nonadiabatic effects; their results are
very close to Thompson’s.

Blum and Burke®® and Fon and Berrington?? per-
formed pseudostate close-coupling calculations.
From the perspective of the present paper this
method may be considered to be a variational (in a
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TABLE IX. Real polarization potentials (in E,) for an impact energy of 100 eV.

Byron and Jhanwar
rlag) VPa(r) VPa(r)® EDPP* Joachain® et al®
0.01 —-1.0 —3.0(—-3) —2.0(—6) —17.0(1) —-3.1(=3)
0.25 —1.1 —5.3(=2) —1.3(=3) —-22 22
0.50 —9.0(—1) —7.3(=2) —4.4(=-3) —8.9(—1) —4.1
0.75 —5.6(—1) —7.6(—2) —6.1(-3) —4.7(-1) —2.6
1.00 —-3.0(-1) —7.0(-2) —5.8(=3) —2.8(—1) -13
1.25 —1.8(—1 —6.0(—2) —5.3(=3) —1.8(—=1) —6.0(—1)
1.50 —1.2(-1) —5.0(-2) —4.9(-3) —12(=1) =3.1(=1
2.00 —5.4(-2) —3.2(-2) —3.9(-3) —5.9(-2) —9.8(—2)
2.50 —2.7(=2) —2.0(-2) —2.9(-3) —3.1(=2) —3.9(-2)
3.00 —1.4(=2) —1.2(=2) —2.1(=3) —1.8(=2) —1.8(=2)
3.50 —8.0(—3) —17.6(—3) —1.5(=3) —1.0(-=2) —-9.7(=3)
4.00 —4.8(-3) —4.8(—3) —1.1(=3) —6.3(=3) —5.6(-3)
5.00 —1.9(-3) —2.1(=3) —6.4(—4) —2.6(—3) —2.3(=3)
6.00 —9.3(—4) —1.0(-3) —3.8(—4) —1.2(=3) —1.1(=3)
8.00 —2.9(—4) —3.3(—4) —1.6(—4) —3.6(—4) —~3.3(—-4)
10.00 —1.2(—4) —1.3(—4) —7.9(-5) —1.4(—4) —1.4(—4)

2Reference 7.
bReference 11 with a=2.687a3.
°Equation (5) and V'*® of Ref. 7.

scattering sense rather than a polarization-potential
sense) analog of the MEP method. However, their
pseudo states include only S—P polarization effects
and lead to an arbitrary effective polarization po-
tential at small », while the MEP method includes
contributions from all symmetries and yields the
full response in the adiabatic approximation at all 7.
The figures imply that the Blum-Burke cross sec-
tions are more accurate than the MEP ones at large
scattering angles for 50 and 100 eV and small
scattering angles at 50 eV. At 100 eV the MEP re-
sults give more accurate small-angle scattering. As
discussed by Walters,’? the underestimate of small-
angle, high-energy scattering by the pseudostate
method may be a consequence of the implicit polar-
ization potential in this method. It is encouraging
that the MEP method, with its more complete ac-
count of polarization effects, does not appear to
suffer from this systematic error. The calculations
of Fon and Berrington®? (not shown in the figures,
but see Table VIII) appear to be more accurate than
those of Blum and Burke at small angles, and this
complicates the above discussion. Blum and Burke
did not tabulate phase shifts but their plot shows
that their low-energy phase shifts are somewhat
smaller than Thompson’s. The available phase
shifts from the calculations for Fon and Berrington
are compared to the other calculations in Table III.
Overall the Fon-Berrington calculations appear to

dReference 29.
‘Reference 30.

be the most accurate available calculations over the
whole energy range considered here.

Byron and Joachain?® studied e-Ne scattering
with the eikonal-optical-model formalism at ener-
gies of 100 eV and higher; we can compare with
their results at 100 eV. Table VII shows that their
absorption potential is much too high, and their
elastic integral and momentum-transfer cross sec-
tions are too low. The MEP model is much more
accurate for these three quantities. Figure 7 shows
that the eikonal optical model is less successful than
any of the present calculations for the medium- and
large-angle elastic differential cross section. Table
IX shows that for r >0.5a,, the real polarization
potential used by Byron and Joachain is either very
similar to or a little more attractive than the adia-
batic polarization potential of Ref. 7.

The phenomenological-optical-model calculations
of McCarthy et al.'! are the original versions of the
SEPad, calculations of the present study. Howev-
er, as discussed above and as illustrated in Table
VII, McCarthy et al. did not adjust o, to experi-
ment as closely as is done here. Their results need
not be discussed further since our SEPad, calcula-
tions are discussed extensively above. The compar-
ison of Table IX does merit a comment though.
Although McCarthy et al’s polarization potential
is in principle adiabatic, they use a Temkin-Lamkin
approximation and a hydrogenic approximation.
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The Temkin-Lamkin approximation neglects all
multipoles except the dipole and it includes only
contributions to the integrals from the region where
the scattering electron is further from the nucleus
than a bound electron. Because of the Temkin-
Lamkin approximation, ¥'?%(r) of Ref. 11 is much
less attractive than that of Ref. 7 for r < 3a,.

Jhanwar et al.’® applied an SEP-type model (in
addition to less complete models not considered
here) at energies 100 eV and higher. Their polariza-
tion potential is energy dependent, like the present
Pna potential, and thus it is especially interesting to
compare their results to ours. Table VII shows that
their calculations seriously overestimate the elastic
integral cross section. Their 100-eV differential
cross section, not shown here, has a minimum value
of 0.24 a3/sr and a 180° local maximum of
2.7ad/sr. Reference to Fig. 7 shows that both of
these values are too high. One reason for the
overestimate may be their polarization potential.
Table IX shows that this is much too attractive at
small r.

Yau et al3! performed another polarized-
orbital —type SEP calculation, with special em-
phasis on the exchange potential and with inclusion
of all multipoles in the polarization potential. Their
results are very close to Thompson’s and Garbaty
and LaBahn’s.

VI. CONCLUSIONS

We have tested three approaches to the treatment
of electronic polarization and absorption effects in
electron scattering by applying them to e-Ne
scattering in the difficult intermediate-energy range
of 10—100 eV. The nonadiabatic energy-
dependent-polarization-potential method is most
successful at low energy but it leads by the disper-
sion relation to a nonempirical absorption potential
that appears too long ranged and that decreases too
rapidly at high energy. The matrix-effective-
potential method appears to be most accurate at

high energy for Ne; at low energy it overestimates
the absorption cross section and predicts an in-
correct angular dependence for the differential cross
sections. The use of phenomenological absorption
potentials is capable of yielding high-accuracy elas-
tic differential cross sections even with considerably
different shapes for the r dependence of the absorp-
tion potential. We think these tests provide useful
calibration points so that we can better estimate
how much to trust these kinds of methods for prob-
lems where the experimental data are less complete.

VII. MICROFICHE SUPPLEMENT

We are submitting six tables of additional data to
Physics Auxiliary Publication Service.** This in-
cludes differential elastic cross sections calculated
by the MEP, SEPnad, SEPnad,, and SEPnad g,
methods at 10, 30, 50, and 100 eV and partial-wave
elastic and absorption cross sections calculated by
these methods at 30, 50, and 100 eV.

Note added in proof. We can now compare to the
new experimental results of Brewer et al.’® at 10 eV.
Their phase shifts and cross sections are 2.336(s),
2.908(p), 0.087(d), 12.4al(c,), and 8.7ad(o7);
these values compare well to the present SEPna re-
sults in Tables II and V. Brewer et al. measured
do,/dQ for 6=20—120°. Their results agree with
the values we calculated from Williams’® phase
shifts within 7% or better at all angles in this range,
but are systematically closer to the present SEPna
calculations than Williams’ results are. The SEPna
differential cross section agrees with that of Brewer
et al. within 10% for 65—120°, but the difference
increases to a factor of 1.33 at 20°.
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