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Relativistic many-body theory of atomic transitions.
The relativistic equation-of-motion approach
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An equation-of-motion approach is used to develop the relativistic many-body theory of
atomic transitions. The relativistic equations of motion for transition matrices are formu-

lated with the use of techniques of quantum-field theory. To reduce the equations of
motion to a tractable form which is appropriate for numerical calculations, a graphical
method to resolve the complication arising from the antisymmetrization and angular-

momentum coupling is employed. The relativistic equation-of-motion method allows an ab
initio treatment of correlation and relativistic effects in both closed- and open-shell many-

body systems. A special case of the present formulation reduces to the relativistic random-

phase approximation.

I. INTRODUCTION

Treatment of relativistic and correlation effects
in many-particle systems has become essential in

many fields of physics. We introduce a relativistic
equation-of-motion approach' to deal with these
two effects in an ab initio manner.

In Sec. II we define the transition matrix in the
quantum-field theory and derive equations of
motion for transition matrices. Section III gives the
transition amplitudes in terms of transition ma-
trices. The kinematic structure of transition ma-
trices can be obtained by a graphical prescription
given in Sec. IV. In Sec. V, we demonstrate the
solution of the relativistic equations of motion by
giving a simple example which reduces to the rela-
tivistic random-phase approximation (RRPA).
The present formulation is, however, more general
and can treat both open- and closed-shell systems.
In addition, multiexcitations can be taken into ac-
count. Relativistic equations of motion for a
many-particle system with general n-particle in-

teractions can also be derived. These and detailed
treatment of open-shell systems are given in a
separate paper.

II. EQUATIONS OF MOTION
FOR TRANSITION MATRICES

For many-fermion systems, the creation and an-

nihilation operators satisfy the anticornmutation re-

lations

j c;,c, j =5;, , (1)

[c;,c, j=[c;,c, j=0, (2)

g (x,t)=gu;(x, t)c;, (4)

where a is used to accommodate fields with more
than one component and u; form a complete ortho-
normal set. The anticommutation relations of field

operators are

II" (x, t), gp(x', t) j=5 p5 (x —x'), (5)

jg (x, t),Pgx ', t) j = [P (x, t),Pgx, t) j =0. (6)

For brevity, we write

jP(x, t), g (x', t) j =5 (x —x'),
jp(x, t),p(x', t) j = I/"(x, t),~("(x',t) j =0

(7)

with the variable a implied.
A general many-fermion state is given by

~+)=+A;, . . . c;ci" . ~0), (9)
IJoo ~

where the coefficients A,J. . . . in general involve cou-

pling coefficients. The equations of motion for the
field operators are

i ' =[/(x, t),H], (10)

=[0'(-., t),H], (11)
at

where H is the total Hamiltonian, and the square
brackets denote the commutation relation. The to
tal Hamiltonian H is assumed to have the form

where the curly brackets denote the anticommuta-
tion relation. The field operators are given by

I" (x, t) =gu-;(x, t)c;,

26 734 1982 The American Physical Society



26 RELATIVISTIC MANY-BODY THEORY OF ATOMIC. . . 735

H= fd'xi/ (xi, t)h(xi}g(xi, t)

+ —,fd'xi fd x2$ (xi, t)g (x2, t)v(xi, x2)g(x2, t)1((xi,t), (12)

where h(xi) stands for a sum of all one-particle operators and v(x&, x2) for all two-particle operators. Al-

though three-particle and, in general, many-particle operators can be included, we will deal only with the
form (12). For brevity we write Eq. (12) as

H =fd'x, pt(1)h (1)1((1)+—,fd'x, fd'x2pt(1)f"(2)v (12)g(2)1((1) .

The nth-order transition matrix is defined as

(13)

I', (l, . . ,n;.1', . . ,n'.) =—(4; I @ (1') .
1( (n')f(n) . @(1)

I %f),n.
(14)

where i and f denote two general states of the many fermion system. In the usual application, ~p; and %i are
states with well-defined angular momentum given in the form of Eq. (9). We can easily show that

r~, (1,. . .,n;1', . . .,n') is Hermitian, antisymmetric, and satisfies the recurrence relation

I ~;(1,. . .,n;1', . . .,n') = n+1 d x„+&I~;(1,. . .,n+1;1', . . .,n+1') .
N —n

(15)

In Eqs. (14) and (15), the primes are introduced for purely notational purposes so that operators, if any, to the
left will only operate on unprimed coordinates. However, as far as the integration is concerned, the primed
and unprimed coordinates are treated as if they were the same. These will become clear later.

Assume that two states of an N-fermion system satisfy the equations

(16)

(17)

where E; and Ey are total energies of 4; and +I, respectively. We can show that the transition matrix be-

tween i and f states satisfies

where co~ ——E~ —E;. By integrating successively over the coordinates x; and by applying the recurrence rela-
tion (15), we obtain, in general,

(19)

This is called the equation of motion for the nth order transitio-n matrix.
The equation of motion (19) can be written in terms of the total Hamiltonian H by using the equations of

motion (10) and (11) satisfied by the field operators. The left-hand side of Eq. (19) can then be reduced to

=—(ip;
I [p (I'),H]p (2') g"(n')ll(n) . $(1)

I +J )n!

+—(ill;
I p (I')[p (2'),H]g (3') . g (n')1((n). $(l) I

@ )+n! f

+—
& +; I

iI'(I') y'(n')y(n) . . y(3)[y(2) H]g(1}
I +J &n!

+—(xiii
I g (1') . . p (n'}1((n) . . $(2)[g(1)H] I +f )n!

(20)
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Using the explicit form (13) and carrying out the commutation relations in (20) we can write the equation of
motion (19) in coordinate-operator form:

gh (i)I I ( l, . . ,n. ;1',. . ,n.') r—~ (I, . . ,n; I', . . .,n') gh(i')

+ (1—5„&)g [u (ij ) v(—ij'')]I ~;(I, . . , n. ; I ', . . ,n.')

+(1 5„—~)(n+1)fd x„+~+[v(i,n+1)—v(i', n +1')]I&(l, . . , n .+1;1',. . .,n +1')

—Q)f I f ( 1,. . .,n; 1', . . .,n' ) . (21)

Equation (21) is formally equivalent to the nonrelativistic equations of motion derived in the configuration
space.

In calculations using basis wave functions, it is more convenient to express the equations of motion in the
occupation-number space. The transition matrix in the occupation-number space is defined as

rfl'"'=, fd x„+, dx~li(N) . p(n+1)~%I)(%';~/'(n+ ') . . p'(N')

g c, . c~e~ ){e;~ck . c,'.
(N —n)t . . . . k

J (22)

By applying the commutation relations (7) and (8), we can prove that Eq. (22) and the transition matrix in the
coordinate space are related by

r~, (l, . . ,n; 1', ... .,n')=(l, . . , n
~

II".
~

I', . . ,n') . .

A recurrence relation is satisfied by the transition matrices in the occupation-number space:

(23)

rI", = d x„+&1((n+1)II";+"1( (n+1') .
(N —n)

(24)

(25)

Following a similar procedure as before, we obtain the equation of motion in the occupation-number space:

h rg' —r~", 'h+(1 —5„,)(1+n —N)(ur~", ' —r~", 'u)+(1 —5„„)gc,(vr~", +"—rr", +"u)c, =~I, r~", ',
J

where

h —= fd 3x, Pt(1)h (1)g(1)=ghk~ckc~,
kl

u = —,fd x~ fd x2$ (1)g (2)u(12)g(2)g(1) = —, g uk~~„ctckc~c„.
klmn

(26)

(27)

III. TRANSITION AMPLITUDES

The most general interaction operator for an N-particle system is

N N N
V= g u(i)+ g v(ij)+ g u(ijk)+ + g u(ij, . . . , I)+ +u(1, . . . , N),

i&j&k I &J 0 ~ \

where u(ij, . . . , I) denotes a general n-particle operator; i.e., i,j, . . . , l are n in number. The transition ampli-
tude from state i to state f due to V can be written in terms of transition matrices as

PI; ——f d x,u(1)I i;(I;I')+ f d x, f d x u(12)I g;(12;I'2')

+ f d3x, f d'x, f d'x, u(123)I ~;(123;I'2'3')+. . .

+ f d x, f d x u(1, . . . , N)1~,.(1, . . . , N;1', . . . , N') . (28)
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In the occupation-number space, we have

Pf; ——f d, (1 i vi "If
i
I')+ J d xi f d x2(12

~

u' 'Il
~

1'2')

+ f d3, f d3 (], . . . , N
~

inirf 'i I', . . . , N'),

where an n-particle operator is defined as

u'"'= —f d3xi f d3x„g(1) g (n)v(1, . . . , n)f(n) 1(i(1) .
n!

To evaluate Eq. (28) or (29) exactly, we would have to assume a corresponding Hamiltonian

(29)

(30)

H= f d xgt(1)h(1)$(1)+ g vi"
l =2

(31)

and obtain a hierarchy of equations similar to (21) or (25). Transition matrices of all orders are then solved
and substituted in Eq. (28) or (29) to give the transition amplitude I'f;. Nevertheless, we will truncate the in-
teractions up to two-particle operators as in the assumption of Eq. (13) of the total Hamiltonian. Therefore,
we are primarily interested in the two lowest-order equations of {21)or (25). The third-order transition matrix
is to be approximated and related to the second-order transition matrix. The two equations of motion involv-

ing the first- and second-order transition matrices can then be solved in principle.

IV. FORMS OF TRANSITION MATRICES

The kinematic structure of transition matrices can be obtained by a graphical procedure. The prescriptions
are as follows.

(i) First Order:

r,, (1,1')= g( —I) "(N,Nb)' ~qf(a))(q''(&)
I

ab

where the summation is over all nonvanishing pairs. Other notations have been defined elsewhere.
(ii) Second Order:

rf, (12;1'2')= g —,(1—t',
b
—Pi2)(1 —5,g —Pi P )

(,ab, cd)

X(—1) ' ' [Na(Ãb —~ab)Nc(Nd ~ed)] I qf(a~))(qi («)
I

(32)

(33)

where the summation is over all distinct nonvanishing pairs with a & b and c & d. Other notations in Eq. (33)
have also been defined. In the occupation-number space, we have

rf, '= g( —1) "(N.Nb)' '~ qf(a))(q (h)
~
v, vb,

ab
(34)

rfi y 2
(1 ~ab P12)(1 ~cd Pl'2')( 1) lNa(Nb ~ab)NC(Nd ~ed)1

ab cd

ab, cd

X
~
qf(ab) ) (q («)

~
v, vbvzv, .

Prescriptions for obtaining higher-order transition matrices can be similarly derived.

(35)

V. SOLUTION OF THE
EQUATIONS OF MOTION

tions through one-particle operators. The initial
and final states are assumed to have the forms

To demonstrate here the solution of the equations
of motion, we will consider the trivial case of
closed-shell atoms and restrict ourselves to excita-

%, =A,%,

[( ')J ( )J ]0 '
aJa 2c

(36)
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'Pf = g C„%(,~,,)
ae

(37) v "(1)=f d x v(12)(1—P, )I (2;2') . (44)

I f;(1;1')= I (1;1')+I (1;1'), (38)

where the positive- and negative-frequency parts
I (1;1') are

where the initial state is composed of the Fermi
vacuum and states with two particle-hole pairs, and
the final state is composed of states with one
particle-hole pair. Here we have used the shorthand
notations a =—j„etc., for the angular momenta of
subshells a, etc. In the second term of Eq. {36),the
subscripts indicate that there are 2j, —1 electrons in
subshell a and 2 electrons in subshell c (i.e., 2 holes
in a and 2 particles in c), that J,2 is the total angu-
lar momentum for both subshells a and c, and that
the total angular momentum of the configuration is
zero. In Eq. (37), the subscripts indicate that the

2j, electrons have a total angular momentum j,
which, in turn, couples with one electron in subshell

e to give the total angular momentum J of the con-
figuration. The weighting coefficients of configura-
tions are denoted formally by 8~, and C„.The

transition matrices are obtained using the prescrip-
tions (32) and (33).

The first-order transition matrix is found to be

Examples of h (1) and v(12) are

h{1)=ca ) p)+c'P)+vN(1),
1 1

v(12) = — ( a i.a 2)
T12 2T12

( a r ]2)(a 2 r12)+ 2
12

(45)

(46)

h "(1)If;(1;1')—I f;(];]')h "(1')—cof'I f (1;1')

= f d xp[v(1'2')(I —P) p )—v(12)(1—P)g)]

X I p(1, 1')I'f;(2;2') . (47)

From symmetry consideration, we can separate Eq.
(47) into positive- and negative-frequency parts as

I '"(1)r,(1;I')-r,(1;I')h "(1')—~f,r, (1;I')

= f d x v(12)(P, —1)I' (1;1')If;(2;2'),

with the positive-energy projection operators im-
plied. Consequently, we can reduce the first-order
relativistic equation of motion as

I+{1;1')=+1;+;
aa' J

r (I;I')=y(

a=:1', (39)

(40)

(48)

I (1;1')h "(1')—h "(1)I (];]')+~f'I (] ] )

= f d'xpv(1'2')(P, p
—1)1' (1;I')rf, (2;2') .

Here the graphical notations have been defined else-
where. The exact form of the second-order transi-
tion matrix is more involved and will be presented
in a separate paper. For our purpose here, we only
need an approximate form

(49)

Both the positive- and negative-frequency equations
can be expanded on a complete orthonormal tensor
space. For each basis tensor, we obtain a radial
equation. The final results are

I p(12;1'2') = —,{1—P12)(1—P12 )

y, I (1;1')I f;(2;2'), (41) Ilg —(Eg+COf()+ g vb Qg + —0
b

(so)

r,(1;I )= &1:
b

(42)

where I f.(2 2') has been defined in Eq (38) and

I 0(1;1') is the density matrix for the Fermi vacuum Here u, + denotes the radial part of the excited or-
bital, and

The approximation (41) amounts to treating the
spectator particles in an average manner in deter-
rnining the kinematic structure.

Define a Dirac-Fock operator

h, =
VN(r)

d &a'
c —+-

dT T

d &a'
c

dT 1

v~{P) —2c

(51)

h "(])=h(])+v "(1)

with the DF potential given as

(43)

where c is the speed of light in a.u. and
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Ub "u, +=Ub "u, ++ g[(—1) "w(b'+b)+w(bb'+)]u, +,
b'

Ub u~ = [b] Up(bb)u —g Dk(ba)Uk(ba )ub
k

1
w(bc)u, + —— CJ(aa')CJ(bc)UJ(bc)u, +( —1) +'QAI, (aa'bc; J)vk(ba)uVl' a k ~ k c

k
r&

Uk(bc) = drqub(2) ~k+, ~
u, (2),

0 7 )

(52)

(53)

(54)

(55)

~~ab J
Ak(abed J)=(—1) + Ck(abed) d k I

' (58)

for the Coulomb interaction. Here we have used
the notation [b]—:(2b+ I)'~, etc. A more compli-
cated expression can be derived for interactions in-

cluding the Breit interaction, etc. The angular cou-

pling coefficients in Eqs. (53) and (54) are

(ak b)
Dk(ab ) =

~

i i
~

11(l,klb ), (56)
0

a k b
Ck(ab)= ( —1)'+' [ab]

~

~ ~ ~II(l, klb),
0 ——,]

(57)

I

with the parity function

1, a+k+b even
II(akb ) = '

0

Equations (50) agree with the relativistic random-

phase approximation (RRPA) equations. The
present procedure can be used to derive the RRPA
equations involving parity-nonconserved interac-
tions, the multiconfiguration relativistic random-

phase approximation (MCRRPA) equations, and
the RRPA equations for open-shell systems. These
and other applications are given in a separate pa-
per. 4

Ck(abed) = ( —1)'+ [abed)

(a k c ) (b k d )
— )I, -)

)( II(l, kl, }H(lb klan }, (59)
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