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Decay of correlations in certain hyperbolic systems
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Some results on the decay of correlation functions in certain unstable systems are presented

which appear to confirm previous theoretical estimates.

The behavior of autocorrelation functions of given
dynamical variables is of primary importance in the
statistical description of dynamical systems; in partic-
ular, exponential decay of autocorrelation functions
for a class of phase functions sufficiently broad as to
include relevant observables is being regarded as a
paradigm of stochastic behavior. A satisfactory for-
malization of this property within the framework of
ergodic theory is therefore necessary, and, in fact, it
is the object of current mathematical research. ' '

For some time it has been commonly believed by
physicists, on heuristic grounds, that this property
would be displayed by systems with a positive KS en-
tropy and that the decay constant should be propor-
tional to the entropy. However, experimental results
showing that even highly stochastic systems may ex-
hibit long-time algebraic decay contradict this be-
lief. ' Only recently rigorous mathematical results
on a class of model systems with positive entropy
(dispersing billiards, Lorenz gas) have been obtained
by Bunimovich and Sinai. '

Dispersing billiards and the automorphism of the
torus commonly known as "Arnold's cat" belong to
a class of dynamical systems of hyperbolic nature for
which the decay of correlation functions can be
analyzed by means of a technique derived by Sinai
and others which is based on the construction of the
so-called Markov partitions. ' By means of one such
partition of the phase space one can construct a sym-
bolic dynamical system that, on one hand, provides a
convenient model for studying the statistical proper-
ties of the original system, and, on the other, can be
"asymptotically" approximated by a Markov chain,
i.e., by a system exhibiting exponential decay of
correlation functions for a broad class of functions.

However, due to insufficient smoothness of the
original system, the character of the approximation
by Markov chains may be such that one in this way
cannot exclude the case in which the decay of corre-
lation functions is somewhat slowed down. Specifi-
cally, Bunimovich and Sinai obtained Markov parti-
tions for the Lorenz gas and dispersing billiards and

used them to show that the velocity autocorrelation
functions of a particle in a Lorenz gas with a periodic
configuration of scatterers and with a uniformly
bounded free path is O(exp( —an")), a ) 0, 0 ( y
& 1 as n ~, n being the number of collisions.
(The displacement of one scatterer is, however, suffi-
cient to turn the type of decay from exponential to an
inverse power of time. ) An analogous result was
found for the dispersing billiard consisting of four cir-
cle arcs (Fig. l). Thus two problems, at least, arise:
what the mechanism discriminating exponential from
algebraic decay is, and whether it is possible to im-

prove the above estimate into a pure exponential de-
cay (y-l).

In this Communication we present the results of
numerical computations of correlation functions in

two model systems. One of them is the dispersing
billiard: Our results seem to exclude the case in

which one can take y = 1. The other is a discontinu-
ous map of the torus. We have studied it mainly in
order to adjust the numerical technique, but it may
have some interest of its own: Here the results seem

FIG. 1. Exponentially unstable billiard.
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to indicate a pure exponential decay of correlation
functions.

Consider the mapping of the 2-torus generated
(modulo 1) by the matrix

1 k

1 1+k

0.3

0.2-

For k an integer this map is a hyperbolic automor-
phism of the torus: In particular, with k =1 one has
Arnold's cat. For this automorphism, Markov parti-
tions were first found by Adler and Weiss and can
be constructed as shown in Ref. 7. The correspond-
ing symbolic dynamical system is a true Markov
chain; the transition matrix and its eigenvalues can
be explicitly calculated and used to conclude that, for
sufficiently smooth functions f,

p(n) = & exp(-2hn)S(n) —S(~)

where S (n) = (f(0)f (n) ), is the phase-averaged
correlation function and h is the KS entropy. We
found this decay too fast to be used as a reliability
check of our numerical scheme of computation of
correlation functions. With 0 & k ( 1 the map has
still a hyperbolic character, but it is neither injective
nor continuous, and this seems to place it beyond the
range of applicability of the Markov partition
machinery. However, it may be interesting to study
the effect of this discontinuity since, as mentioned
above, the slowing down of correlation functions in
the Lorenz gas seems to be due precisely to a lack of
smoothness.

We computed the phase-averaged correlation func-
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FIG. 3. Dependence of the decay constant n on in',
where A, is the eigenvalue of A greater than 1.

tion of the characteristic function of the square
X = [O, d) && [O,d) (0 & d & 1), for different values of
k, by integrating 90000 different trajectories initially
started in X with a uniform distribution. A typical
result is shown in Fig. 2. We fitted the numerical
data with the curve exp( —en") and found y = 1 with

a very good accuracy (+ 10 '). We have, therefore,
good evidence of a pure exponential decay; the decay
constant a is an increasing function of ink(k), X(k)
being the eigenvalue of A greater in modulus than 1

(Fig. 3). It is, however, apparent that the decay is

considerably slowed down with respect to
exp[—21n[X(k) ]n) (which is the correct decay for
k = I).
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FIG. 2. Absolute value of the correlation function (solid
line) vs the number of the iterations n, for the area preserv-

ing mapping (1), with k =0.28. The dotted line represents
the fitted curve 0.27e

FIG. 4. Absolute value of the correlation function (solid
line) for the dispersing billiard of Fig. 1 with ~ = I/D = 0.5.
The values of the correlations are taken at fixed time inter-
vals. The dotted line represents the fitted curve
exp( —1.4n . ).
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FIG. 6. Correlation function for the case of Fig. 4 after
the smoothing, for different numbers N of trajectories:
Q, N 40000; +,N 120000;,N 250000. The dashed
line gives the exponential decay exp( —1.4n . ).

FIG. 5. Correlation function for the case of Fig. 2 after
the smoothing, for different numbers N of trajectories:
LL, N 2500; cl,N 10000; +,N 40000; ~,N 90000.
The dashed line gives the pure exponential decay 0.27e

We considered the dispersing billiard of Fig. 1

characterized by the value of the parameter
a - I/D -0.5 and numerically computed the auto-
correlation of the characteristic function f of the re-
gion X on the energy surface defined by 0 ~x
~ I/3, 0~y ~ I/2, cos(1.1) ~ v, i cos(0.1),
sin(0. 1) ~ v„~ sin(1.1). Here we integrated 250000
different trajectories initially started in X with uni-
form distribution and computed the autocorrelation
p(n). The result is shown in Fig. 4. A best fit of the
numerical data gives p(n) —exp( —1 4n0~~), . thus
supporting the view that the results obtained by Buni-
movich and Sinai' ' are not merely estimates but
describe the actual asymptotic behavior of correla-
tions.

Various numerical checks were devised for the ac-
curacy of computer results. Since we perform phase
averages and not time averages, we needed to in-

tegrate each orbit only for short times, and therefore,
we had not to deal with big problems of accuracy for
the time evolution of any single orbit. The main re-
striction comes from the limited number N of orbits
one actually integrates, since the error in the corrrela-
tion value decreases as 1/ JN; another source of dif-
ficulty is given by the oscillating character of the de-
cay. This last problem was simply handled by intro-
ducing a convenient smoothing procedure, thus ob-
taining a monotone decreasing function. In Figs. 5
and 6 are drawn the smoothed values of the correla-
tion functions for the two models studied and for in-
creasing number N of trajectories.

As it is clearly apparent from the two pictures, the
fitting of the data with the dashed lines becomes
more and more accurate with increasing N.
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