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The Jaynes-Cummings model of a two-level system interacting with a single-mode
coherent-state field is investigated in a transformed representation emphasizing quantum

corrections to the semiclassical Rabi problem. We find an intuitive explanation of the

collapse and revivals of oscillations in the population inversion.

The Jaynes-Cummings model (JCM) of a single
two-state system interacting with a single occupied
quantized radiation field mode' lies at the heart of
modern laser physics and quantum optics. When

the exact solutions for this model' are used to
study the effects of field statistics in this nondissi-

pative model, a number of unexpected features are
obtained. The semiclassical sinusoidal Rabi
solution for the two-state inversion W is obtained
in a sense when the field is represented by a pure
number state. When the field mode is initially

prepared in a coherent state, the two-state inver-

sion oscillations decay away (even though there are
no losses in the model) and then revive. In-
terest in this model has been greatly stimulated by
the recent work of Eberly and colleagues who
have elucidated many new characteristics and sys-
tematic features of the decay of Rabi oscillations,
their revival, and the interference between revivals

and resultant apparent irreversibility.
The central problem in studying the coherent-

state JCM is that the sinusoidal inversion 8'„in-

duced by a resonant number state
~

n ),W„
=cos2A, n ' t (where A, is a coupling constant) is re-

placed by the Poisson-weighted infinite sum
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&=exp( —~a
~
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where
~

a
~

= n is the mean number of photons in

the coherent state
~

a). This sum cannot be
evaluated in closed form and requires careful ap-
proximations in order to reproduce all of the
features referred to above. We have obtained a
new representation of the coherent-state JCM
which emphasizes the importance of quantum
corrections to semiclassical Rabi oscillations in the
JCM and provides a physical interpretation of the
collapse and revival in terms of competition from
a cascade of quantum-generated eigenfrequencies.

where the interaction Hamiltonian V& ———d.E, d
is the transition dipole operator, E the electric field

operator, and

V& ——A'A, (a e' 'cr —0.+ae ' '),

where [tt,tt ]=1, [o,o+] = —oi. We transform

H& using the inverse of the Glauber unitary
transformation

D(a) =exp(aa —@*a), (4)

where D '(a)
~

a) =
~

0), and find our new Hamil-
tonian H2 ——D '(a)H&D(u) =H&+ V2, where Vz

describes the interaction of the two-state system
with a classical field E of normalized amplitude

CK,

V2= —d E =16k(a'e' 'o —0.+ae '"') . (5)

In our transformed representation V2 induces
sinusoidal Rabi oscillations between

~
+ ) and

~

—) without changing the number of photons in

Previous workers have emphasized the Poisson
distribution of n's (and indirectly the spread in

Rabi frequencies A~n) by expanding the coherent
state in terms of number states. We choose to em-

phasize the classical nature of such a field. Instead

of using the standard fully quantized single-mode

interaction Hamiltonian acting on an initial state

~
a), we consider the entirely equivalent Hamil-

tonian describing the interaction of the two-state

system with a quantized field and a classical field

of normalized amplitude a, acting on an initially

unoccupied field-mode state
~

0).
The coherent state JCM is characterized by two

"spin" states
~

+ ), a resonant field state
~
a) and

a Hamiltonian ' in rotating-wave approximation

(RWA),
1

H )
———,Acopcr3+ V),
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the field mode (this number is initially zero). The
quantized interaction V~ can change the number of
photons in the mode. For example, it can take the
two-state system from

I
0, + ), the initial state

with no photons present, to
I

1,—) with one pho-
ton present (and return it).

In RWA, the "essential states" coupled by the
transformed interaction V are represented in Fig. 1

as a "ladder" of states. The couplings are

'p(t)= g [c„(t)e "
I

n —)

+C„+(t)e "+
I
n+ ) ],

and use the Schrodinger equation and orthonor-
mality to generate equations of motion of the pro-
bability amplitudes for the t~~o-level system to be
in state

I
+ ) with k photons present, Ck+(ti W.e

choose as our initial condition Cp + (0)=1, and
find

(n+
I

vl In+1, —) =AA&n. +1, (6a)

(6b)
iCk+ =A.aCk +&k + 1Ck+]

+igkp5(t), (8a)

We see now how the distribution of Rabi eigenfre-
quencies necessary for dephasing arises in our
model as a result of the quantum dynamics. As
successive states

I
n+ ) are coupled in, quantum

Rabi frequencies A~n are generated after a succes-
sion of semiclassical oscillations. We expand the
wave function in terms of

I
n + ) and

I
n —),

iCk =A.aCk++kv k Ck 1+ . (8b)

oo

Ck+(t) = — e ' 'gk+(E) dE,
27Tl

and find the tridiagonal matrix equation

We convert these to algebraic equations by Fourier
transforms, with

0
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The leading features in our problem can be ob-
tained by studying truncated forms of this matrix
equation. If we restrict ourselves to the four states

I
0+ ) and

I
1+ ) (with two semiclassical couplings

A,a and one quantum coupling A,&1) we find the
four eigenfrequencies,

FIG. 1. Energy levels and coupling in the
transformed JCM, where V] is the fully quantized in-

teraction which creates and destroys photons in the ini-

tially empty mode and V2 is the interaction inducing
semiclassical Rabi oscillations without changing the
number of photons. Note that all of these transitions
are reversible.

E2 ——[1—(1+4~ )' ]=
2 4

and inversion W=
I
Co+(t) I +

I
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W=coskt cos[(A+4k', a )'~ t] . (12)

If, however, a & 1, the usual complicated beat
structure is produced, and it is hard to recognize

W= [(Ef+k a ) cos2E~t
(E]—Ep)

+(Ez+A,~a~) cos2Ezt] . (11)
We note that this is a sum of cosines as in the full
JCM solution. We plot W from Eq. (11) in Fig. 2,
where we have chosen a strong semiclassical field

coupling A.u=1 fixing A. =0.02. Figure 2 reveals
that the competition between the semiclassical
Rabi oscillation at Aa and the quantum oscillation
at A, v 1 leads to beats and an exactly periodic col-
lapse and revival of population oscillations. For
the values chosen in Fig. 2, the "branching ratio"
from

~

0+ ) to
~

0—) or to
~

1, —) clearly favors
the semiclassical transition: many Rabi oscilla-
tions occur before a dephasing collapse sets in as a
simple beat phenomenon. This is demonstrated
more explicity if a && 1 so that we can expand the
solution (11) for 8'as

FIG. 2. Plot of the four-state result of the inversion
W(t) obtained from Eq. (11) demonstrating very simple
collapse and exact revivals. We have chosen A, =0.02

1/2
and A,a=1 (n =50), and t varies from 0 to 500.

Rabi oscillations within the time evolution.
Eventually we must couple in the quantum in-

teraction V] a second time since population in

~

1, + ) produced by the first coupling of Vt can
now couple to

~

2, —) with quantum Rabi frequen-

cy v 2A, . We have diagonalized the (6X6) matrix
including ~0, +),

~

1,+),
~
2, +) in terms of the

roots of a cubic equation. The full six-level solu-
tion for 8'(t) can then be found and a numerjcal
evaluation of this is shown in Figs. 3(a) and 3(b),

+1

(b)

FIG. 3. Plot of the six-state result for the inversion W(t) again with A, =0.02, Ra= 1 (such that n =50). In (a), t
1/2

varies from 0 to 500; in (b) from 20000 to 20100.
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again for A,a=1, A, =0.02 for different time ranges.
The short-time behavior can be made more tran-
sparent by an expansion for small A, , and after con-
siderable algebra we find (for A,a=1),

~=—,(2+ cos~3A, t) cos2t . (13)

For longer times, the evolution is considerably
more complicated than in the four-state approxi-
mation with nearly chaotic behavior, as can be ob-
served in Fig. 3(b).

To solve the coherent-state JCM exactly in our
approach requires full (and painful) diagonalization
of Eq. (9) which we know should reproduce ulti-
mately the original JCM infinite series. ' In our
approach it is clear that the great richness of struc-
ture uncovered by the careful numerical and ana-
lytic work of Eberly et al. has, in part, a physical-
ly appealing origin revealed by our "ladder of exci-
tations" in Fig. 1. Using our approach one can see
that as time progresses, increasingly more eigenfre-
quencies are coupled into the problem. If the
mode is highly occupied initially (a && 1) then the
initial time evolution is just that of the first rung
on the ladder. However, a small proportion of po-
pulation (reversibly) leaks into the ground state e-

mitting a photon. Thus we have a picture of a
ladder with alternate strong (semiclassical Aa)
rungs and quantum rungs which start out weak
(~~1) but strengthen as n increases. When only

one quantum rung is relevant we have collapse and
almost exact revivals, but as the other quantum
rungs are ascended the revivals are less exact (in
the sense of reproducing earlier revivals) because of
destructive interference. Had the mode been weak-

ly occupied at t =0 (a && 1), then quantum and
semiclassical couplings are equally important, the
semiclassical "branching ratio" will not permit
many oscillations before a quantum "leakage, " and
the many important eigenfrequencies are quickly
produced resulting in a nearly chaotic behavior.
But in general we must wait the appropriate
number of semiclassical Rabi cycles indicated by
our ladder before coupling in a new (and destruc-
tively interfering) eigenfrequency. Finally, it is
clear why no simple semiclassical result is obtained
even for

~

a
~

&& l in that eventually large quan-
tum Rabi frequencies A~n (but different from Aa)
compete for the atomic populations in a dynamical
sense.
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