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The "diabatic" levels responsible for the observation of quasi-Landau resonances in ab-

sorption spectra of strongly magnetized atoms obey some scaling laws, valid for the whole

range of the magnetic field. This suggests again that it should be possible to find a fully
separable approximate model to describe the considered system in a realistic way.

During the last few years, the structure of Ryd-
berg atoms in the presence of an "intense" magnet-
ic field has been the subject of many theoretical
and experimental works. ' In particular, much at-
tention has been paid to the equally spaced struc-
tures, so-called quasi-Landau resonances, which
were initially found in the absorption spectrum of
barium by Garton and Tomkins. These reso-
nances extend across the zero field series limit into
the continuum with a spacing of about 1.5fico„co,
being the cyclotron frequency. Such a spacing has
been first explained by using a semiclassical
model in which the wave function is localized
in a plane perpendicular to the magnetic field.
Then, the connection between the quasi-Landau
resonances and the low-magnetic-field energy-level
structure has been investigated in three papers'
which highly improved our knowledge of this old
but still exciting problem.

First, by interpreting their data on diamagnetic
structure of mI ——1 odd parity sodium Rydberg
stages in the vicinity of n =28 (n is the principal
quantum number, mI is the magnetic orbital quan-
tum number), Zimmerman et al. '0 showed that, in

despite of the inter-n mixing induced by diamag-
netic interaction, anticrossings between levels with
same parity and same magnetic quantum numbers
are very weak for highly excited hydrogenic states.
This result is very important since, on the one
hand, it suggests the existence of an approximate
dynamical symmetry and, on the other hand, it
shows that one can easily follow "diabatic" levels
labeled by the same quantum numbers as in the
low-magnetic-field limit, that is to say, parity,
magnetic quantum numbers, n (the principle quan-
tum number), and k, an additional label for distin-

a„depends on n, but for values of n much larger
than mI, it can be approximated by —,. Now, it is
well known that the quantity P=n iB plays an im-

portant role in the considered problem since, in a
classical picture, it represents the ratio between the
Lorentz force and the Coulomb force. ' ' In par-
ticular, semiclassical theory predicts that the level

(n, k & ) crosses the field-free ionization limit for
P=Po-1.6, a result in excellent agreetnent with
the experimental data of Gay et aL'2 Equation (1)
can be rewritten

en = ——, +—„p2, (2)

guishing the various levels belonging to the same
hydrogenic n manifold.

Then, two independent experimental studies,
concerning, respectively, mI ———1,—2 even-parity
sodium spectra" and mI ——+3 odd-parity cesium
spectra, ' showed that quasi-Landau resonances
emerge by a concentration of oscillator strength
into the diabatic level which, in the low-magnetic-
field limit, rises fastest in energy with increasing
the magnetic field. By convention, k is at mini-
mum for that particular level. The object of this
paper is to show that the diabatic levels leading to
quasi-Landau resonances observed through optical
excitation obey simple scaling laws which allow
one to predict their energy for any values of n and
the magnetic field B.

First, let us define by e(n, k & ), the energy of the
considered level corrected from the linear Zeeman
shift. In the low-magnetic-field limit, e(n, k & ) is
given by'

e(n, k )=— +—a n482.1

g n
2n
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and it appears that in the low-magnetic-field limit,
the quantity en is entirely determined by p.

In the high-field limit, Angelic and Deutsch'
showed, by using virial considerations and WKB
approximation, that e can be approximated by

e =nB —(CB/n)'~, (3)

with C being a constant, provided that n is much
larger than mI, a condition always fulfilled in Ryd-
berg atoms produced in an optical way. Equation
(3) can be rewritten

en =P (C—P)ii2 (4)

and again the quantity en depends on P only. In
fact, Eq. (3) was first derived by O' Connell' from
a simplified Bohr model. With such a model, C is
equal to —,. Moreover, Fonck et al. used an ex-6

pression equivalent to Eq. (4) to fit their data in-

cluding observations in the ML ——0 even-parity

channels of Bat and SrI with B =2.5 —4 T and

the Mq ——1 odd-parity channel of Bat at 8=4.7 T.
The agreement was found to be excellent; for
values of P as small as 0.3, the corresponding value
of C is obviously equal to Po in this approxiination.

Now, considering Eqs. (2) and (4), it is strongly
tempting to assume that, for the whole 8 range,
the quantity en is a function of P only. Besides,
this property is satisfied by the WKB solutions in
a one-dimensional model if one ignores the centri-
fugal energy contribution. To verify again this
conjecture which was first used, in a different but
equivalent form, by Fonck et al. ,

' we have plot-
ted, in Fig. 1, the quantity en against P for some
of the numerous data recently published by Castro
et al. " and Gay et al. ' The result is clear again:
The assumption is verified by experiment.

Then, one may ask if it is possible to find an
analytical expression for en =f(p) that fits accu-
rately the experimental data. After some unsuc-
cessful attempts, we have searched f (P) under the
following form:

f(p) =(p'+&p+p')'" (xp+v') "—
By imposing that Eq. (2) be satisfied, only one free
parameter, for example, x =C, remains to be ad-
justed to provide a best fit to the considered experi-
mental data. The result of the fitting is quite
surprising, since one obtains with an excellent ap-
proximation x =2, an integer number, which

3
leads of course toy =2, t =p= —,. Moreover, Fig.
1 shows that f(p) reproduces very well the avail-
able experimental data, and in particular, one must
notice that f(P)=0 for P= 1.6, a value equal to Po,

-0.5

ns B=-f3

FIG. 1. en vs n B. Values randomly chosen among
the numerous data of Gay et al. (Ref. 12) (~) and of
Castro et al. (Ref. 13) (o). Calculated values (—) from
Eq. (5).

and that f(po) = —,, which leads to

(Be/Bn), =
~
3f(Po) —(2/P )f(P )

~
8

3=(-, )B.
Considering the simplicity of f(P), it is hard to be-
lieve that the agreement observed between the
values derived from f (P) and the experimental
data is fortuitous. Therefore, we are convinced
that some physics is present in the particular form
off(P) we have chosen.

One may remark that the knowledge of f (p) al-
lows us to determine the mean values of 1/r, the
Coulomb operator, and of p, the diamagnetic
operator. More precisely, one gets from the
Hellmann-Feynman theorem

(1/r ) =(2/n')[pf(p) —f(p)],
(p2) =(4n /p)f(p) . (7)

It is clear from Eq. (5) that in the strong magnetic
field limit, the quantity (p2)(1/r ), which
depends on P only, goes to a limit in agreement
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with classical predictions. Moreover, from Eqs. (6)
and (7), one directly obtains the mean values of the
Coulomb energy V~, of the diamagnetic energy V&,

and therefore, by difference, of the kinetic energy
T:

Vc = —(2/n')[Pf(P) —f(P)],

V =(l/2n')Pf(P),

T=(l/n')[ —f(P)+( —, )Pf(P)] . (10)

The corresponding functions are illustrated on Fig.
2.

Let us finally notice that f(p) appears as the
sum of two contributions {one positive, one nega-
tive) which can be considered as eigenvalues of two
separated Hamiltonians. This suggests again that
it should be possible to find a fully separable
model to describe the considered problem in a real-
istic way. From the present work, the spectrum of
each of the separated Hamiltonians is entirely

FIG. 2. Variations vs p= n'8 of the respective mean

values, multiplied by n, of the Coulomb energy (——
—), the diamagnetic energy (- - - -), the kinetic energy

(—- —- —), and the total energy (—).

known and this should help to find them explicitly.

The author is grateful to Dr. J. -C. Gay and his
co-workers for communicating their original data.
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