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The exact random-phase-approximation dielectric function is used to compute the energy

loss and straggling of nonrelativistic charged particles in very dense electron fluids (r, < 1)
at any degeneracy and for any velocity ratio V/Vr. Relevance to ion-driven inertial fusion

is stressed.

With the growing attractiveness of ion beams as
an inertial confinement fusion (ICP) driver, we are
currently witnessing a new and enlarged interest in
energy losses and straggling of nonrelativistic
charges in dense and hot matter. In contradistinc-
tion to the highly nonlinear' coupling encountered
in the laser—dense-plasma interaction, at the criti-
cal density, the ion-beam target is expected to
display a mostly “classical” behavior’ monitored by
weak but numerous Coulomb collisions between a
projectile ion and the electrons, free or bound in the
dense medium.

This rather pedestrian approach to the beam-
pellet coupling brings in the possibility of accurate
calculations for the ion ranges and energy deposi-
tion profile® in a given target. Moreover, integrat-
ing these elementary events on a pellet radius dur-
ing a compression time of the order of a few nsec
(10~° sec) allows, through appropriate hydro-
dynamical codes,* to optimize the beam characteris-
tics; emittance, density, energy, pulse shape, etc., in
order to achieve a given compression.

In this area, the present emphasis lies mostly on
stopping characteristics of a dense and hot plasma
with an electron temperature comparable or smaller
than the Fermi one. This new situation raises the
obvious question of how to extrapolate the usual
low-temperature (kg T << Er) estimates.

To fulfill these goals, we give a complete and nu-
merically exact solution for the energy loss and
straggling of swift nonrelativistic ions in a very
dense electron fluid of arbitrary degeneracy and for
any ion-velocity — Fermi-velocity ratio ¥V /Vg. This
problem has already recently received considerable
attention.>>®

Usually, the free-electron fluid provides the
overwhelming contribution to the stopping process-
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As a consequence, the previous work?>® was mostly
devoted to a small V/Vy approximation where the
partial degeneracy effect may be worked out
through a simplified* low-frequency form of the
random-phase-approximation (RPA) dynamic di-
electric function e(k,w).
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FIG. 1. (mX%/6)L [Eq. (2)] and its large Vr/V approx-
imants (factorized with 7X2/6); - - -represents In(2mV?%/
fiw,); A represents InCmV?*/fiw,) —T.[F3pla)/
Fi(a)]VE/V? O represents Eq. (8) at T,=1. V is mea-
sured by the mean thermal-electron velocity® Veao T).
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The purpose of this paper is to take advantage of dE _ 4nZ%* z 1)
an exact® RPA e(k,w) to remove this velocity con- dx  mV? e
straint by considering any V/ pr ratios,‘ which al- where Z is the projectile charge and n and m
lows for a much more realistic modeling of the denote, respectively, the free-electron density and
ion-beam-target coupling. Using the notations of the electron mass. The stopping number L is given
Ref. 5, the stopping power reads by>10

6 VIV ® 2°X*f,(u,z)
L6 d d (2)
i do e Ly e P T

in terms of the standard dimensionless units

ar,
@ 25 9=0.5211.
m

=%y YT vy
It should be noticed that Eq. (2) was considered previously'® by Lindhard and Winther for the case T=0. The
purpose of the present work is to generalize these RPA calculations to any temperature (degeneracy).
The imaginary and real parts® of e(k,w) read
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with the coefficients
an=i%2{7+[72+(2n+1)21r2T,2]‘/2}’/2.
and
1
b=t (—y+[V+2n+ 1P T) 22
Similarly, the straggling
2,4
0= 2L )
m

is expressed in terms of a straggling number
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FIG. 2. Stopping power dE /dx (a.u.) at n =10%¢ cm~ and various temperatures.
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FIG. 3. (mX?/24¢r)L’ [Eq. (6)] at T.=0.9887, where
a=y=0.

dzz*f,(u,z) 2 41 (6)
[224+X%f 1 (u,2) P+ [X2f 5 (u,2) ] 4zu _1 '
T,

The small velocity limit® is recovered with

3f 2 (u,2)
; 9/2(u,z)
2| v © u |,
L==% |- dzz3—— =0
T | Ve Jy dzz [22+x%g(0)]

while the large ¥ limit [0} =(47ne?/m)],

2mv: L Fipl@) Vi TC Fspla) Vi
ﬁwp "Fm(a) V2 2 Fl/z(a) V4 ’

(8)

L=1

is a novel result, where

© dxx*®
F{a)= f 0 ;:4-_1 :
Equation (8) well approximates the complete calcu-
lation (see Fig. 1) for V /ay Vi > 2.

The effect of temperature is especially noticable
at low velocity, which allows us to visualize the
discrepancies of the present complete calculations
with respect to the T=0 calculations.!® The corre-
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sponding dE /dx displayed in Fig. 2 exhibits impor-
tant temperature effects around T, ~ 1 for ions with
a few MeV per nucleon, an energy range typical of
heavy ions used in ICF. As expected, dE /dx is a
decreasing function of T.

The straggling number L' is given in Fig. 3. Its
large V limit (again a novel result) reads as

2
14 4T, Fipla) y ,
L' ~2€p |— ———In—+L,,,
Y, 3 Fipla) Ny o
9
where
172
. X?
Lm=4€1: —3—l
2 L
X 172 +1|=,
2 2
exp |4 L -1
PI%I3 | T,
(10)

reduces to kzTL when X /T, <<V'3/4. The above
computations for the first time allow us to design
accurate pseudoanalytic interpolating L and L' for-
mulas valid for any ¥V /Vp ratios.

The present results thus permit accurate predic-
tons for the stopping properties of hot and dense
matter in the weak coupling (RPA) approximation
when its kinetic-energy density is larger than its po-
tential one. It remains for us to design appropriate
models for the strongly coupled case (r; > 1), which
is of special relevance at the beginning of the
compression. However, preliminary calculations
show that the required large-k extension amounts
only to a few percent of modifications of the
present RPA quantities.
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