Solution of the Schrödinger equation for bound states in closed form

Edgardo Gerck~

Laboratório de Estudos Avançados, CTA, 12200 S.J. dos Campos, SP, Brasil

Jason A. C. Gallas* Departamento de Física da UFSC, 88000 Florianópolis, SC, Brasil

Augusto B. d'Oliveira Instituto de Física, Univ. Federal Fluminense, 24000 Niterói, RJ, Brasil (Received 16 December 1981)

A method to calculate the bound-state eigenvalues of the Schrodinger equation is presented. The method uses a new diagonal representation of the Hamiltonian. The variational principle is applied to this diagonal representation and yields closed-form expressions of the form $E_n = E(an+b)$ for the eigenvalues. Examples are presented for some quark potentials of current interest.

This work presents a method to calculate the eigenvalues of the Schrodinger equation

$$
-\frac{d^2\psi}{dr^2} + V(r)\psi = E\psi\tag{1}
$$

subject to the boundary conditions $\psi(0) = \psi(\infty) = 0$, where $V(r)$ may include the usual centrifugal term. The formal approach used here is similar to the standard variational technique. However, rather then using a trial eigenfunction we use a suitable discrete representation of the second derivative operator on a convenient expansion set. By doing so we will be able to easily diagonalize the Hamiltonian matrix corresponding to Eq. (1).

The convenient basis set, which we use to expand the d^2/dr^2 operator, is

$$
U = \{e^{-\alpha r}, re^{-\alpha r}, r^2 e^{-\alpha r}\}, \alpha > 0.
$$

This choice is partially motivated by the fact that a linear combination of the functions in U obey the boundary condition of the radial problem (1) at infinity. Having introduced U we ask the following question: For φ an arbitrary linear combination of the functions in U, is it possible to write $d^2\varphi/dr^2$ exactly as

$$
\frac{d^2\varphi}{dr^2} = p\varphi(r-q) + t\,\varphi(r) \;, \tag{2}
$$

a linear combination of the values of φ itself at only two points? The answer is positive and, following standard procedure,¹ we find the constants p, q, and \dot{t}

$$
p = \frac{2\alpha^2}{e}, \quad q = \frac{1}{\alpha}, \quad t = -\alpha^2. \tag{3}
$$

For later use we observe that the distance between the points at which the right-hand side of Eq. (2) has to be evaluated is

$$
\Delta r = 1/\alpha \tag{4}
$$

We proceed by using Eq. (2) to approximate Eq. (1) as

$$
-\frac{2\alpha_k^2}{e}\psi(r_{k-1}) + [\alpha_k^2 + V(r_k)]\psi(r_k) = E\psi(r_k) , \quad (5)
$$

where the index $k = 1, 2, 3, \dots$ refers to the partition of the coordinate space, as usual. Equation (5) can also be written in matrix form as $M\psi = E\psi$, where $\psi = [\psi(r_1), \psi(r_2), \ldots]^T$ and M is the bidiagonal matrix

$$
\begin{bmatrix} \alpha_1^2 + V(r_1) & 0 & 0 & \dots \\ -\frac{2\alpha_2^2}{e} & \alpha_2^2 + V(r_2) & 0 & \dots \\ 0 & -\frac{2\alpha_3^2}{e} & \alpha_3^2 + V(r_3) & \dots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} .
$$
 (6)

From the particular form of M it is seen that its eigenvalues are already located on the main diagonal. The eigenvalues are therefore given by

$$
E_n = \alpha_n^2 + V(r_n) \tag{7}
$$

where α_n is still an unspecified constant. This equation is a diagonal representation of the Hamiltonian of Eq. (1) , where *n* is the radial quantum number. The variational analog of Eq. (7) corre-

26 662 662 21982 The American Physical Society

sponds to the diagonalization of the Hamiltonian for a given value of α_n . In order to obtain the eigenvalues, we therefore apply the Rayleigh-Ritz principle to Eq. (7). First, however, since for a given α_n we already fixed r_n through Eq. (4), we have to find the functional dependence $r_n = r_n(\alpha_n)$. This is done by determining how the several r_k points are distributed in the coordinate space. With no loss of generality we can assume the points r_k to be given by some analytical discrete function, say, $r_k = f(k)$, $k = 0, 1, 2, \ldots$ The function $f(k)$ must satisfy

$$
0 \le f(0) < f(1) < f(2) < \cdots \tag{8}
$$

This property guarantees that the quotient $f(k)/[f(k) - f(k-1)]$, $k = 1,2,3...$ has a Laurent expansion of the form

$$
\frac{f(k)}{f(k)-f(k-1)} = ak + b + c/k + \cdots,
$$
 (9)

where the several a, b, c , etc., are constants. If we recall that $r_k = f(k)$, it follows from Eq. (4) that

$$
r_k = \frac{f(k)}{\Delta r_k \alpha_k} = \left[\frac{f(k)}{f(k) - f(k-1)} \right] \frac{1}{\alpha_k},
$$

$$
k = 1, 2, \dots
$$
 (10)

If one neglects the $O(1/k)$ contribution in Eq. (9), then $r_k \approx (ak + b)/\alpha_k$. The Rayleigh-Ritz princi $ple²$ requires the energy to be stationary with variations of α , i.e., $\partial E/\partial \alpha = 0$. This condition applied to \overline{a}

$$
E_n = \alpha_n^2 + V \left[\frac{an + b}{\alpha_n} \right] \tag{11}
$$

gives

$$
2\alpha_n + \frac{\partial}{\partial \alpha_n} V \left[\frac{an+b}{\alpha_n} \right] = 0 , \qquad (12)
$$

which must be solved for α_n .

Equations (11) and (12) are the main results of the present paper. For a given $V(r)$ the eigenvalues are obtained by solving Eq. (12) for α_n . Substitution of α_n in Eq. (11) then gives the desired eigenvalues as a function of the constants a and b .

The constants a and b in Eq. (11) are obtained by making the eigenfunctions satisfy the boundary conditions. To generate accurate eigenfunctions, one usually needs $\Delta r \ll 1$. However, this condition may conflict with the requirement $\Delta r = 1/\alpha$ of Eq. (4). We therefore use the full three-point representation of d^2/dr^2 in U, given by

$$
\frac{d^2\varphi}{dr^2} = u\varphi(r - \Delta r) + v\varphi(r) + w\varphi(r + \Delta r)
$$
 (13)

with $u = (1+\alpha \Delta r)e^{-\alpha \Delta r}/(\Delta r)^2$, $v = \alpha^2 - 2/(\Delta r)^2$, and $w = (1 - \alpha \Delta r) e^{\alpha \Delta r} / (\Delta r)^2$. Using this expansion we write Eq. (1) in matrix form as $T\psi = E\psi$ where now T is tridiagonal. Since we already know the functional dependence of $\alpha_n = \alpha(an + b)$ and $E_n = E(an + b)$, the matrix equation has only two unknowns: a and b . Using a continued fraction calculational approach³ we obtained a and b for the examples to be discussed below with an absolute error of less than 10^{-5} . An alternative approach is, however, self-evident: For any two eigenvalues E_i and E_i calculated by some numerical method one may set up a system of equation $(ai + b)$ and $(aj + b)$ and solve for a and b. To conclude, we apply the method to calculate eigenvalues for some potentials which are nowadays in evidence as possible models of quark confinement.

For the general power-law potential $V(r)=Kr^p$, $p > -2$ and $p\neq 0$, Eq. (11) gives (dropping the subscript *n* from α_n)

$$
E_n = \alpha^2 + K(an+b)^p \alpha^{-p} \ . \tag{14}
$$

From the condition that $\partial E/\partial \alpha = 0$ one obtains

$$
\alpha = \left[\frac{1}{2}Kp(an+b)^p\right]\alpha[...]^{1/(p+2)}.
$$
 (15)

Substituting this α in Eq. (14) brings

$$
E_n = \alpha^2 (1 + 2/p)
$$

= $(\frac{1}{2} Kp)^{2/(p+2)} \left[1 + \frac{2}{p} \right] (an + b)^{2p/(p+2)}$. (16)

This formula gives the eigenvalues as a function $E_n = E(an + b)$ of the constants a and b. For the

TABLE I. Comparison between the first five eigenvalues for the square-root and logarithmic potentials.

V(r)	n	Present results	Numerical ^a results	WKB ^a
	1	1.0443	1.0443	0.9778
	2	1.8474	1.8474	1.8251
ln(r)	3	2.2870	2.2897	2.2771
	4	2.5913	2.5957	2.5873
	5	2.8243	2.8299	2.8237
V r	1	1.8334		1.8117
	2	2.5506		2.5426
	3	3.0487		3.0465
	4	3.4475		3.4488
	5	3.7869		3.7909

^aTaken from Ref. 4.

TABLE II. Comparison of the eigenvalues calculated by the proposed method, in two different approximations, with the exact and WKB results for the linear potential $V(r) = r$.

$E(an+b)^a$	$E(an+b+c/n)^b$	Exact ^c	WKB ^c
2.3380	2.3381	2.3381	2.3203
4.0879	4.0880	4.0879	4.0802
5.5161	5.5206	5.5206	5.5161
6.7778	6.7868	6.7867	6.7838
7.9311	7.9444	7.9441	7.9422

^aFrom Eq. (18).

^bFrom Eq. (19).

'From Ref. (14).

cases with known exact solution $[V(r)=-K/r, Kr,$ and Kr^2 with $K > 0$] Eq. (16) reproduces the correct scaling laws with K and n . In all other cases, for which the exact solution is not known, its scaling coincides with the WKB scaling [compare with Eqs. (4.33} and (4.59) of Ref. (4)]. From the eigenfunctions, as described above, we obtain $a = 1$ and $b = 0$ (a = 2 and b = -0.5) for the Coulomb (harmonic) potential, as expected.

Motivated by the current interest in the squareroot⁵ and logarithmic⁴ potentials and also by the fact that no exact solution is known for them, we study their eigenvalues in detail. From Eqs. (11) and (12) follows

$$
E_n = \frac{1}{2}K \ln\left(\frac{2e}{K}\right) + K \ln(an+b)
$$
 (17)

for $V(r) = K \ln(r)$. We find $a = 1.6712$ and $b = -0.36853$ for $V(r) = Kr^{1/2}$ and $a = 1.5019$ and $b = -0.28330$ for the logarithmic potential, both $K > 0$. In Table I we show the first five eigenvalues for both potentials along with numerical and WKB results from Ref. 4.

Finally, we use the linear potential $[V(r)=r]$ to investigate the effect of the c/n contribution in Eq. (11), which has hitherto been neglected. From Eq. (16) it follows that

$$
E_n = 1.889 88(1.805 23n - 0.429 15)^{2/3} . \tag{18}
$$

With the c/n contribution also taken into account one obtains

$$
E_n = 1.889 88(1.814 25n - 0.456 19
$$

+ 0.018 03/n)^{2/3}. (19)

As is easily seen from Table II, the c/n term improves the eigenvalues. In general, note that the contribution to $E_n = E(an + b)$ from higher terms, i.e., $c/n + d/n^2 + \cdots$, is of the form

$$
E_n = E(an + b) + O(1/n)
$$
 (20)

and vanishes for $n \rightarrow \infty$. This allows the application of the Cauchy criterion² to estimate the relative accuracy of the eigenvalues. For example, the difference between $E(an + b)$ and $E(an + b + c/n)$ is a measure of the contribution from is a measure of the contribution from
 $c/n + d/n^2 + \cdots$. It is interesting to observe that the form $E_n = E(an+b+c/n+\dots)$ for the linear potential corresponds to the asymptotic expansion of the zeros of the Airy function, which is the exact result.⁴ By dividing the eigenfunction in odd-even symmetry classes the method can also be extended to the one-dimensional Schrodinger equation. The eigenfunctions as well as this extension will be discussed elsewhere.

- 3E. Gerck and A. B. d'Oliveira, J. Comp. Appl. Math. 6, 81 (1980).
- &C. Quigg and J. L. Roesner, Phys. Rep. 56, 169 (1979).
- 5H. F. Carvalho, R. Chanda, and A. B. d'Oliveira, Lett. Nuovo Cimento 22, 679 (1978).

^{&#}x27;Present address: Max-Planck Institut fiir Quantenoptik, Forschungsgelände, D-8046 Garching, West Germany. ¹R. W. Hamming, Numerical Methods for Scientists and

Engineers (McGraw-Hill, New York, 1973), Chap. 15.

W. Kaplan, Advanced Calculus (Addison-Wesley, Reading, Mass. , 1959).