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Solution of the Schrodinger equation for bound states in closed form
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A method to calculate the bound-state eigenvalues of the Schrodinger equation is
presented. The method uses a new diagonal representation of the Hamiltonian. The varia-
tional principle is applied to this diagonal representation and yields closed-form expressions
of the form E„=E(an+b) for the eigenvalues. Examples are presented for some quark
potentials of current interest.

2ap= q= —,t= —a1

a (3)

This work presents a method to calculate the
eigenvalues of the Schrodinger equation

+ V(r)Q=EQ
d 2g

dr

subject to the boundary conditions g(0) = l(t( oo ) =0,
where V(r) may include the usual centrifugal term.
The formal approach used here is similar to the
standard variational technique. However, rather
then using a trial eigenfunction we use a suitable
discrete representation of the second derivative
operator on a convenient expansion set. By doing
so we will be able to easily diagonalize the Hamil-
tonian matrix corresponding to Eq. (1).

The convenient basis set, which we use to expand
the d /dr operator, is

U=[e ', re ', r e 'j, a&0.
This choice is partially motivated by the fact that a
linear combination of the functions in U obey the
boundary condition of the radial problem (1) at in-

finity. Having introduced U we ask the following

question: For tp an arbitrary linear combination of
the functions in U, is it possible to write d tp/dr
exactly as

d =pq(r —q) +t q(r), (2)
dr

a linear combination of the values of y itself at only
two points? The answer is positive and, following
standard procedure, ' we find the constants p, q, and

For later use we observe that the distance between
the points at which the right-hand side of Eq. (2)
has to be evaluated is

hr=1/a . (4)

We proceed by using Eq. (2) to approximate Eq.
(1) as

22a
e(rk 1)+[~k+ V(rk)]0(rk) =~0(rk»

e

where the index k =1,2, 3, ... refers to the partition
of the coordinate space, as usual. Equation (5) can
also be written in matrix form as MP=EP, where

p=[g(r~), l((r2), . . .] and M is the bidiagonal ma-
trix

a, + V(r, ) 0
22a2

a2+ V(r2)

2ap
a3+ V(r3)

From the particular form of M it is seen that its
eigenvalues are already located on the main diago-
nal. The eigenvalues are therefore given by

E„=a„+V(r„),

where a„ is still an unspecified constant. This
equation is a diagonal representation of the Hamil-
tonian of Eq. (l), where n is the radial quantum
number. The variational analog of Eq. (7) corre-
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sponds to the diagonalization of the Hamiltonian
for a given value of a„. In order to obtain the
eigenvalues, we therefore apply the Rayleigh-Ritz

principle to Eq. (7). First, however, since for a
given a„we already fixed r„ through Eq. (4), we
have to find the functional dependence r„=r„(a„).
This is done by determining how the several rI,
points are distributed in the coordinate space. With
no loss of generality we can assume the points rk to
be given by some analytical discrete function, say,
rk=f(k), k =O, 1,2, . . . . The function f(k) must
satisfy

0&f(O) &f(1)&f(2) & (8)

f(k)
f(k) —f(k —I)

(9)

This property guarantees that the quotient

f(k)I[f(k) f(k ——1)], k =1,2, 3. . . has a Laurent
expansion of the form

with u =(1+aQr)e ~'/(Qr ), v =a —2/(Qr ),
and w =(1—ahr)e ~"/(hr) . Using this expansion
we write Eq. (1) in matrix form as Tg=EP where
now T is tridiagonal. Since we already know the
functional dependence of a„=a(an +b) and
E„=E(an+b), the matrix equation has only two
unknowns: a and b. Using a continued fraction
calculational approach we obtained a and b for the
examples to be discussed below with an absolute er-
ror of less than 10 . An alternative approach is,
however, self-evident: For any two eigenvalues E;
and EJ calculated by some numerical method one
may set up a system of equation (ai +b) and (aj +b)
and solve for a and b. To conclude, we apply the
method to calculate eigenvalues for some potentials
which are nowadays in evidence as possible models
of quark confinement.

For the general power-law potential V(r)=Krp,
p & —2 and p+0, Eq. (11) gives (dropping the sub-

script n from a„)
where the several a, b, c, etc., are constants. If we
recall that rk =f(k), it follows from Eq. (4) that E„=a +K(an+b)Pa &. (14)

f(k) 1

f (k) —f(k —1) ak
'

k =1,2, . . . . (10)
If one neglects the O(1/k) contribution in Eq. (9),
then rk —-(ak +b)/ak. The Rayleigh-Ritz princi-
ple requires the energy to be stationary with varia-
tions of a, i.e., BE/Ba=0. This condition applied
to

E„=a„+V
an +b

an

gives

From the condition that BE/Ba =0 one obtains

a=[ , Kp(an—+b) ]a[.. .]' 'r+ ' .

Substituting this a in Eq. (14) brings

E„=a (1+2/p)

(15)

(Kp)2/(p+2)1+ —(an+b)2p/(p+2)(16)
p

This formula gives the eigenvalues as a function
E„=E(an+b) of the constants a and b. For the

an +bBa„a„ (12)
TABLE I. Comparison between the first five eigen-

values for the square-root and logarithmic potentials.
which must be solved for a„.

Equations (11) and (12) are the main results of
the present paper. For a given V (r) the eigenvalues
are obtained by solving Eq. (12) for a„. Substitu-
tion of a„ in Eq. (11) then gives the desired eigen-
values as a function of the constants a and b.

The constants a and b in Eq. (11) are obtained by
making the eigenfunctions satisfy the boundary
conditions. To generate accurate eigenfunctions,
one usually needs hr &&1. However, this condition
may conflict with the requirement hr =1/a of Eq.
(4). We therefore use the full three-point represen-
tation of d /dr in U, given by

d g =up(r hr)+vp(r)+wp(r +h—r) (13)
dr

V(r)
Present
results

ln(r)

1.0443
1.8474
2.2870
2.5913
2.8243

1.8334
2.5506
3.0487
3.4475
3.7869

'Taken from Ref. 4.

Numerical'
results

1.0443
1.8474
2.2897
2.5957
2.8299

WKB'

0.9778
1.8251
2.2771
2.5873
2.8237

1.8117
2.5426
3.0465
3.4488
3.7909
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TABLE II. Comparison of the eigenvalues calculated by the proposed method, in two dif-
ferent approximations, with the exact and WKB results for the linear potential V(r) =r.

E(an +b)' E(an +b +c/n) Exact' WKB'

2.3380
4.0879
5.5161
6.7778
7.9311

2.3381
4.0880
5.5206
6.7868
7 9NAA

2.3381
4.0879
5.5206
6.7867
7.9441

2.3203
4.0802
5.5161
6.7838
7.9422

'From Eq. (18).
From Eq. (19).

'From Ref. (14).

E =—Kln —+Kin(an+b)28

K
(17)

for V(r) =K ln(r). We find a = 1.6712 and
b = —0.368 53 for V(r) =Kr and a = 1.5019 and
b = —0.28330 for the logarithmic potential, both
K & 0. In Table I we show the first five eigenvalues
for both potentials along with numerical and %KB
results from Ref. 4.

Finally, we use the linear potential [V(r) =r] to
investigate the effect of the c/n contribution in Eq.
(11), which has hitherto been neglected. From Eq.
(16) it follows that

cases with known exact solution [V(r) = —Klr, «,
and Kri with K & 0] Eq. (16}reproduces the correct
scaling laws with K and n. In all other cases, for
which the exact solution is not known, its scaling
coincides with the WKB scaling [compare with

Eqs. (4.33} and (4.59) of Ref. (4)]. From the eigen-
functions, as described above, we obtain a =1 and
b =0 (a =2 and b = —0.5) for the Coulomb (har-
monic) potential, as expected.

Motivated by the current interest in the square-
root and logarithmic potentials and also by the
fact that no exact solution is known for them, we
study their eigenvalues in detail. From Eqs. (11)
and (12) follows

E„=1.889 88(1.805 23n —0.429 15) (18)

With the c/n contribution also taken into account
one obtains

En = 1.889 88( 1 81425n 0 456 19

+0.01803/n ) (19)

As is easily seen from Table II, the c/n term im-
proves the eigenvalues. In general, note that the
contribution to E„=E(an +b) from higher terms,
i.e., c/n +d /n + . -, is of the form

E„=E(an +b)+O(1/n) (20)

and vanishes for n~00. This allows the applica-
tion of the Cauchy criterion to estimate the relative
accuracy of the eigenvalues. For example, the
difference between E(an +b) and E(an +b+c/n)
is a measure of the contribution from
c /n +d /n +. . . It is interesting to observe that
the form E„=E(an+b+c/n+. . . ) for the linear
potential corresponds to the asymptotic expansion
of the zeros of the Airy function, which is the exact
result. By dividing the eigenfunction in odd-even
symmetry classes the method can also be extended
to the one-dimensional Schrodinger equation. The
eigenfunctions as well as this extension will be dis-
cussed elsewhere.
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