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We develop and compare four expansions for line broadening in simple fluids. The
dressed-cluster expansions (DCE) express the line broadening in terms of the dynamics of
small clusters (absorber and p perturbers, p =1,2. . . ) and at the same time incorporate

properly the static p +1 particle distribution functions of the fluid; i.e., the effects of "in-

itial correlations. " The hydrodynamic expansions (HE) are perturbative in the line-

broadening interaction and express the broadening in terms of dynamical correlation func-

tions of the fluid. Each expansion involves also a renormalization procedure (partial
resummation in the appropriate expansion parameter). We use two types of resumma-

tion, in the time and frequency domain, denoted POP (partial time ordering prescription)

and COP (chronological time ordering prescription), respectively. All four expansions

(DCE-POP, DCE-COP, HE-POP, and HE-COP) when truncated at the qth order yield

the correct first q moments of the line shape and allow us to use well-known fluid corre-

lation functions in the calculation of collisionally broadened line shapes.

I. INTRODUCTION

The broadening of absorption spectral lines is
one of the most sensitive probes for dynamical in-

teractions in a variety of systems such as low-

pressure gases, liquids, and solids. ' The line

broadening of a two-level impurity in a fluid
(foreign broadening) or of a two-level fluid (self-

broadening) are usually treated using simple cluster
expansions which at low pressures reduce to the
binary collision approximation (BCA).' In this
limit the relevant microscopic information for the
line broadening is finally expressed in terms of
two-body dynamics (absorber and a single per-
turber). The BCA was extensively used in the
literature not only for low-pressure gases but even

for liquids.
The dynamics of fluids is usually treated using

the hydrodynamic equations of motion which may
be used to evaluate various correlation functions
such as the dynamic structure factor S ( k, co ). ' "
The phenomena of light scattering from fluids
(Rayleigh-Brillouin) are usually treated using the
hydrodynamic macroscopic equations. There is
therefore a difference in the traditional theoretical
approaches towards the treatment of the line
shapes in line broadening and light-scattering ex-
periments. The reason is that for ordinary line
broadening the absorption is a single molecule
property and the fluid is just causing the broaden-

ing. On the other hand, for light scattering the
phenomenon itself is caused by macroscopic densi-

ty fluctuations in the fluid. This is why the micro-
scopic BCA approach is traditionally used for the
former and the macroscopic hydrodynamic ap-
proach is used for the latter. In this paper we
wish to formulate the absorption line broadening in
fluids in a form which will allow us to express the
relevant information in terms of well-known corre-
lation functions of the fluid. %'e shall develop two
types of expansions. The DCE still uses the few-

body dynamics of small clusters but incorporates
the exact static density correlation functions of the
fluid. The hydrodynamic expansion HE is pertur-
bative in the interaction responsible for the line
broadening but allows us to use exact dynamical
correlation functions of the fluid which may be ob-
tained from hydrodynamics. The role of the static
distribution function of the fluid (sometimes re-
ferred to as "initial correlations" ) in line broaden-
ing experiments was recently given serious theoreti-
cal attention. ' ' Burnett, Cooper, and co-
workers' have developed a formalism which is
based on the reduced equation of motion for the
density matrix aimed at treating specifically these
effects. Ben-Reuven' had treated strong field phe-
nomena using similar methods. The present ap-
proach is based on standard many-body techniques
and uses a systematic resummed expansion for the
line shape. In addition to the considerable simpli-
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city of the present approach, it has the advantage
of expressing the line broadening in terms of stan-
dard correlation functions of the fluid. Conse-

quently we get an insight regarding the microscop-
ic information content of the line broadening and
we are able to exploit the considerable progress
made recently in the hydrodynamic evaluation of
these correlation functions' "' and use them in a
convenient way. We also make a simple connec-
tion to the macroscopic approach commonly used
in light scattering. Finally, the present theory is
directly applicable to the problem of ordinary line

broadening in liquids near critical points, where we

may use the known universal behavior of static and
dynamical correlation functions' to predict the
line broadening. At the moment there is some ex-

perimental evidence for a significant increase in the
linewidth under these circumstances. ' '

In Sec. II we present the basic model Hamiltoni-
an for line broadening in a fluid. In Sec. III we

develop the DCE whereas in Sec. IV we develop
the HE. Section V presents the analysis of the mo-
ments of the line shape and shows that a q-order
DCE or HE reproduce exactly the first q mo-
ments of the line shape. Section VI gives the lim-

iting case of the Markovian limit for both expan-
sions whereas Sec. VII presents the static limit.
Finally in Sec. VIII we give explicit expressions for
both expansions to lowest order and discuss previ-
ous works.

II. THE MODEL

We consider a fluid with N + 1 atoms contained
in a volume Q. Each atom has two states

~

a & and

~

b &. We shall assume that one atom denoted s in-

teracts with an external radiation field whereas the
other N atoms are bath perturbers which interact
with s and with each other. This model allows us

to treat foreign broadening. Self-broadening is a
special case when the s atom is identical with the
other bath atoms. The two relevant internal states
of the fluid are therefore

and

H. =T,+g T +g V,
' + g V. r

a a&y
(2')

Hb=T, +g T~+g Vb + g V,
a a a&y

(2")

Here T, and Ta are the kinetic energy terms of the
s and n particles. V,

'
(Q —Q, ) and V, r(Q —Qz)

are the interaction energies of the s and a, and the
a and y particles, respectively, all in the

~

a & state,
whereas Vb is the interaction potential of an s
atom in the

~

b & state with an a atom in the
~

a &

state. Q; are the Cartesian coordinates of i so that

$2 Q2
T;=—,, i =s,a.

2m; i)Q,.

cob, is the energy difference of
~
a, & and

~
b, &.

The interaction with the radiation field is via the
dipole operator D,

D =gp(Q, )( ~a&(b ( +)b &( a( ) .
a

The absorption line shape I(h) is given by

1I(h) = ——ImI (5),

(4)

where

I(h) = i J —drexp(iver)I(r)

and

I(r)=8(r)(D(r)D(0)& .

Here 6 is the detuning of the photon frequency co

from the two-level frequency co~,

and

4 =co—co~,

D (~)=exp(iH~)D exp( —iH7.),

(D(r)D(0) &
=Tr[D(r)D(0)p, ],

p, =—
~

a & exp( PH, )(a ~, —1

(8a)

(8b)

{8c)

(8d)

H= ~a &H, (a
~

+
~

b&(Q)b, +Hs)(b ~, (2)

where

a=1
(la) Z =Tr exp( PH, ), — (8e)

and

a=1

The total Hamiltonian of the system is

(lb)

I3=(kT) ' is the inverse temperature, and 8(r) is
the Heaviside step function (I9=1 for r & 0, 8=0
for ~ &0). For the sake of simplicity we shall
hereafter take p(Q, ~) = 1, i.e., it will be taken to be
independent on Q, . The inclusion of the Q depen-
dence of p is straightforward. We then have
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I (r) =exp[ —F(r)],
whereas the COP approach uses the ansatz

I(h)= 1

5—F(A)

(10)

It is clear that a low-order expansion of either F(~)
or F{A}in some parameter will yield an approxi-
mation for I(h) which will contain terms to infin-
ite order in that parameter. The POP and COP
forms are based on the exact reduced equations of
motion which any correlation function obeys'

for the POP and

dI (t)
dt

= —f drF(t r)I(r)—
for the COP, where

(13)

I(r)=Tr[exp(iH, r) exp( i—Hbr)p, ] .

The formulations developed in Secs. III and IV
for I(~) are based on some expansion parameter.
For the DCE this is the fluid density (n) and for
the HE this is the line-broadening interaction
strength (A. ). It is always advantageous in the cal-
culation of correlation functions to use some
resummation techniques which are based on an an-
satz regarding its functional dependence on the ex-
pansion parameter. This is done by expressing
I{~)or I(h) as a function of some quantity and
expanding the latter. We shall adopt in this paper
two approaches. ' The POP approach uses the an-
satz

X =(Q,P ). (15)

Equation (14) is valid both classically where Q, P
are classical coordinates, and quantum mechanical-
ly where Q,P~ are operators. (('ip+i should be dis-

tinguished from the bare cluster distribution func-
tion il)p+ i defined for a system with an absorber
and p perturbers which is commonly used in the
ordinary cluster expansions of line broadening:

0yp+i(X„Xi, . . . , Xp)

at the same time retain exact static information
about the fluid, i.e., n-particle static correlation
functions. The effects of the initial correla-
tions' ' are included in the present expansion in a
natural and obvious way. The advantages of such
an expansion are clear: It is easier to obtain static
information regarding fluids than to calculate the
dynamical correlation functions. In the mode-

coupling approach to fluid dynamics' one uses

static information to get dynamics near critical
points. The detailed derivation of the DCE is

given in the Appendix. We shall present here the
final results.

We define Iz(7) as the dressed p-perturber spec-
trum. It is calculated for a system consisting of
the absorber atom and p perturbers in a volume Q.
The "dressing" is reflected in the fact that for the
distribution function we use the reduced p +1 par-
ticle distribution function of the fluid

Pp + i(X& Xi Xz Xp )

=Trp+], Q p, {&„&~,. . . , &iv), (14)

where

F(b )= i f —drexp(iver)F(r) . (13') =exp[ PH,' +"(X„X—i, . . . , X )]IZ' +",

The names COP and POP signify that the di-

agrammatic expansion of F(A) involves only time-
ordered products of operators, whereas the dia-

grams of F(~) are not completely time ordered. ' ' '

We shall thus obtain four different expansions
(DCE-POP, DCE-COP, HE-POP, and HE-COP).
We should emphasize that F(r) and F(~) are obvi-

ously not the same and the relation between them
is straightforward but not simple.

III. THE DRESSED-CLUSTER
EXPANSIONS

The purpose of the DCE is to express the line
shape in terms of the dynamics of small clusters of
atoms (one perturber, two perturbers, etc. ' ' but

(16a)

Here the superscript (p +1) denotes that the sys-

tem contains only p +1 particles.
We thus define

Ip(r) =Tr[exp(iH, P r)exp( iHbP r)Pp+ —i] .

It is easy to see that Iz has the form (see the Ap-
pendix)

P
'

1Ip(r)=1+ g P Xq(r),
, , &-n

(18)

where

Z' +'—:Trexp[ PH,' +"(X„Xi—, . . . , X )] .

(16b)
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1I]——1+—g],0
2 1

I2 ——1+—y]+0
etc. Equations (19) may be inverted to yield

(19)

the qth contribution is of the (&) clusters of q per-
turbers. We thus have

write

(27)I(A)= 1 1

&+ g (nq/q!)J, (&)
q=1

Jq(h) will now be obtained by comparing Eqs. (23)
and (27) and using Eq. (6). We thus have

'k

7]——Q(I] —1),

X2 ——0 [I2 —2Ii+1),

IJP 1 IP ] + 2 IP

(20)

,
Jq(b, )~ k=0

00 n~
i f—dr exp(i b r) 1+ g —g (r)

q)

In the thermodynamic limit we consider N per-
turbers, where N~ 00, Q~ ce, and N/0 is finite.
We then have

where

1 n~

qt
' (21)

Nn= —.0 (22)

n~I(r)=1+ g Xq(r) .— {23)

Upon substitution of Eq. (21) in Eq. (18) we get in

the thermodynamic limit:

00 ~ 0

J](A)= —i drexp{ih~)X&{~),
0

00 ~ ~

J2(b, ) = i f d—r

exp(iver)X~(r)

0

+2J]{5)/5,

(29a)

{29b)

J3(b, ) = i f —dr exp(i hr)X3(r)
0

+6J, (h}J (5)/5 —6J,{5)/5, (29c)

(28)

In Eq. (28) all 6 should be understood 5+i@
where e~O. This guarantees convergence of all

the necessary integrations. Similar to the POP, we
see from Eq. {18)that J& will depend on 7& where
q'(q. We then have

Equation (23) is an important intermediate stage
for the DCE expansions and is the starting point
for the POP and COP partial resummations.

Using the POP [Eq. (10)] we introduce the an-

satz

I(r) =exp[ —F(r)]
n~

=—exp g —,Jq(r)
q1

(24)

n~ 00—Jq(r) =1n 1+ g —Xq(r)
q=] q'

Using (25), Jq will be expressed in terms of gq,
where q'(q, i.e.,

(25)

J](~)=1],
J2(~) =1'2—1],
J3 ( z) =X3—3727]+2Y]

etc. Turning now to the COP scheme (11) we

(26a)

(26b)

(26c)

Jq may be obtained by equating the expansions (23)
and (24) term by term, i.e.,

etc. In concluding this section we note the follow-

ing:
(1) Equation (24) with (26) is our final result for

the DCE-POP expansion, whereas Eq. (27) togeth-
er with (29) is our final result for the DCE-COP
expansion.

(2) J~ and Jz are given in terms of the p-
perturbers spectrum I&. The pth order DCE are
obtained by keeping the sums in Eqs. (24) and (27)
to pth order. This should be done in practice by
calculating the spectrum of our absorber and p per-
turbers Eq. (17) using the static distribution func-
tions (14). We then get X] Pp J] Jp and

J~ . Jz are obtained from P&
- .

X~ using Eqs.
(26) and (29).

(3) As is clear from Eqs. (26) and (29), Jz and Jz
are expressed as different combinations of

Xq q &p. The usefulness of the POP and
COP expansions will depend on the statistical
properties of our system which will determine
which expansion will converge more rapidly. The
exactly solvable Anderson-Talman model is de-
fined by taking V, ~=O in Eqs. (2), i.e., we assume
that the bath atoms do not interact with each other
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I(r)'" '=exp[nJ)(r)] . (30)

but only interact with the absorber. For this
model it is easy to show that J~(~) with q )2 van-

ish identically and we have the exact result:

Usa Vsa Vsa
b o

We may then write

exp( —iHbv) =exp( —iH, r)

(32)

The COP expansion in this case is much more
complicated and includes terms to all powers in

density. where

7
Xexp+ ik—f , dr~ U(r~), (33)

0

IV. THE HYDRODYNAMIC EXPANSIONS

U(v. ) =exp(iH, r) U exp( —iH, r),
and where

(34)

A, U =Hb H~ =g U—' (31)

where

We shall now develop an alternative expansion
for I(~), this time in terms of dynamical correla-
tion functions of the fluid. The latter may then be
evaluated using hydrodynamic techniques. '

These techniques usually apply for long wavelength

phenomena but it was shown in several cases that
they may be useful even for microscopic proper-
ties. Let us define the perturbation responsible
for the line broadening:

7
exp —i k d~] U(~] )

0
7

=1—i k d~] U(~])
0

7 7l
+( iA.—)' f dr, f dr, U(r, )U(r, )+

(35)

Upon substituting Eq. (33) in Eq. (9) we get

7
exp+ —i k d~] U(~] ) p, . (36)

For the subsequent manipulations let us intro-
duce the following moments:

mz(r~, . . . , rz)—:(U(r~)U(rz) U(rz)) =Tr[U(r~)U(rz) U(r&)gr+~(X„X~, . . . , Xr)] . (37)

We note that since U is a sum of single perturber terms [Eq. (31)], the product U(r~) U(rr ) may depend
on p+1 particles at most (s+p perturbers). This is why we may write Pz+~ instead of p, in the definition
of mz. Alternatively if we introduce the Fourier transform

U(Q) =g exp(ikQ) Uk,
k

we have

mz(r~ rz, . . . , Tr) g Uk Uk U~ (exp[ik&[Q, (r&) —Q (r&)]] exptikz[Q, (rz) —Q~ (rz)])
kik~ . . k

C]C2 ' '
Cp

expjik [Q,(r ) —Q (r )]] )

(38)

(39)

or, equivalently,

mz(r~, rz . , rz)= y .. f fdr, dr&U(r, )U(rz) U(rz)
al a

X (5[Qg(r() —Q~ (T))—r(]5[Qg( ) —TzQ~z(rz) —rz]

X 5[Q, (r& ) —Q~ (r& ) r& ] ) . — (40)

We note that m
~

——( U) is time independent. Without loss of generality, we may include ( U) in cob„ i.e.,
use the transformation

co~~cobz+ ( U), (41a)
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U-U —(U), (41b)

so that

m] ——0.
Using Eqs. (36), (37), and (41) we get

7 7 7 7 72

I(~)=1+(—iA) dw] d~2m2(~] ~2)+( —iA) dv] de d~3m3(w], 72, 73)+
0 0 0 0 0

Equation (42) is the starting point for the POP and COP resummations. Using the POP ansatz

(41c)

(42)

I(r)=exp g ( i A)q—K (r, )

q=l

we get, upon comparing (42) and (43) term by term,

K] ——0,

(43)

(44a)

7
K2 —— d~]

7
K3 ——f dr)

K4 —— dw]

C$7 2m 2(7 ] 72)
0

fT] T2

d~2 de m3(7])72)~3),
0 0
7] T2 73

0
dr2 dr3 dr4[mq(rt tr2, r3, rq) m2(r—t, r2)m2(r3 r4)

0 0

m2(—r„r3)m2(rz, r4) mz(—r, ,r4)m2(r2, r3)],

(44b)

(44c)

(44d)

etc. , whereas when using the COP ansatz

b, + g ( ik)qKq(h—)

q=l
we get

Kq(i), ): i f drexp(iver)Kq(r)

K](~)=0, (47a)

(47b)

(47c)

(47d)

(48)

k2(g) =m2(~, 0),
7

K3(7.) = d7]m3(1 7] 0),
0
7 I

Kq(r) = dr) dr2[m4(r, r), r2, 0)—m2(r, r~)m2(r2, 0)],
0 0

etc. The various terms in the expansions of Kq and Kq are given by the closed expressions which may be
obtained from the corresponding reduced equations of motion, Eqs. (12) and (13),'

OO T

g ( iA)qKq(r)—=ln ' I+ exP+ ilfdr~U(r~) ——.l)
q=l

eo

g ( —iA )qKq(r) =(—i&)' U(r)exp+ —i hfdf, Q,U( )rU(0)),
q =2

(49)

where we introduce a projection operator Q by its
action on an arbitrary operator 3,

QA—:A —Tr(Ap, ) . (50)

Equation (43) with (44) is our final result for
the HE-POP expansion, whereas Eq. (45) with (46)
and (47) is our final result for the HE-COP expan-

I

sion. In both expansions we are able to express the
relevant information for the line broadening in
terms of mz [Eqs. (37), (39), and (40)]. The latter
may be expressed as standard correlation functions
which appear in fluid dynamics. ' "' Therefore,
one may use, e.g., hydrodynamic (small k) approxi-
mations for their evaluation.
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V. THE MOMENT ANALYSIS

1 00

I(b, )=—Re f drexp(iver)exp[ —F(r)], (51)

where

The spectral moments of the line-shape function
I(h) provide a convenient means for evaluating the
accuracy of various approximations and are widely
used in comparing experimental and theoretical
results. ' In this section we shall analyze the
significance of the DCE and the HE using the mo-

ments of the line shape. We shall start with the
POP expressions. Both expansions (24) and (43)
may be written in the form

oo

F(—r) = g J—q(r)
tq=l q

(52a)

for the DCE, and

F(r—) = y ( —1'A, ) K (r)
q=l

(52b)

F(r)=F(0)+F(0)r+ f dr~(r r~)F—(r~),
~ ~ ~

where F, F, etc., denote time derivatives. Since
F(0)=0 we have using Eqs. (51) and (53)

(53)

for the HE. For the sake of convenience let us use
the identity

oo

I(5)= —Re f dr exp(i Ar)exp —f dr, (r r~ )F(r~ )—
0

(54)

5~6—iF(0),

and where

eo nq
F(0)= —g —Jq(0)

q.

(55)

(56a)

where we have included F(0) in 6, i.e., we modify
it slightly,

d F(0)
dr

~ d F(0)
M3 ——i

3 7

d4F(0) 1 d2F(0)
dr 2 dr

(59c)

(59d)

(59e)

for the DCE, or

(56b)F(0)= —Q ( i k)~Kq—(0)
q=l

for the HE. Note that iF(0) is real so that the
transformation (55) is merely a static shift of the
line. We now introduce the moments of the line
shape:

It is clear that M& depends only on the first p
derivatives of F(~) at ~=0. An important proper-
ty of the functions Jq and Kq is that their first
q —1 derivatives at v =0 vanish. For Kq this is ob-
vious from Eqs. (44), since Kq involves q integra-
tions in time. For Jq this is shown in the Appen-
dix. We thus have

dJ (0) d J (0) dq-'J (0)
dr dr dH

Mk= f dhI(h)h, k =0, 1,. . . . (57)
(60a)

Using the properties of Fourier transforms we have

Mk ——( —i)k

d

dK (0) d K (0) d 'K (0)
dr dr dH

—'

(60b)
~ ~

X exp — d~](r —~l )F(~l )
0 x=0

Using Eq. (58) we get

M =fdb, I(b, )=1,
M( ——fdhI(h)b =0

(58)

(59a)

(59b)

[the reason for the transformation (54) and (55)
was to make M~ ——0],

Equations (60) guarantee that both expansions (24)
and (43) when truncated at the qth order reproduce
exactly the first q moments of the line shape. This
arises since, by virtue of Eqs. (58) and (60), Jq and

Kq with q' & q cannot contribute to the first q mo-
ments.

Turning now to the COP expansion we should
bear in mind that by construction the q-order COP
or POP expansions reproduce I(~) exactly up to q
order in the expansion parameter. That is both q-
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order COP and POP expansions reproduce the
DCE expression [Eq. (23)] up to the term 0 (n e)

and differ only in the subsequent terms O(n +')
~

Similarly for the HE they both reproduce Eq. (42)

up to O(A.~) and differ only by O(A,&+'). Equa-
tions (60) show that terms O(n~+') or O(V+') do
not contribute to the first q moments of the line

shape. We have thus obtained the very important
result that all four expansions, DCE POP (-Eq.
(24)J, DCE-COP IEq. (27)J, HE POP (-Eq. (43)J
and HE-COP (Eq. (45)J when truncated at qth ord
er reproduce exactly the first q moments of the line

shape.

We shall now write explicit expressions for the
various moments. Using Eq. (59) we have

and

Mo ——1,
M] ——0,

(61a)

(61b)

Mp ——( Ut'), p )2 . (61c)

[The easiest way to get (61) is to use the HE-POP
expansion, but Eqs. (61) hold for all the four ex-

pansions. ] In order to express Eqs. (61) in terms of
well-known functions of the fluid let us introduce
the following static correlation functions

n2(r/, rp)=N(5(r] —g )5(rp —g, )),
N]

n, +i(ri, . ',+i)= &5(ri —Q. )5(r2 Qp) ' ' '5(ran+i —Qs)&
(N —p)f

np+](f ] p2 ~ pp 0)
gp+](f ],I'2, . . . , fp )=0

np

Note that gp+] are dimensionless.
We now separate each Mp according to the number of different perturbers,

M~=(U ) =g (U(Q, —Q )U(gg —Qp)) =g (U (Qg —Q ))+ g (U(Q, —Q )U(Q, —Qp))
aP a a+P

=N fdr, dr2U (r, r2)(5(g—, r, )5(Q rz))— —

(62)

(63)

+N(N —1)fdr~dr2dr& U(r~ r3) U(r2 r3)(5—(g,—r3)5(—Q 1 ( )5(gp r2) ) (64)

Making use of the definitions (62) and (63) we have

M2 n fdr——U (r)gz(r)+n fdr, drzU(r, )U(r, )g (r3&, )r.2 (65a)

(65b)

(65c)

Similarly we have for the higher moments

M3 n fdr ——U (r)g2(r)+n fdr~dr2[U (r~)U(r2)+U (rq)U(r~)]g3(r~, rq)

+n fdr, dr2dr3U(r, )U(r2)U(r3)g4(r, , r2, r, ),
M~=n f U (r)g2(r)dr+ +n fdr~dry drz[U(r~)U(r2) U(r~)]gz+, (r, , rz, . . . , r~) .

In general, Mp will depend on all the q-body static
correlation functions gq with q (p+ 1 (p perturbers
and the absorber atom).

In this limit the line shape assumes a simple al-
most Lorentzian form. We shall derive here the
expressions for the line shape in this limit using
our four expansions.

VI. THE MARKOVIAN LIMIT

The Markovian limit is the important case when

all the relevant correlation functions of the perturbers
vanish much faster than the observed broadening.

A. The POP line shapes

Within the POP formalism the Markovian limit
is obtained whenever the typical time scale of F(~),
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r„ is much shorter than the observed broadening

I, i.e.,

(66)
~ ~

This implies that the short-time behavior of F(r) is
irrelevant for our line shape. For times r && r, we
then have

f T ~ ~

dr)(r —r))F(r))
0

00 ~ ~ 00 ~ ~

dr~F(r~) — dr~r~F(r~ )
0

F(h) =-F(0)=6' —E'I

We then have

~here

—6+II =g —J (0)
q=i &.

for the DCE, and

(72)

(73)

(74a)

:—(i 5'+ I )r+g .

Here,

(67)
i), '+—i I—:g ( —ik)~K~{0)

q=2
(74b)

(68a)

and
00 ~ ~

g =g'+i g"—= dr rF(r) .

We then have

r
2

cos'g
(a —a )'+r'

+ 2 2
sing" . (69)

(a —a )'+ r'

for the HE.
Upon comparing Eqs. (68) and (71) with (74) we

note that to lowest order [O(n) for the DCE and
O(A2) for the HE] then I =I and b, '=6'. In the
Markovian limit, therefore, the COP and POP for-
mulations yield the same result for the width and
shift of the line. There is, however, still one
difference: the g factor which appears in the POP
and not in the COP and which is responsible for
slight asymmetry of the line, even in the Markovi-
an limit. '

1I(5)=—
~ (6—6') +I

(70)

To summarize, in the Markovian limit the line

shape is given by the three parameters I, 5', and
g" which are given in terms of F(r) [Eqs. (68a)
and (68b)], where

~ ~ nq. .
F(r) = —g ,

Jq(r)—
qf

for the DCE, and

(71a)

Typically, g is quite small so that the line shape
(69) is basically a Lorentzian with a slight asym-

metry caused by the dispersive term (the second
term in the brackets). In the extreme case when

0 we have

VII. THE STATIC LIMIT

N

1+, (r) p, (75)

where

The static limit holds when the motions in the
fluid are much slower than the observed line

broadening. This is the reverse of the Markovian
limit and requires I r, &1. Formally we get this
limit by neglecting the kinetic energy of the Ham-
iltonian H, and Hs in Eq. (9). We then have

I (r) = (exp{i A. Ur)p, )

F(r)= —g ( ik)~K (r)— ,

q=]

for the HE.

(71b)
f,~(r) =exp(i U'~r) I . — (76)

Equation (75) may be expanded according to the
number of perturbers:

B. The COP line shapes
)( p n)(+frrp rp r ) )

Within the COP formulation we obtain the Mar-
kovian limit by ignoring the frequency dependence
of F(h) in (11), i.e., by set Upon introducing the ansatz

(77)
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oo nPI (r) =exp g Jz—(r)P (78)
where

Xi(r)=ATr[exp(iH, ' 'r)exp( iH—b r)Pp 1—] .

and comparing term by term with (77) we get

Jz(r) =fdry

draff„

fza&(ri rz, r, ),
(79)

where ~z are the Ursell distribution functions

Here H, and Hb
' include one perturber and the

system atom. Denoting the eigenstates of H, and

Hb by
~

a) and
~
P), respectively (not to be con-

fused with the notation of Sec. II where Greek
letters denoted the various perturbers) we have

and

~ 1 =n](rl )

M 2
——n2(r] r2) —n](r] )n](r2),

(80a)

(80b)
Xi(r) =11' &~

l P) &&
l
~')(y2)a'a

aP

X [exp(irp ~) 1]—. (83)

~k=nk To lowest order in density (ordinary cluster expan-
sion)

k —1

r &( & &)~k t( t+1— "k) ~

(80c)

(Pp) ~(Pp) =P(~)&

and we get

(84)

VIII. EXPLICIT EXPRESSIONS FOR
THE DCE AND HE TO LOWEST ORDER

%'e shall now evaluate the lowest-order approxi-
mation for the line shape using the four expansions
developed in the previous sections. Starting with

the DCE to lowest-order COP or POP we need

only P](~). The DCE-POP line shape becomes

Xi(r)=QQP(a)
~

&a ~P)
~

[exp(irp~itr) —1] . (85)
aP

If we wish to evaluate (82) using classical mechan-

ics we first rewrite it as

7
Xl(1 ) =0 Tr exp+ i d—r& U(r|) P2 —1 . (86)

p

Classically we set
I" "'(6)= i f —drexp[ibr+nXi(r)], U(r)= U(g(r)

~
Qp, Pp), (87)

I (g)(coP)
in f dr e—xp(i hr)X, ( r)

p

whereas the DCE-COP line shape assumes the
form

(81a)

(81b)

(88)

We then have

which is obtained by solving Hamilton's equations

using H, and where Qp and Pp are the initial
values of the relative coordinates and momenta of
the perturber and absorber. Also,

Tr~ d pdPp .

7
X f(r) =n fdgpdPp exp i f dry—U"(ri ) —1 g2( gp )1 (Pp )

p

where I (pp) is the Maxwell distribution of momenta:

F'(Pp ) =4~ (2mkT) exp( —Pp/2mkT)

In the static limit we have

(89)

(90)

g'"(r)=n fdQ jexp[iUr] —1]g2(g) .

In the Markovian limit the line shape is given by Eq. (69) where the parameters are given by

b, +i I =n f dr Xl(r),

r)"=n f drrXi(r),

(91)

(92a)

(92b)
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where quantum mechanically

X,(r) =g (a
~
P) (P

~

a')(Pp)~ ~~~pexp(iro~pr),
aP
a'

or classically

X)(1 ) = —n fdgpdpp[( U (r) ) +iU (r)] exp i—f dr~ U*'(r~ ) g2(QO)r(po)

(93a)

(93b)

(94a)

whereas the DCE-COP line is

We note again that the only difference between the POP and COP Markovian perturbative results is the
presence of g in the former. For the COP g=0 and 6 and I are the same as for the POP. Equations (81)
were recently analyzed and compared for simple model systems, both quantum mechanically (using Eq. 85)
and classically (using Eq. 86).

We shall now turn to the HE. To second order in A, (and setting A, =1), the HE-POP line shape is

I' '(5)= i f—drexp(iver)exp —f dr~(r r~)( —U( z&) U( 0))
0 0

I (g)(coP)
b, +i f drexp(iver)(U(r)U(0))

where

( U(r) U(0) ) =m2(r0) =n 0 Q Uk Uk (exp[ikg (r)]exp[ —ikg, (r)]exp(ik'Q )exp( —ik'Q, ) )
kk'

(94b)

+n f), g UkUk (exp[ikg (r)]exp[ —ikg, (r)]exp(ik'Q~)exp( ik'Q, ))—. (95)
kk'

We thus see that ( U(r) U(0) ) includes two- and three-particle correlation functions. There is one limit in
which ( U(r) U(0) ) may be further simplified. This is the Brownian particle limit in which s is much
heavier than a so that we may ignore the time evolution of Q, in (95) and set Q, (r) =Q, (0). In this case
we have

( U(r)U(Q) ) =g g Uk Uk (exp[ikg (r)]exp(ik'Q~)) .
a, P kk'

Using the definition of the dynamic structure factor' "
oof dr exp( ivor) g e—xp[ikg (r)]exp( ik'Q~) ) =S—(k, co)5k k

277 a, P

we have

( U(r)U(0)) = f drop ~

Uk
~

S(k, co)exp(ivor) .
k

(96)

(97)

(98)

(99)

so that

Equation (98) when substituted in Eqs. (94) results in our lowest-order HE approximations for the line
shape. The relevant information which enters Eq. (98) is the interaction potential Uk, and S(k,co) which is
well known from other experiments (neutron scattering, light scattering, etc. ' "' ).

In the Markovian limit the line shape assumes the form (69), where

r+i i).'= f "
dr( U(—r) U(0) )

=f dr f drop
~

Uk
~

S(k,cu)exp(ivor)=i f drop ~
UI,

~

S(k, co)
0 QO

k
oo

k N+lC

I =m lim g ~
Uk

~

S(k,co),
Q)—+0

(100a)
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and

6'=PP f drag ~
Ug

~

k

Also,

00 00 00
2 BS(k, )i)'+ir)"= f der(U(r)U(0)) =i f dr f dcog

~

Ui
~

' exp(ivor)
k

aS(k, ) 1

8 +

(100b)

(101)

so that

r)'=PP f drag
~

UI,
~

k

(102a)

and

a)~0 k BN
(102b)

As already noted in Sec. VI, the only difference be-

tween the POP and COP in this limit is that
g'=g" =0 for the latter. I and 6' are the same.
Equation (100a) was recently derived by Madden
and Hills' who treated line broadening in liquids
near the critical point. Our present result is a gen-

eralization of their result. In concluding this sec-
tion we note the following:

(1) Equation (98) when substituted in Eqs. (94)
gives us two expressions for the line shapes which
are not limited to the Markovian limit.

(2) The POP expression predicts a certain asym-
metry of the line even in the Markovian limit [Eq.
(69)]. This asymmetry was found experimentally
in dilute gases. 27 We have derived here Eqs. (102)
which give that asymmetry (due to g") in terms of
S(k,co).

(3) The formulation of Sec. IV may be used to
derive higher-order corrections to Eqs. (81) and

(94) which will involve higher-order density corre-
lations of the fluid.

(4) The simple result (98) is limited to the
Brownian limit (heavy absorber and light per-
turbers). Therefore it cannot be used as it stands
to treat self-broadening. Consequently, the
analysis of Madden and Hills' who used Eq. (98)
to treat the self-broadening of 02 and N2 near crit-
ical points if fraught with some difficulties and the
more elaborate correlation function (95) should be
used instead of (96).

(5) Equation (98) provides a simple connection
between light-scattering and line-broadening experi-
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APPENDIX: THE DRESSED-CLUSTER
EXPANSION

We shall now expand our line-shape function

[Eq. (9)] in dressed clusters. To that end we shall

first partition the Hamiltonian (2) as follows:

H, =Hp+ V,

Hb =Hp+ V,

where

Ho =T,+gT—
(Ala)

(A1b)

(A2)

v=g v."+g v. r,
a a&y

(A3a)

I

ments. In the former, one directly probes S(k,co)

since the density fluctuations are responsible for
the light scattering. Here we get that in the limit
of weak coupling (second-order HE) then the line

broadening of a heavy two-level impurity in a fluid
is basically monitoring the same function S(k,co).
We should note that for the sake of clarity in the
presentation, space degeneracy was not introduced
explicitly in this paper. It may be easily included
at the final equations by considering ~a) and

~
b)

to be manifolds of degenerate levels and adding ap-
propriate summations over these levels. When this
is done different tensorial components of S(k,co)

may contribute to the line-broadening and light-
scattering spectra. In the Markovian limit the line
is not sensitive to the details of S(k,co) as only the
co=0 component contributes to I and g"in Eqs.
(100) and (102).
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and

V—=g V,'+ g V. r .
a any

(A3b)

T V(rl) V{r2) . V(rk)

= V(rk ) V(rk l ) ' V(rl ),
rl)r2. . )rk . (A7b)

Let us introduce the positive and negative time-
ordered exponentials as follows:

exp( —iHbr) =exp( —iH pr)

Xexp+ —i drl V(rl), (A4a)
0

T

exp(iH, r) =exp i drl V(rl } exp(iHpr),
0

(A4b)

exp(iH, r)exp( —iHb r)
T—= T+ T exp i dr] V{rl)

0

T

Xexp —i drl V(rl)
0 (A8)

To proceed further we shall now introduce the
functions:

rk is a permutation of r'l . rk. We thus
have

where

A {r)=exp(iHpr)A exp{ —1'Hpr) A = V V

T

exp+ —i drl V(rl )
0

T

dr, V(r, )+(—i)'
0

7 r,
X f dr, f dr2V(r)) V(r2)+

(A5)

(A6a)

fjk(r)=exp i dr~v "(r~)
0

Xexp —i drl VJ (rl) —1,k

where j and k run over the absorber as well as the
perturbers j,k =s, 1 . X. In addition let us in-
troduce a third ordering operator T~. When T*
operates on a product of V and V terms rearranges
them such that all V are to the left and all V to the
right. We can now define:

T

exp i f dr&v(r~)

7
=—1+i drl V(r])

0
7 71

+i f dr~ f dr2V(T )2 V( r)) +

(A6b)

T=T T+T'

so that
N+l

exp(iH, r)exp( iH~r) =T g— [1+f (r)] .
j,k=l

(A9)

(A11)

To simplify our further manipulations let us de-

fine the time-ordering operators T+ and T as
follows: T+ (T ) when operating on a product of
Vs ( V) at different times orders them in order of
decreasing (increasing) times from left to right,

p+]
I (r)=Tr T g [1+f1,(r)]p,

j,k=1
(A12)

Using these definitions we may rewrite Eq. (17) in
the form

T+ V(r] ) V(r2) ' ' ' V(rk )

= V(rl ) V(r2) ' ' V(rk ), (A7a)

Equation (A12) is our starting point for the cluster
expansion. To proceed further we shall consider
the series of p perturber spectra Ip,

Ip ——1,
1I, =I + (f„&))2(X„X,) & =—1+—X, ,0

I2 ——1+[ (f, I pp(X, &X, ) & + (f,2/2(X„Xg ) & ]

{A13a)

{A13b)

+[&fsifszA(Xs i»2)&+&fsifizA Xs i 2 &+&fs2fi2(()3(Xs»)»2)&+&fsifs2fi2A(Xs»i, 2)&]

2 1=1+—X]+ 272 .0 (A13c)
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Here Q is the volume and Pp+ ~(X„Xt, . . . , Xp) is

is the reduced P+ 1 particle distribution function

[Eq. (14)],

(ftjfkt ' ' ' pp+])):—TTr,
& p(ftjfkt ' ' pp+t) .

by

(A15)

(A14)

In Eq. (14) each term containing k different atoms
requires them to be close and is thus O(1/0 ). It
is easy to see that the general term IP will be given

Equation (18) is identical with (A15).
Since each Xk involves a product of at least k

factors f and since f (0)=0 it is clear the the first
k derivatives of Xk at ~=0 vanish. This property
is used in the moment expansion (Sec. V).
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