
PHYSICAL REVIEW A VOLUME 26, NUMBER 1 JULY 1982

Dynamics of Davydov solitons
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After modifying Davydov s original equations for the a-helix soliton to include ten ad-
ditional dipole-dipole coupling terms and to represent helical symmetry, a numerical

study predicts that such solitons should appear under normal physiological conditions.
This conclusion is supported by the assignment of a recently measured laser-Raman spec-

trum of a metabolically active cell to internal vibrations of the soliton. Analytical studies
of continuum approximations to the numerical model provide additional insight into the
soliton dynamics.

I. INTRODUCTION

A soliton is essentially a one-dimensional object
that maintains dynamic integrity by balancing the
effects of nonlinearity against those of dispersion, '

and polymers are real dynamic systems that exhibit
both dispersion and nonlinearity. Thus one should
not be surprised to find solitons on polymers, and
several recent investigations indicate that this may
indeed be the case in such diverse structures as P-
phase polyvinylidene fluoride (PVF2)„, polyace-
tylene (CH„), and deoxyribonucleic acid (DNA).
Closely related are the charge-density-wave solitons
found on certain one-dimensional conductors.

Perhaps the earliest suggestion for a "polymer
soliton" was made by Davydov in an attempt to
solve an outstanding riddle of biochemistry. To
understand the background note that (i) biological
energy is released in units of about 0.49 eV by hy-
drolysis of adenosine triphosphate (ATP) to ADP,
and (ii) a basic biological resonance is the double-
bonded carbon-oxygen (or amide-I bond) which has
a quantum energy of 0.205 eV (1650 cm ') and is
found in every peptide group of every protein. The
amide-I bond appears of interest, therefore, as a
"basket" for storage and transport of biological en-

ergy. It has not been seriously so considered be-

cause the linewidths of typical amide-I absorption
peaks imply a lifetime (due to dipole-dipole cou-
pling between amide-I bonds) of the order of 10
sec, i.e., much too short for normal biological
mechanisms. Davydov's idea is that this lifetime
can be markedly increased on an a-helix protein
(see Fig. 1) in the following way:

trap the bond energy and prevent its dispersion.

This interaction can be represented symbolically as

emphasizing that the two effects acting together
constitute a dynamically self sufficient entity
From the chemist's perspective it can be described
as a mobile region of conformational change

The analytical theory of this soliton has been
discussed in a number of papers by Davydov and
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(a) introduction of localized amide-I bond energy
induces longitudinal sound waves on the helix,'

(b) longitudinal sound acts as a potential well to
FIG. 1. a helix (redrawn from Ref. 9 with permis-

sion of the author).
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his co-workers from which it is seen that anhar-

monicity in the longitudinal hydrogen bonds plays
a major role in effecting the mechanisms (a) and

(b) described above. In a previous publication it
has been shown that, for a given level of total bond

energy, there is a threshold level of anharrnonicity
below which the soliton will not form. ' An
order-of-magnitude analysis indicated that
hydrogen-bond anharmonicity in a real a helix is
about the right magnitude to support soliton for-
mation. In this paper a more precise test of this
question is presented.

It should perhaps be emphasized that there is lit-
tle doubt about the ability of an a helix to support
and conduct solitons. That is not the issue. The
question is whether a normal amount of biological
energy is sufficient to form a soliton. Since 0.49
eV is released by ATP hydrolysis under normal

physiological conditions and a quantum of amide-I
bond energy is 0.20S eV, two quanta are taken as a
biologically feasible amount of soliton energy. An
important parameter in this study, P& is the change
in amide-I bond energy (N m) per unit extension
(m) of the hydrogen bond. (Throughout this paper
the term "hydrogen-bond anharmonicity" is used
for 7&.) Values for Xi can be calculated in two en-

tirely different ways.

(i) Find the value of X~ for the hydrogen bond in

a real a helix. This has not yet been done. But a
self-consistent-field (SCF) calculation" for a simi-

lar bond in a formamide dimer (see Fig. 2) yields

the value' X~ ——0.34)(10 ' N.
{ii) Using the best possible numerical model of

an a-helix protein and the above-mentioned two
quanta of total amide-I bond energy, calculate the
value of X~ at which solitons form.

Calculation of item (ii) is the main aim of this paper.
I do not wish to suggest that the solitons

described here are the only ones to be found in bio-
logical systems. Quite the contrary. Indeed,
Davydov has described a mechanism similar to
that considered here for the transport of electronic
charge, ' and a "topological" soliton on DNA is
described. Also Bilz et a/. have recently discussed
biological applications of a soliton that involves
the interaction of sound waves with electric polari-
zation. ' The present mechanism is one of several
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FIG. 2. Formamide dimer (I =2.99+0.12 A).

to which biochemists should be giving serious at-
tention.

Section II presents a summary of the various
systems of equations that are discussed. These in-
clude Davydov's system (D) and two approximate
systems [the Zakharov system (Z) and the non-
linear Schrodinger system (NLS)], which are con-
venient for certain analytical studies. In addition,
a modified Davydov system {MD) has been
developed to ensure accuracy in the numerical
determination of P~. In Sec. III the various physi-
cal parameters for MD are discussed and recorded,
and results of the threshold computation for Xi are
presented. Section IV shows how the threshold for
soliton formation can be obtained from the NI.S
equation and the "inverse, scattering transform" of
soliton theory. In Sec. V a soliton perturbation
theory is applied to the Z system to clarify certain
aspects of the soliton dynamics and structure. Of
particular importance is the study of interactions
between the soliton and various modes of mechani-
cal vibration. In Sec. VI it is concluded that soli-
tons should be expected to appear in the biological
functioning of a-helix protein. This conclusion is
followed by a listing of several speculations that
have appeared in the literature concerning the pos-
sibility of observing a-helix solitons in real experi-
ments. The last item in this list is the most impor-
tant. It came to my attention after this manuscript
had been completed that the laser-Raman spectrum
of metabolically active cells in the range below 200
cm ' is precisely explained from previously calcu-
lated internal vibrations of the a-helix soliton with
no "adjustment of parameters" whatsoever. This
observation indicates that Davydov solitons play a
functional role in vital processes. Certain auxiliary
discussions (the structure of the wave function
used in MD, details of the perturbation analysis,
and a discussion of the effects of extra dipole-
dipole coupling terms) are relegated to appendixes
in order not to impede the flow of presentation.

II. EQUATIONS TO BE CONSIDERED

In this section several systems of equations to describe the dynamics of an a helix are displayed and dis-
cussed. We begin with the most elaborate system developed by Davydov and his co-workers'; this is also



580 ALWYN C. SCOTT 26

the system that was previously studied numerically in Ref. 10. We shall refer to it as the "Davydov" (D)

system:

dana
=[Eo+W+X](p„+] —p„] )]a„—J(a„+] +an ]a)

dt

+ (]]n,a+1+]]n,a—] ) +&2[(pn +],a Pna)~n + ],a+(Pva Pn —l, a)~n —],al ~ (2.1a)

d2
w(—P.+i, 2P.-+P.-], ) = &](I&.+], I'- I&.-], I')

dt2

+&2[]]nn(]]n+],a ]]n —],a)+(]]n~],a ~n ],a)]—anal ~ (2.1b)

2

W= —, g M
" +w(P„—P„]a)'

dt
(2.1c)

To appreciate these "D-equations" in detail, the
reader should study them in relation to a chemical
diagram of the a helix such as Fig. 1. In addition
to the basic helix with the valence-bonded se-

quence:
R R R

I I I

etc. —N —C —C —N —C —C —N —C —C —etc.
II II II
0 0 0

(where the R's are residues that specify the detailed
character of the protein), three almost longitudinal
"spines" can be seen with the sequence:

dipole-dipole coupling between a particular amide-I
bond and those on adjacent spines in the same unit

cell.
Two parameters in the D equations remain to be

discussed: X~ and Xz. If both are zero, (2.1a) de-

scribes dispersion of amide-I bond energy that is
uncoupled from the propagation of longitudinal
sound which is governed by (2.1b). As is ex-
plained, in Ref. 17, . these terms relate the change in

energy of an amide-I bond to longitudinal exten-
sion of the helix. Thus in (2.1a) the term

x](p„+] —p„)

etc. . . . H —N —C=O H —N —C=O . . etc.

AM I DE —I HYDROGEN
BOND

The hydrogen bonds of these three spines hold the
protein in its helical form. They have a length'
I =2.9+0.1 A which is about equal to that of the
formamide dimer shown in Fig. 2.

In the D equations, the index n specifies a par-
ticular unit cell counting longitudinally along the
helix, while a specifies a particular spine and takes
the values 1, 2, or 3. Thus the pair (n, a) picks out
a single peptide unit and amide-I bond. The terms
in (2.1) have the following significance: a„ is the
probability amplitude for occupation of the
amide-I bond located at (n, a); Eo is the quantum
energy of an amide-I vibration; p„ is the longitu-
dinal displacement of the peptide unit located at
(n, a); M is one-third of the molecular weight of a
unit cell; w is the linear restoring force of a hydro-
gen bond; 8' is the total energy of the longitudinal
sound; J is the dipole-dipole coupling energy be-
tween a particular amide-I bond and those ahead
and behind along the same spine; and L is the

gives the change in energy of the amide-I bond at
(n, a) caused by stretching of the helix between
n + 1 and n; and

&z(pn+], a P.,a)on+ i,a—
gives the change in longitudinal coupling between

(n, a) and (n + l,a) (i.e., change in the J term)
caused by stretching of the helix between n +1 and
n. These terms are derived from interaction con-
tributions to the total Hamiltonian of the form

~in] =&]g &nanna[ (Pn+],a Pna) +(Pna Pn —],a)]

(2.2)

~(2)
in] ~2 g (Pna Pn —l,a) (]2n~n ]a+On ] anna),

(2.3)

thus corresponding terms are introduced into
(2.16b).

The interaction parameter X2 is easily computed
because the longitudinal dipole-dipole coupling en-

ergy (J terms) is inversely proportional to the cube
of the longitudinal distance (d) between adjacent
peptide units. Thus'
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Jd
Total longitudinal coupling =—

(d+5,P)'

=' —J+—hP
3J
d

and therefore

3J
X2=—.

d
' (2.4a)

For J=7.8 cm ' (Ref. 19) and d =4.5 A (Ref. 16)

Xp ——10 ' N. (2.4b)

As was noted in Sec. I,. the interaction parameter

X& has been calculated for the hydrogen bond of a
similar molecule' shown in Fig. 2 as

X)——34X10 ' N. (2.5)

a
p (x-

clx

the D system reduces to

iA, +A~ = —k)XpA,

(2.6)

(2.7a)

p ', p„=kzx(
I
A

I

—')—
c

(2.7b)

Here
I
A

I

~ is the longitudinal density of bond
quanta (on all three spines), X—=X~+Xq, c is the
longitudinal sound speed, and k

&
and kz are con-

stants that are determined from the energetic

Thus the terms involving Xq are of minor impor-
tance in the dynamics of system D. The strategy
in this paper is to keep Xq at the value given in
(2.4a) and determine the threshold level of X~ at
which solitons form. This threshold value for X&

will then be compared with the value given in (2.5).
Before leaving D, we note that a film of soliton

formation on this system has been prepared by Eil-
beck under the assumption X&

——Xz. This film
gives a dramatic confirmation of the results dis-
cussed in ReF. 10: the threshold for soliton forma-
tion, robustness of the soliton with respect to noise
in the sound system, and bond-energy dispersion
below soliton threshold.

Numerical study of D (Refs. 10 and 20) shows

that several unit cells are included in a single soli-
ton. Thus it is interesting to consider a distributed
approximation to D where the discrete longitudinal
index n is interpreted as a continuous space vari-
able x. Then with appropriate normalizations ' '
and defining

soliton speed:—sc (2.8)

and introducing the further normalizations:
t =r/c, x =g/c, A =A /c, and p =p/c, (2.7)
reduces to the nonlinear Schrodinger (NLS) equa-

tion

k)kpX
(A, +Ag ——— IA I

A,
(1—s )c

(2 9)

which can be studied using the inverse scattering
transform method of soliton theory. ' ' ' Such
calculations are sketched in Sec. IV, but here it is
convenient to notice that the critical value of the
interaction parameter (X,) is proportional to (c),
and since sound speed is inversely proportional to
the square root of M (the molecular weight of a
single repeating unit along the helix), we expect

X, ~M (2.10)

In pursuing numerical studies of D beyond those
reported, ' it was observed that additional dipole-
dipole interaction terms increase the critical level
of the interaction parameter (Xj,) at which soliton
formation occurs. This is a serious error because
the aim of the numerical study is to see whether

X~, is greater than the computed value of X~ given
in (2.5). Thus it was necessary to include enough
terms of dipole-dipole interaction so that X&, is in-
sensitive to the introduction of additional terms.
The details of determining how many extra terms
are "enough" are discussed in Appendix A, but,
briefly stated, it was necessary to add ten addition-
al coupling terms to (2.1a). Furthermore, (2.1)
does not represent a true helical structure, but
rather "disks" (indexed by n) connected by three
"springs" (indexed by a). With both of these
changes, (2.1a) takes the modified Davydov (MD)
form

parameters of the problem. These equations are
called the "Zakharov" (Z) system because they first
arose under that name in the context of plasma
physics. ' The Z equations clearly show the nature
of the "region of conformational change" described
in Sec. I. Localized bond energy (

I
A

I
) acts as a

source of longitudinal sound in (2.7b). This sound

(p) serves as a potential well in (2.7a) to prevent
dispersion of bond energy.

Since the solitons of D move slowly with respect
to the speed of longitudinal sound, ' the p„ term in
(2.7b) is only a small fraction of the p term. De-
fining
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dna
i% = [Ep+0+X~(p„+~ —p„~ )]a„—J(a„+~ +a„~ )

dt

+X&[ n + l, a(Pn + l, a Pna) +an —l,a(Pna Pn —l,a) ]

+LFr +NFz+PFz+ QF&+RFz +SF++TFr+ UFU+ VFy +XI+ ZFz (2.11)

There were no changes made in (2.1b).
The term "LFI" in (2.11) differs from the corre-
sponding term in (2.1a) to account for a helical
structure. Thus

~na=L (an a+]+Qn a—])+ ' ' '

in (2.1a) is changed to

ilia„]——L(a„&+a„&3)+. . .

i Aa„z L(a„3——+a„~)+

i%a„3——L (a„p+a„+) ))+

(2.12)

ia [
=1,

The terms on the right-hand side of (2.12) are indi-
cated symbolically as LFz in (2.11). The struc-
tures of the ten additional coupling terms in (2.11)
are listed in Appendix A.

The "0"that appears in the first line of (2.11)
emphasizes one further modification of (2.1a). As
derived by Davydov et al. ,

' the system D is sub-

ject to the constraint

which implies that only a single quantum of
amide-I bond energy is present in a soliton. How-
ever, as was noted in Sec. I, hydrolysis of ATP to
ADP under normal physiological conditions
releases about 0.49 eV of free energy which is
more than twice the amide-I vibrational quantum
energy (0.205 eV). Thus it is of interest to consid-
er the possibility that a soliton contains two quanta
of amide-I bond energy, or more generally that

g /a„(~=N. (2.13)

A modification of Davydov's fundamental wave
function that allows this more general case is
described in Appendix B. An effect of this modi-
fication is to remove the "8' term" from the first
line of (2.1a). In the numerical studies, however,
no difference was observed in the dynamics of P„
and

~ a„~ upon removal of 8'. This is to be ex-

pected since 8' is approximately constant and con-
tributes only to a phase advance of a„. The whole
question is more aesthetic than practical.

III. NUMERICAL OBSERVATIONS OF THRESHOLD

For numerical studies it is convenient to write (2.11) and (2.1b) in the normalized form

' ]/2

x10 ' [(10' X))(8„+), —8„) )&„+(10'Xg)
d~ A w

& [8n pl ann+ 1,a 8n —l, a~n —l, a 8na(~n p 1 a ~n —I a)l ]

' 1/2

+ — [ J(~n+t, a+~n i,a)+L—FI. + ' ' ' +ZFz]
1 M

(3.1a)

d 8„ —(8„+)a —28„+8„) ) = [(10'X))((A„+) ~' —(A„) ~')

+(10"Xg)[&.' (&, +ia &. i),+—~na(~.,+ia~n ia),l],
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where

ana =~na exp( —iEot /fi),

P„=B„,X 10

(3.2a)

(3.2b)

19 and R through Z are computed as indicated in
Ref. 25.

The boundary conditions required A„=O and
B„=Ofor n = —3, —2, —1, n,„+1,n,„+2,
and n,„+3,where n» is the total number of
unit cells considered to be in the molecule. The in-
itial conditions were

in units of meters,

r=t&w/M . (3.2c)

w =19.5

in units of N/m, thus
1/2

=0.99' 10- 'M

(3.3)

(3.4)

in units of sec.
As was mentioned previously, X2 is set at the

value given in i2.4bi, while X& is left as a variable

parameter.
The dipole-dipole interaction terms are given in

Table I where J through g are obtained from Ref.

TABLE I. Energies for dipole-dipole interactions.

Thus (3.2a) absorbs the fast phase advance of the
amide-I bond amplitude, (3.2b) measures longitudi-
nal displacement in units of 0.1 A, and (3.2c) mea-

sures time in units of &M/w sec.
For the results presented here, M was taken as

the average mass of a repeat distance in myosin
from rabbit skeletal muscle; thus M =114.2)(
mass of proton. The spring constant for the hy-

drogen bond displayed in Fig. 2 has been computed

by Kuprievich and Kudritskaya' as 21 N/m.
Considering that the hydrogen bonds in a helix are
oriented 22' away from the longitudinal direction,
we take

I
~oi I

'=
I ~or I

'= I,
All other IA„ I

~=0,

All B„~=O

(3.5)

at time r=0. From a physical point of view, this

means that one quantum was introduced into each
of the first two amide-I bonds at the initial time.
This seems reasonable from a chemical perspective;
it also leads to the most natural soliton formation
from two quanta.

A typical example of the numerical output is

displayed in Fig. 3. Here n,„=200, which corre-

sponds to the 1000 A of a typical myosin molecule

in skeletal muscle. On the upper scale, a soliton is

seen emerging from the background of bond ener-

gy. On the lower scale, sound energy is divided

into two components: A which is locked into the
motion of the soliton, and B which is induced by
the initial conditions and travels at (unit) sound

speed.
Computations to determine the threshold level of

X~ for a soliton to form are plotted in Fig. 4. Here

again n,„=200 and r=400. For g& (0.3)(10
N the response is essentially that of a linear disper-
sive system. As 10' X& is increased from 0.3 to 0.4
(see Fig. 5) a soliton forms, and as 10' 7& is in-

creased above 0.6, an immobile conformational
change appears at the origin. Thus we find a
"window" for soliton formation when X& lies in the
range

Term Energy (cm ') Energy (computer units)

0.35x10-"(X,&0.6@10-"N . (3.6)

J
L
N

R
S
T
U
V
X
Z

7.8
12.4
3.9
1.8
1.0
0.64
0.48
0.39
0.20
0.16
0.12
0.091

0.145
0.231
0.073
0.034
0.019
0.012
0.0089
0.0073
0.0037
0.0030
0.0022
0.0017

0.2 ——

0.025

Bond
Energy)'

I I
I I I

Sound
EnergySOUND AREA P,

0 200

FIG. 3. Bond energy and sound energy.
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FIG. 4. Threshold calculation at ~=400.

The value of X~( =0.34X 10 ' N) computed by
Kuprievich and Kudritskaja' lies just on the sill

of this window.
At Xi ——0.4X 10 ' N the soliton speed is —, of

the sound speed, which, in turn, is (w/M)' times
the length of a unit cell (4.5 A) or 4.55)& 10
cm/sec. Thus

se =1.7X10 (3.7)

N
0
C

is

Ms

0.2-
K
LJJ

IJJ

Ozo
CO

5'o )bo )ho
UNIT CELLS (n)

FIG. 5. Expanded threshold calculation at v =400.

in units of cm/sec. It is important to observe that
the design of protein mechanisms involving soli-

tons need not rely on happenstance to ensure that
the actual level of hydrogen bond anharmonicity

gi) lies within the above-mentioned window for
soliton formation. Appropriate cross linkages, for
example, in the "coiled-coil" configuration of two
a helices so often found in motile tissue, provide
the option of increasing the effective value of M by
a significant factor and thereby, through (2.10), de-

creasing the critical level of 7& for soliton forma-
tion.

Next it is interesting to take a closer look at the

structure of the soliton. Figure 6 displays some

computations on a molecule of 100 unit cells
(n =100) with initial conditions as in (3.5) and

Xi ——0.4X 10 ' N. In addition to the total bond

energy,

9'=2X10-" (3.8)

in units of sec.
Finally in Fig. 7 we consider the dynamics of a

molecule over a time scale long enough to observe
reflections from the ends. Initial conditions are as
in (3.5), 7& ——0.4X 10 ' N and there are 100 unit
cells (nm, „=100). During the time 0&~&270, a
well-developed soliton propagates to the right.
During the time 270& ~& 540 a pulse travels to the
left but its solitary-wave character becomes gradu-
ally dissipated. For times greater than about 540,
the bond energy is distributed over the molecule in
an almost completely chaotic manner. Numerical
experiments with molecules of different lengths
show that soliton dissipation is dominated by in-
teraction with the tail. Thus in general the soliton
can be viewed as a "critically damped" oscillator

that portion located on each of the three spines is
plotted versus n for various times v. While the to-
tal energy propagates uniformly as a solitary wave,
the individual spine energies are oscillating in am-

plitude and position with respect to the sum. At
~=150—152 energy is maximum on spine No. 1.
From 158—162, it is maximum on spine No. 2 and
from ~=164—168 it is maximum on spine No. 3.
At ~=170, spine No. 1 has recovered its status as
maximum. This oscillatory behavior has a period
of about 2(h or, from (3.2c),
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~170

0.2

LLI

CIZ0 0I

0
40 60 80

UNIT. CELLS (0)
}00

FIG. 6. Propagation on individual spines.

with a period H, expressed in seconds, as

~=(O.54' 10-")n .„. (3.9)

IV. ESTIMATION OF THRESHOLD
AND INITIAL SOLITON SPEED

"What exactly is a soliton?" is a question often
asked and up to now the dictionary does not pro-
vide an answer. To the purist a soliton is a
solitary-wave solution for one of the several dozen
systems that can be completely integrated via the
inverse scattering transform (IST) method. Ap-
plied scientists, however, often use the term for
solitary-wave solutions of a dynamic system that is

(4.1)

whereupon (2.9) takes the standard form

i4.+kg= —214 I
'0

As P(g, r) evolves according to (4.2), the eigen-
values A, of the associated linear problem

(4.2)

"close" to some completely integrable ideal. It is
in this latter sense that the entities discussed here
are called solitons, and a completely integrable
ideal is the nonlinear Schrodinger NLS equation
(2.9) displayed in Sec. II.

To appreciate what we can learn about the soli-

tary wave described in Sec. III from study of NLS,
it is convenient to introduce the transformation

2(1—s )c

kik2X

(4.3)
a,

' —e' —a&

are independent of time. Furthermore, the soli-
ton solutions of (4.2) are uniquely related to the
bound-state eigenfunctions of (4.3). For initial
conditions

20 40 60 80
IJNIT CELLS (n)

IOO

(4 4)

(4.5)

N, 0 &4&p
N, —p&4&—0

III &p

which are a continuum approximation to (3.5) it
10was shown that bound-state eigenvalues of (4.3)

are upper half plane (UHP) roots in the A, plane of

mp cotmp =i (Ap+N),
FIG. 7. Reflection of soliton from end. where
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m 2 g2+~2gp2 (4.6)
al insight into the soliton dynamics. It is con-
venient to write (2.7) in the normalized form

Solitons appear in the solution to (4.2) as zeros of
(4.5) move into the upper half plane: thus at the
threshold for soliton formation, A, is real. This im-

plies that the left hand side (lhs) of (4.5) is real
while the right hand side (rhs) is pure imaginary,
so the critical values of A, for soliton formation are

(2j+1), j=0, 1,2, . . .
2 2p

and the corresponding soliton speeds are

sj ——4A,J .

(4.7)

(4.8)

V. PERTURBATION CALCULATIONS

In this section the Zakharov approximation to
the MD equations are analyzed to obtain addition-

It was shown' that the speed of the first soliton,

so, is very close to the peak velocity of a solution

of the linear system i/, +/I=0 initialized by (4.4)

which dominates below the threshold for soliton

formation. The computations reported in Ref. 10
gave a value for so about twice as large as that ob-

tained from numerical study of the corresponding
Davydov (D) system because (4.2) does not repre-

sent the dispersion associated with the discrete na-

ture of D.
Figure 4 shows that for the MD system, the first

soliton appears again with about the speed of the
linear subthreshold response. But (4.7) predicts a
"soliton window" in which the threshold for the
second soliton is three times that for the first,
while Fig. 3 shows this ratio to be less than 2:1.
Also (4.7) indicates that the speed of the second
soliton should be three times that of the first,
while Fig. 4 shows it to be stationary, pinned near

n =0.
In summary, then, the following points can be

made concerning the usefulness of NLS for under-

standing the behavior of MD:

(1) NLS predicts a threshold for formation of a
first soliton which is in order-of-magnitude agree-

ment with that observed on MD.
(2) The speed of this first soliton is better calcu-

lated from analysis of the linear equation obtained

by setting 7& and X2 equal to zero in (2.1a).
(3) NLS predicts multisoliton formation as is ob-

served on MD, but the speed is completely wrong:

si ——3so for NLS while s&
——0 on MD. Further-

more NLS fails to predict the eventual demise of
the first soliton as is observed on Fig. 4.

iA, +A —pA =0,
ptt p~—(

I
A—

I

')
(S.la)

(5.1b)

A most useful discussion of the properties of Z' is

given by Gibbons et al 2s from which we read that
conserved quantities are

P= —, f [i(AA„' —A'A, )+2pV]dx,

&= f (~ A„~'+p~ A~'+-, p'+-,'V')dx, (5.3)

N=f iAi dx,

(5.2)

(5.4)

where V is a "hydrodynamic flux" that is related
to the sound variable by the conservation law

p, + V„=o.

(5.1) has a solitary wave solution

Ao(x —st)
A (Ao, s) = Ao sech

[2(1—s 2) ]'~2

2
. sx s' Ao

Xexp i ———— t
4 2(1—s 2)

(5.5)

fA~fP=
1 —s

With the definition

tn =—AD[2(1 —s )]
the solitary wave has conserved quantities

N =2m,

I' =ms+ 2m s

3(1—s )

1 2 s (5s —1)H= —,ms +
6(1—s )

(5.6a)

(5.6b)

(5.7)

(5.8)

(5.9)

{5.10)

Consider next the effect of applying initial con-
ditions at t =0. It is convenient to note that if
(5.1b) written as

(5.11)

1 1p= G(x —st) — G(x —t)
1 —s2 2{1—s)

0 for t&0
F(x t) for t & 0

then a solution is
I

p(x, t)= —, f f, F(x', t')dx'dt'.

Now suppose that the sound system is driven by a
solitary wave of the form F(x,t) =G (x st); then—
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G(x+t) .1

2(1+s)
(5.12)

T

$1+2m /3
ln

( 1 2) i/2

—16 at+ const. (5.17)

iA, +A~ —pA =0,
pa p —( IA'I ) = 'xpi—

(5.13a)

(5.13b)

and find (see Appendix C) that soliton speed and
mass are modulated according to

P~s+P m = ——,ams,

H s+H m = ——,ams

(5.14a)

(5.14b)

where expressions for P(s, m) and H(s, m) are
given in (5.9) and (5.10). It is important to note
that"

H, =sP, ,

which, together with (5.14), implies

m =0.

(5.15)

(5.16)

Thus either of (5.14) can be integrated to obtain

The response consists of a component locked to the
solitary wave plus right and left traveling com-
ponents at the sound speed. This behavior is also
seen in the computations on MD shown in Fig. 3.
Component B of the sound energy travels to the
right at sound speed, while component A is locked
to the soliton.

To this point no mention has been made of dissi-

pative processes affecting the soliton. Two of
these that must be considered are: (i) losses from
the sound system, and (ii) losses from the bond-

energy system. The approach taken here is to
develop a perturbation theory that is inspired by,
but not limited to, a true soliton-perturbation
theory, because the Zakharov system does not
have an inverse scattering transform method and
therefore is not, in the pure sense, a soliton system.

The analysis proceeds as follows. From Eqs.
(5.7—5.10) it is clear that the speed (s) and the
"mass" (m) of an isolated solitary wave [Eq. (5.6)j
will remain constant on the unperturbed system
(5.1). Adding a structural perturbation of order e
to (5.1) induces secular behavior in the first-order
(order e) correction to the solution. This secularity
can be eliminated by choosing appropriate (order e)
expressions for the time derivatives s and m, and it
is just these time derivatives that determine the or-
der e dynamics of the solitary wave. The details of
this approach are described in Appendix C, but the
results are easily stated.

Energy loss from the sound system. To consider
this effect, we augment (5.1) to

For s~ &&1 (for solitons studied numerically in this
paper s =9/64)

—16at
s =so exp

3+2m
(5.17')

where so is the soliton speed at time t =0.
It is shown in Appendix C that (5.16) holds for

any perturbation of the sound system; it does not
depend on the special form of dissipation chosen in
{5.13b).

Energy loss from the bond system In th. is case
we augment (5.1) to

iA, +A~ —pA =iPA, (5.18a)

(5.18b)

whereupon the modulation equations for s and m

are

P~s+P m = —2Pms, (5.19a)

m
H, s+H m= —P ms — . (5.19b)

{] 2)2

The algebraic signs in (5.19b) can be appreciated if
{5.19) is written in the form

P = 2PP,„, — (5.19a')

H = 2P(H,„+H;—„,),
where

(5.19b)

P,„=—, f (AA —A'A)dx,

H,„=f [A„['dx,

H;„,= f piAi dx.
H;„, is negative; that is what holds the solitary
wave together.

In the special case s =0, (5.19) reduce to

(5.20a)

(5.20b)

(5.20c)

m = —2Pm, (5.20d)

which implies an exponential decay of bond energy
with a time constant of I/2P. This is a reasonable
assumption since, as Davydov, Eremko, and Ser-
gienko have shown, ' the decay time for bond ener-

gy in an isolated soliton is quite long.
Coupling between spines. As a further exercise

with the perturbation theory, consider an approxi-
mation of the a helix in which a system like (5.1)
is used to describe propagation on each of the three
spines and coupling between spines is included as a
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perturbation. Thus we consider the system

iA~, +A~ pg~=a(A~+, +A~+2),

p, „p—.„—(
I
A~ I

')~ =0,
(5.21a)

(5.21b)

where a=1,2,3 and the sums on a are "modulo
three" (i.e., 2+2=1, etc.). Calculating e from the
J (longitudinal coupling) and the L (transverse cou-

pling) term 6 in (2.1) gives a=0.033. From the
perturbation theory one obtains (to order e)

P)+P2+P3 ——0

H)+H2+H3 ——0 .

(5.22a)

(5.22b)

Thus the soliton components on the three spines

can be viewed as elastically interacting mass
points. As previously noted from Fig. 6, the
period of the corresponding oscillation is 2X 10
sec.

/+~op =~oyo(r)2 2

where

2=

(5.23)

(5.24)

and k (mp) are the effective spring constant (mass)
of this mode. As a soliton passes by, the mode
will be driven by a function of the form

Loss to additional mechanical modes. An impor-
tant contribution to energy loss from the sound

system will be stimulation of additional modes of
vibration not included in the MD system that was

studied numerically in Sec. III. Let us consider
one of these modes which is described by the
dynamic equation

within a unit cell of the a helix. The time dura-
tion of a soliton is T =qd/sc, where q is the num-
ber of unit cells in a soliton, d is the length of a
unit cell, and sc is soliton speed. Sound speed
c =d~w/M, thus

' 1/2

copT =
S W mp

(5.26)

Since we expect M)mp and w&k,

NpT) s
(5.26')

Furthermore —,kYp will be less than the full soliton
energy U, so

4
LU

& 4H + exp n+—
U s s

(5.27)

Estimating roughly q =5 and s =0.35 given
hU/U & 10 ' . Thus energy loss to optical modes
will not be an important mechanism for energy
dissipation.

Energy loss to "acoustic" modes (i.e., those that
involve bending, twisting, or rotation of long sec-
tions of the a helix) could lead to cooT & I and
therefore substantial energy loss as computed from
(5.25). It is in just such situations that the soliton
may be supposed to do useful work, but one should
note from (5.16) that the "a"mechanism described
here permits dissipation of only that portion of the
total energy that is stored as kinetic sound energy.
The arithmetic is as follows for total bond energy
B and total sound energy S, expressed in joules:

B=NEp

yp(t) = Yp sech (t/T)

and it is straightforward, though somewhat te-
dious, to calculate the increase in vibrational ener-

gy of the mode. It is

=3.28N X 10

S=—M +w(P„—P„ i )
1 dPna 2

2 dt

(5.28)

hU = kYoF(cuoT), —
8

(5.25)
w=—(sound area) X 10 (5.29)

where

F(copT) = (cop T) coth N pT —tanh —copT

For cop1 ) 1, it is a very good approximation to
write

b U= 2/kYo(rooT) 'exp( ncooT) .— (5.25')

Consider first the implications of these results
for "optical" modes, i.e., those that take place

in joules where "sound area" is the cross-hatched
region indicated in Fig. 3. Thus the percent of to-
tal energy that is carried as sound energy is

X 100=0.04% .S
B+S (5.30)

In the dynamics described here, only the kinetic
component of this sound energy will be dissipated
as the soliton slows to a stop. Other mechanisms
must be supposed to make use of the main portion
of soliton energy.
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It should be emphasized that the conclusions
drawn from perturbation analysis of (5.1) hold only
for an isolated solitary wave. The dissipation ob-

served in Fig. 7 for ~& 270 is probably caused by
the interaction of the solitary wave with its tail.
Further discussions of the propagation of solitons
in a dissipative and noisy environment can be
found in publications of Davydov and his co-
workers. '

VI. CONCI. UDING DISCUSSION

The primary aim of this research has been to de-

cide whether it is reasonable to expect Davydov
solitons to appear in real a-helix protein. Two fac-
tors contribute to this determination: the amount

of energy to be transported by a soliton and the
level of anharmonicity in a longitudinal hydrogen
bond of a helix. Since ATP hydrolysis generates
about 0.49 ev of free energy under normal physio-
logical conditions, it is assumed that two (0.205 ev)
amide-I quanta initialize an energy pulse. To com-

pute the required level of hydrogen bond anhar-

monicity (X&) it was necessary to modify Davy-
dov's original equations to include ten additional
dipole-dipole coupling terms and to represent heli-

cal symmetry. With these changes soliton forma-
tion was observed for X»X&, ——0.35 X 10 ' N.
This value is very close to the value

X~ ——0.34X10 ' N calculated independently for a
similar hydrogen bond in the formamide dimer by
Kuprievich and Kudritskaya. ' Furthermore, di-

mensional arguments show that

X), ~M

where M is the mass of a unit cell of protein; so
cross linkages, which can be expected to increase
the effective value of M, should lower X&, to a
value that is comfortably below 0.34X 10 ' N.
Thus the answer that emerges is: Yes, it is reason-
able to expect Davydov solitons in real a-helix pro-
tein.

Having said this, several other questions arise.
What functional roles can Davydov solitons be ex-

pected to play in living plants and animals? What
special properties do they display? How might
they be detected? To help answer such questions
some numerical, analytical and perturbative calcu-
lations are included above from which the follow-

ing results emerge.

(1) It should be possible to create Davydov solitons

by direct stimulation with infrared radiation of

6.06 pm (corresponding to an amide-I absorption
at 1650 cm '). This is clear because in the numer-
ical study only bond energy was introduced as an
initial condition.

(2} Davydov solitons should display a rather
sharp internal resonance (related to exchange of en-

ergy between the three longitudinal spines of the a
helix) with a period of about 2 psec or a free-space
wavelength of about 600 pm.

(3) A piece of a helix with n unit cells (i.e., 3n

peptide units) may show a broad resonance
("Q"='1) with a period of about 0.54n psec. Since
the molecular weight (W,~) of a strand of helix is
about 114n, this resonance should appear at a
free-space wavelength of 1.42 W, ~ )& 10 cm.
For this resonance to appear at a wavelength of 3
cm ("X-band" in ~DER jargon} the molecular
weight would be about

8',) ——21000 .
For the resonance to appear at 30 ctn (1 6Hz}

8 ., =210000.

(4) Mechanical effects induced directly by the
soliton are limited to the kinetic part of the total
energy. For the example studied here this is less
than 0.02% (0.0002) of the total energy.

Several suggestions have been made concerning
the functional roles that Davydov solitons may

play or the ways they may appear in experimental
biology. Some of these are the following.

(1}Muscular contraction In 197.9 Davydov
proposed that his solitons may be the key element
in the contraction of striated muscle. His basic no-

tion is that the longitudinal displacement of
"thick" with respect to "thin" fibers is effected by
a "lump" of solitons propagating more or less to-
gether toward the sarcomere center. As a variation
on this theme, one might consider the model for
contraction suggested recently by Jarosch. " This
paper includes photographs of a mechanical model
for muscular contraction in which torsional rota-
tions of the thin filaments actually "screw" the
fibers together. Although Jarosch provides struc-
tural arguments for the pitch of the screw, a soli-
ton on one a helix of the coiled-coil structure
might do as well. Following this line of thought,
the coiled coil with one soliton might provide an
explanation for a wide range of mechanical
motions in living organisms. It should be men-

tioned, however, that the model considered in this
paper does not provide a mechanism for the
transfer of amide-I bond energy from the soliton to
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mechanical motion.
(2) Sensitivity of living organisms to lotv int-ensity

nonionizi ng electromagnetic radiation. Over the
past decade a rather impressive amount of experi-
mental evidence has been accumulating to indicate
that living organisms are behaviorally sensitive to
low-intensity e.m. radiation which raises tissue
temperature only by "orders of magnitude less than
0.1'C." Proteinaceous material on cell membrane
surfaces appears to be the site of detection, and it
is clear that nonlinear mechanisms must be in-

voked to explain the extraordinary sensitivity ob-
served. One such nonlinear mechanism is the in-
fluence of e.m. fields on the dynamics of Davydov
solitons that play functional roles in vital processes
of energy transport.

(3) Rupturing of a helix by tuberculosis and its
effect on soliton dynamics It.has been suggested
that the additional lines appearing in spectro-
fluorometric analysis of blood from tubercular pa-
tients is related to a change in the dynamics of
Davydov solitons when a-helix protein molecules
are ruptured by microbacterium tuberculosis.

(4) Raman spectra shift in green algae. Davydov
solitons have recently been invoked to explain the
temperature-dependent Raman spectrum of a green
alga (chlorella pyrenoidosa) 3In this .picture the
solitons are supposed to be excited by phase transi-
tions that appear between 230 and 260 K and to
spread the scattered energy over a larger number of
vibrational modes.

(5) The laser Raman spe-ctra of metabolically ac
tive cells. After the foregoing manuscript was

completely written, I became aware of the laser-
Raman measurements on living cells recently pub-
lished by Webb. Among many other provocative
facts, this report includes the following: (i) At 300
K a Raman spectrum is observed only when cells
are metabolically active; (ii) the intensity ratios of
Stokes to anti-Stokes lines indicate that the Raman
active states are produced in vivo by nonthermal
means; and (iii) spectral lines below 200 cm ' shift
to lower wave numbers as the cells progress
through their life cycles. A particular spectrum of
E. coli (taken from Fig. 7 of Ref. 39) shows, in
Table II, the lines between 30 and 200 cm

Although broad laser-Raman spectra have been
observed on a-helix proteins in aqueous solution
and in crystalline form and assigned to vari-
ous linear modes of mechanical vibration, such an
explanation is unlikely for the lines in Table II.
As noted above, these lines appear only when an
intact cell is metabolically active and move to

TABLE II. Laser-Raman lines measured from meta-
bolically active E. coli.

Line no. cm-'

45
52
63
85
90

108
123
152
182

TABLE III. Laser-Raman lines calculated from
modified Davydov equations.

Line no. Structure cm

2Ei
3Ei
4EI
5Ei
E2 —2Ei
E2 —E)
E
E2+2EI
E,+3E,

34
51
68
85
91

108
125
159
176

lower wave numbers as the cell ages. Interpreta-
tion as the internal vibrational spectrum of
Davydov solitons, however, is straightforward.
One component of internal vibration is the "inter-
spine oscillation" displayed in Fig. 6 which has a
period of 2X10 ' sec, thus a spectral energy

Ei ——17

in units of cm '. A second component is the
"flutter" of the soliton as it moves past the unit
cells of the lattice. Since the soliton speed is —, of
the sound speed, (13) implies a period of —, X 10
sec or a spectral energy

E2 ——125

in units of cm '. No "parameter adjustment"
whatsoever has been involved in choosing these
values for Ei and E2. The vibration spectrum of
the soliton corresponds to these two energies and
their sums and differences. Thus it is straightfor-
ward to construct Table III.
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Comparison between the measured lines in Table
II and the calculated lines in Table III shows a
striking similarity. Only line No. 1 is in substan-
tial disagreeement and this may be in part due to
measurement errors near the end of the run.
Furthermore, the tendency of the measured lines to
shift toward lower wave numbers as cells progress
through their life cycles is gracefully explained by
assuming that solitons receive less input energy
and therefore move more slowly as a cell ages.
Thus there is experimental evidence to suggest that
Davydov solitons play a functional role in metabol-
ic processes. See Ref. 43 for additional details.
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APPENDIX A: STRUCTURE OF ADDITIONAL
DIPOLE-DIPOLE COUPLING TERMS

Additional dipole-dipole coupling terms, indicat-
ed schematically in (2.11) are listed in this appen-
dix. Relative locations of the dipole-dipole pairs
can be understood with reference to Fig. 8. Here
the two-digit index (01, 02, etc.) refers to an (n, a)
designation for a particular amide-I bond. Letters
(L,N, J, etc.) refer to a bond that is interacting with

the bond located at (n,a) =(0,1) in the lower left-
hand corner.

N: ifgi„1——N(a„3+a„12)+
i%a„2———N(a„+11+ay 1 3)+ .

i%a„3———N (a„+12+a„1)+

P: if&a„1———P(a„+12+a„23)+.

i&„2———P (an+1 3+a+ 1 1)+

i%i„3———P(a„+2 1+a„12)+ .

FIG. 8. Location of additional dipole-dipole coupling
terms. (The reader can cut and join along the dashed
lines to obtain a three-dimensional model of the helix. )

Q i~ 1 Q (a +1,3+a —2,2)+

1~.2= —Q(a. +2, 1+a. 2, 3)+

ifRl„3= —Q (an p2 2+an —1, 1)+

R: i%i„1———R(an+2, 1+an —2, 1)+

ifaig2 ———R (a„+22+a„22)+ .

isa„= —R(a„23+a 2 3)+

S: i11ai„1———S(a„+22+a„33)+.. .

i%i» ———S(a„+,2 3+a„21)+

i%i„3———S(a„+31+a„22)+

T: i%i„1———T(aN+2, 3+aN —3,2)+

i%i„2———T(a„+,3 1+aug 3 3)+

3 T(a +32+a 21)+

U: i@i~1=—U(an+3, 1+an —3, 1)+

2 U(a +3 2+a —3 2)+

&~/3 U(afJ 13,3+ay( —3,3)+

V: i%i„1———V(a„+32+a 43)+

2 V( +3 3+ —3, 1)+

ifui„3 ———V(a„+4 1+a„32)+
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X: ilia„) ———X(a„+33+a„42)+
ilia„2 ———X(a„+4~+a„43)+

i~n 3 = —X{an+4,2+an -3, i }+
Z: itic„i———Z(a„+4 ~+a„4 ~)+

i gaia„2 ———Z (an+4, 2+~n —4,2)+

ilan3= —Z(an+43+an 43)+. . .

To appreciate the need for including this many
additional coupling terms, consider Fig. 9 where

comparisons can be made with the "standard" cal-
culation of Fig. 9(a). In Fig. 9(c), Z has been set
to zero and the difference with Fig. 9(a) is minor.
In Fig. 9(d), both Z and X=0 and the soliton
speed is slightly reduced. In Fig. 9(e},Z, X, and
V=0, and the fraction of band energy going into

the soliton is increased. This trend continues in

Fig. 9(f) where Z, X, V, and U =0. Thus we ob-

serve a convergence toward the standard calcula-
tion of Fig. 9{a}as the terms: L-T [9(f)],L-U [9(f)]
L-V [9(d)], and L-X [9(c)] are included in the cal-
culation.

APPENDIX B: STRUCTURE OF THE WAVE
FUNCTION

In the development of Davydov, Eremko, and
Sergienko, ' the fundamental Hamiltonian

A A
H =Hex+HPh+HIa (B1)

where

ph 2 ~ ~Pna+io{una un+i, a)
2

na
(B2)

[una Pn'a'] =t'~nn'~aa' (B3)

They choose a wave function of the form

I 1((t)) = ga„,(t)e '"B„"a
I
0), (B4)

where

and u and P are position and momentum operators
for the helix satisfying

o(t) = ——g [P„(t)P„—ir„(t)u„] .a (B5)

Thus

0.25

R

O

(l((t) IHph I
y(t))= ya;~, IV

na
(B6)

where IV is defined in Eq. {2.1c). Subject to the
normalization constraint

0 ~~=--'
0 h POQ

(b) g IA„ I
=1,

na
(B7)

(B6) can be interpreted as the energy of the sound

system. In order to remove the constraint (87},it
is convenient to define an approximate wave func-

tion with

(c) o(t)= g—[P—„,(t)P„—ir„(t)u„],
fi

(B8)

(e)

where

X lanaI =N, and IanaI
na

Then

(B9)

FIG. 9. Numerical comparisons. (a) standard calcu-
lation; (b) sound energy (W included in (2.11); (c) Z cou-
pling removed; (d) Z and X coupling removed; (e) Z, X,
and V coupling removed; (fl Z, X, V, and U coupling re-
moved.

(y(t) I
H i, I y(t) ) = w (B10)

and the total Hamiltonian in the P representation
becomes
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H= ga„' [Eoa„—J(a„ l a+a„+l )+L(a„+i+a„, l)]
na

d na+ 2 g M +W(Pna P—n l a) +Xi g [ naana(Pn+l, a Pn —l,a)]
sa NtX

+~2 g [(P. —P. l, )«:na. i, +a: i,a. )] (B11)

With this modification, W does not appear in the first line of Eq. (2.la).
Comparison of Fig. 9(a) and 9(b) shows that there is no change in the numerical result in the two cases:

9(a) 8' does not appear, and 9(b) 8' is included.

APPENDIX C: PERTURBATION ANALYSIS

Consider (5.13). It can be written as a fourth-order system involving only first-time derivatives. Thus

,A —i 8~A +ipA =0,
BA~+iB A ~ —ipA ~ =0,
a

B,o —8 p —8 (AA «) = —ao,
where o—:p, .

Expanding the solutions of (Cl) in a power series in a

p=po++p + ' '

o =op+ao~+ .

we find that (Ap, pp, op) must satisfy (C1) with a=0, and (A &,p&, o.~) must satisfy the linear equations

(Cla)

(Clb)

(Clc)

(Cld)

(C2a)

{C2b)

(C2c)

(3 —ib„„ ip ) iA 0 A1 0

0

0

—B„„A

' XX 'PO)

0

—B„„A

—iA 0 0 A) 0

0
(C3)

The adjoint of the matrix L appearing on the lhs of (C3) is

( —Bt+iB —ip, ) 0 —A, a

( —a, —ia +ipp) 0 —A'pa

'Ap iAp ~t ~xx

—a,

(C4)

This adjoint is defined with respect to the inner product

( V, 9 ) =—f ( V l Q l +V 2 Q 2 +V 3 l4 3 +V 4 Q 4 )dX (CS)
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To avoid secular behavior (i.e., linear growth in
time) of the order a corrections in (C2), it is neces-

sary that the forcinp function {i.e., rhs) of (C3) be
orthogonal to N(L ), the null space of L~. As
(C3) is written, this is not possible. However, if
the parameters s and m that appear in the zero-
order solution are supposed to have an order a
variation with time, then the rhs of (C3) becomes
augmented to

T

—Ap, s —Ao ~m

Ao, t

—Ao, r

—t f f (dx)'p„,

tf-f (dx)'p„

Ao, z

—Ap„
—i f (dx)po,

+i f (dx)p&&

The condition (F,d& )=0 implies, after integration
by parts and rearrangement

oo Z

H,s+H m= —a dx'pp, dx

1F=-
a

—Ap &s —Ap ~m

—pp, s —pp m

—ao,s —oo m —aop

The condition

Fj N(Lt)

Vi

—Up

—ia, f f (dx)'v,

+it) f f (dx)'U3

lies in N(L ). Two elements of N(L) are

defines first-order ode's for s and m.
To find the null space of L t note that if col

(U] Up U3 U4) lies in N (L ) then

(C6)

(C7)

and the condition (F,dq) =0 implies

tN Z

I,s+I m=+a dxp„
Z

X dx po, z' dx

(C8a)

(C8b)

and that of (C8b) would be

+a f" f f* dx'p, „dx

= ——f f fdx'p, dx,

Equations {C8)appear in the text as (5.14).
If the structural perturbation introduced into the

rhs of (Cld) were arbitrary, say af, the r—hs of
(C8a) would be

—a f" f f" dx'p„dx

b) ——

Ao

Ao,

Po, f

po, e

Ap„

Ao, z
b2 ——

potz

so (5.15) still implies m =0.
The other perturbation computations proceed in

a similar way.

APPENDIX D: NUMERICAL DETAILS
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Details of the numerical computations are ident-

ical to those described in Ref. 10.
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