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Modified variational solution of the Thomas-Fermi equation for atoms
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A modified trial solution of Roberts's function, depending on two parameters, is chosen
in such a way that it can satisfy the boundary conditions and the subsidiary condition
that the electron density be normalized. The proposed solution is used to calculate the to-
tal ionization energy of atoms, and also the repulsive interaction energy between rare-gas
atoms. The results obtained by the proposed function are better than those obtained from
Csavinszky's function and from Kesarwani and Varshni's function for medium-atomic-

number elements, and the numerical values of the parameters are easier to optimize.

I. INTRODUCTION

Recently there has been a renewed interest in the
approximate analytical solution of the Thomas-
Fermi (TF) equation. ' ' Csavinszky has proposed
the trial function

is

d 2y y3/2

dX X
(3)

II. THEORY

The TF differential equation for a neutral atom

Pt ——(aoe +boe )
—~o' —&o 2

where ao ——0.721 8337, ap=0. 1782559,
bo ——0.2781663, and Po ——1.759339, while
Kesarwani and Varshni suggest

p2 (ae +be——++ce r )2, (2)

where x is a dimensionless variable, defined by

x =4(2Z/9tt )' (rlatt),

where r is the distance from the nucleus, in units
of the Bohr radius a~, and Z is the atomic num-

ber. The boundary and subsidiary conditions are

where a =0.52495, a=0.12062, b =0.43505,
P=0.84795, e =0.04, y=6.7469. These approxi-
mate solutions of the TF equation have been ob-
tained by making use of an equivalent Firsov's
variational principle which has been rigorously
justified. When they are used to calculate the to-
tal ionization energy of atoms and the repulsive in-

teraction energy between rare-gas atoms, the Csa-
vinszky function is more suited for light elements,
while the Kesarwani and Varshni function is more
suited for high-atomic-number elements. But the
work involved in determining the numerical values
of the parameters is cumbersome especially for a
six-parameter fit. In the present paper, we propose
a modified variational solution of the TF equation,
which gives better results for the total ionization
energy of medium-atomic-number atoms, as well as
for the repulsive interaction energy between such
atoms. The numerical values of the two-parameter
function are easier to optimize than those obtained
from Csavinszky's and from Kesarwani and
Varshni's functions, respectively.

and

P(0) =1, P( a) ) =0, P'( a) ) =0,

Ipdv=N,

where N is the number of electrons, dv is the
volume element, and p is the electron density
which is related to P by

' 3/2zP=
hap

with P = —,(9H/2Z)'r an. The choice

1 dP 2F(P,P',x)=- +—

in conjunction with the variational principle

L($)=f Fdx,

is the equivalent of Eq. (3) since substitution of
Eq. (7) into the Euler-Lagrange equation

(4)

(6)

(7)

(8)
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d BF
dx BP'

function for the TF equation

P3 ——[(1+mx'/ +nx)e ]' . (10)

leads to the TF equation.
Roberts suggests the following one-parameter

trial function:

P=(1+r)x' )e {9)

where g=1.905. Anderson et al. choose

g=1.7822 by considering complementary varia-

tional principles. But the one-parameter functions,

determined from variational principles, cannot be

rigorously normalized when the numerical value of
the parameter is determined from the minimization

of the difference between the complementary upper

and lower bounds to the exact TF energy of a neu-

tral atom. It is important that the electron densi-

ty be normalized when one calculates specific

physical quantities for a neutral atom on the basis

of approximate solutions of the TF equation.

In the present paper, we suggest the following

modified variational trial solution of Roberts's

This is a two-parameter function, so the finding of
the extremum of L [Eq. (8)] can be carried out
with the simultaneous consideration of the normal-

ization requirement.
Now we shall determine m and n by minimizing

L with respect to these parameters subject to the
subsidiary condition Eq. (5). It is convenient to
write L as

L =L]+L2,
where

'2

L, = J — dx
oo 1

2 dx
and

(!)5/2x —1/2dx
2 p 5

All the integrals involved in Eq. (11) can be
evaluated analytically. The resulting expressions
for L ] and L2 are as follows:

L~ ——(2n —m ) /(4m) +4m(2n —m )(n —m~)/(4m)3

+6[m n 4m n—(2n —m )+(m +2n)(2n m~)~—] /(4m)

+48[m n mn(2n ——m~)(m +2n)+mn(2n —m ) ]/(4m)

+120[m n (m +2n) —4m n (2n —m )+n (2n —m ) ]/(4m)

+2880mn (m —n)/{4m) +5040m n /(4m)

L& ——8/(25m)+8(n +2m )/(Sm) +48(m +2mn)/(Sm) +96(m +2n +6m n)/(5m)

+96(m +20m n+30mn )/(Sm) +2880(m n+2n +6m n )/(Sm)

+40320(m n +2mn )/(5m) +4)&8!(n +2m n )/(Sm) +4)&9!mn /(Sm)'

+4)& 10!n5/[5(Sm)" ] .

The subsidiary condition Eq. (5) yields

16/(3m) +144(m +n)/(3m) +240(m +6mn)/(3m) +4320(n +m n)/(3m)

(12)

(13)

+30240mn /(3m) +80640n /(3m) =N/Z . (14)

For a neutral atom N/Z is equal to 1. We can
rewrite Eq. (14) into the following form:

n +an +bn+c =0, (15)

n = —++D'"
2

1/3

D 1/2

2

1/3

3
'

(16)

where a =129600m /80640, b =89424m /80640
and c =(29808m —19683m )/80640. It is easy
to show that Eq. (15) has one real root and two
imaginary roots for any real values of m. ' The
real root n of Eq. (15) is

where q =c —ab/3+2a /27, D =q /4+p /27,
and p =b —a /3.

Therefore the numerical procedure for obtaining
the optimal values of m and n is simple. We vary
m in succession and determine the corresponding n
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value of Eq. (16) until those values of m and n are
found which make l. (rn, n} [Eq. (11}]a minimum.
The minimization is carried out with double pre-
cision. The resulting values of the two parameters
in Eq. (10) are

m =1.148 37 and n =4.0187' 10

Although a value renders the term nx in Eq. (10)
almost negligible compared to the terms 1 and
mx' for any practical value of x, it is still neces-

sary to satisfy the subsidiary condition that the
electron density is normalized.

ipo

III. DISCUSSION

It is well known that if one uses the exact P ob-
tained from the TF equation, the calculated atomic
and interatomic properties are in poor agreement
with experiment. Because the Thomas-Fermi
theory of the atom leads to a radial electron densi-

ty which decreases as the inverse fourth power of
the distance from the nucleus, whereas the Hartree
approximation, its quantum-mechanical equivalent,
gives an exponential decrease, the TF electron den-

sity falls off too slowly. A sharper decrease of P
with x is needed. But the question is how much
sharper? Kesarwani and Varshni have shown that
for low-Z elements a rapid decrease of P with x is
needed, while for medium- and high-Z elements, a
less rapid decrease of P with x is satisfactory. In
Fig. 1 we compare Pt, tt)q with our approximate
solution P3 The resu. lts of Eq. (10) decrease more
sharply than Eq. (2) and less rapidly than Eq. (1),
so we can predict our solution is more suited for

I

30

FIG. 1. Comparison of P obtained from Eqs. (1), {2),
and (10).

medium-Z elements.
To test the validity of the approximate TF func-

tion of Eqs. {1),(2), and (10), the energy necessary
to remove all electrons of an atom is calculated
from"

12

7

' 1/3
2

yi(0)Z7/3
9m Qg

(17)

We have calculated E by Eqs. (1), (2), and (10), and
the results are listed in Table I. Column 3 of this
table shows the experimental values of the total
ionization energy for Z (18. For Z & 20 the
theoretical (corrected Hartree-Fock) values of Fra-
ga et al. ' are shown. It is seen from Table I that

TABLE I. Comparison of total ionization energies (in units of e /a~).

Z Standard Eq. (1) Errors Eq. (2) Errors Eq. (10) Errors

He 2 2.905
C 6 37.88
Ne 10 129.1
Ar 18 529 4
Ni 28 1519
Kr 36 2786
Pd 46 5036
Xe 54 7427
Hf 72 14977
Hg 80 19431
Rn 86 23 253
U 92 27 506
Fm 100 33 896

3.016
39.14

128.9
508.1

1424
2561
4537
6595

12905
16501
19535
22 864
27 774

3.8%
3.3%

—0.2%
—4.0%
—6.2%
—8.1%
—9.9%

—11.2%
—13.8%
—15.1%
—16.0%
—16.9%
—18.1%

3.426
44.47

146.4
577.2

1618
2909
5154
7492

14659
18 745
22 191
25 972
31 550

17.9%
17.4%
13.4%
9.0%
6.5%
4.4%
2.3%
0.9%

—2.1%
—3.5%
—4.6%
—5.6%
—6.9%

3.217
41.76

137.5
542. 1

1520
2732
4840
7036

13767
17 604
20 840
24 392
29 631

10.7%
10.2%
6.5%
2.4%
0.07%

—1.9%
—3.9%
—5.3%
—8.1%
—9.4%

—10.4%
—11.3%
—12.6%
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FIG. 2. Repulsive interaction potential for the Ne-Ne
system Fl, .results obtained from Eq. (1). F2, results
obtained from Eq. (2). F3, results obtained from Eq.
(10).

IO

for light elements Csavinszky's values are better,
for medium-Z elements our values are better, and
for high-Z elements Kesarwani and Varshni's
values are better. In a sense the three solutions are
mutually complementary.

As another test of the approximate TF function,
the interaction energies between noble-gas atoms
are calculated in the Firsov approximation. In
Firsov's theory this quantity is given by

U(R) =(ZtZze'/R)P(e),

where

E=(Z' Z' ) ~'R /0. 8853an,

and R is the internuclear distance. It has been
known for a long time that two TF atoms do not

tp
2 3 4
R(a, )

FIG. 4. Repulsive interaction potential for the Kr-Kr
system.

lead to binding. ' ' For this reason, atomic in-

teraction potentials calculated in the Firsov ap-
proximation can be considered reliable only at
small internuclear separation where the interaction
energy is much larger than several electron volts.
We have calculated repulsive interaction energies
for ¹Ne,Ar-Ar, Kr-Kr, and Xe-Xe in the Firsov
approximation from Eqs. (1), (2), and (10), and the
results are compared with the experimental and
theoretical potentials' ' in Figs. 2—5. In all of
these figures, the F1 curves represent the results
obtained from Eq. (1), the F2 curves represent
those from Eq. (2), and the I' 3 curves represent
those from Eq. (10). The dotted-line curves
represent the repulsive part of the empirical poten-
tials. It is seen from the figures that for Ne-Ne in-
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FIG. 3. Repulsive
system.
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FIG. 5. Repulsive interaction potential for the Xe-Xe
system.
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teraction, Csavinszky's function gives better re-

sults; for Ar-Ar, our function gives better results.

As we go to heavier pairs, namely, Kr-Kr, Xe-Xe,
Kesarwani and Varshni's function gives better re-

suits. In conclusion, we find that for medium-
atomic-number elements, Eq. (10) provides a more
satisfactory approximation for P than Eqs. (1) and
(2).
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