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A liquid-gas system at temperatures below criticality and densities between the liquid

and the gas density at the coexistence curve exhibits equilibrium between a spherical

liquid domain and the surrounding gas. This two-phase state is studied for the three-

dimensional lattice-gas model, with the use of Monte Carlo methods. In sampling the

chemical potential of lattices which are finite but much larger than the correlation length

for various densities, the radius R of the liquid cluster is derived from the excess density

without any ambiguities in the cluster definition. From the relation between cluster ra-

dius and excess chemical potential, information on the universal scaled interface free ener-

gy of clusters as a function of R/( is obtained, in the range 3 &R/( &10, which is also

the range of experimental interest. The resulting free-energy barriers against nucleation

deviate distinctly from the capillarity approximation in most parts of this regime. At

temperatures far below criticality, the present method is shown to agree with the standard

approach where a cluster is defined in terms of the contour around occupied lattice sites.

Finally, the consequences of our results for experiments and phenomenological droplet

models are briefly discussed.

I. INTRODUCTION

A theoretical understanding of the free energy of
formation of the microscopic nucleus of the new

phase at a first-order phase transition has been a
longstanding problem in statistical mechanics. '

The standard approach ("classical theory") assumes

nuclei ("droplets" ) of spherical shape and decom-

poses their formation free energy ~ into a bulk
term proportional to the volume of the droplet,
and a surface term where one uses the interface
tension ft appropriate for a flat interface between

macroscopic bulk phases. For three-dimensional

liquid-gas systems (Fig. 1), the bulk term is hence
(4trR /3)5pdy, where 5y, =p, p, , „, the chem—ical
potential difference between the considered (meta-

stable) state and the state at the coexistence curve

~p= pliquid pgas

~d„,—— (4srR /3)5pb—p+4trR ft . (1)

While it is commonly accepted that Eq. (1) be-
comes asymptotically valid in the limit R ~ 00, one
has to expect correction terms to Eq. (1) for the
finite values of R which are of physical interest,
i.e., 5$ & R & 10$, where g is the correlation length
of density fluctuations [the "intrinsic" thickness of
the liquid-gas interface is of the same order of
magnitude as g, (see Ref. 15)].For smaller R/g the

decomposition of the droplet formation energy in

bulk and surface terms is even expected to break

down; though phenomenological assumptions for~ in this regime have also been discussed, '

the precise behavior of ~ is still uncertain. There
are several reasons for deviations from Eq. (1),
such as long-wavelength fluctuations of the inter-

face between the liquid cluster and surrounding

gas *'~ corrections due to a dependence of fi on

5p, ' the density difference between cluster and

surrounding gas may differ from hp for small clus-
ters' and their "typical" shape might be dis-

tinctly nonspherical. ' ' It is not easy to resolve
the uncertainties about dd', because there is some
ambiguity concerning what is meant precisely by a
"cluster. "' Of course, there is no ambiguity in
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FIG. 1. Schematic phase diagram of a fluid. Below
the coexistence curve, which terminates at the critical
temperature T, and critical density p„equilibrium re-

quires two-phase coexistence.
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considering the question at which rate unstable
states decay ' ' but since a direct solution of this
problem of kinetics far from equilibrium does not
yet exist, it is still useful to use nucleation theory
concepts.

In the present work, an attempt is described to

improve our knowledge of ~ for the three-
dirnensional simple cubic lattice-gas model, with
nearest-neighbor attractive interaction. We are
mainly interested in the region close to the critical
point, for several reasons: (i) T„ the energy barrier
~/kz T becomes a universal function of the rela-
tive supercooling 5T/hT [or 5p/hp, cf. Fig. I]
(Ref. 3) and all three-dimensional liquid-gas sys-
tems as well as both fluid and solid binary mix-
tures should be described by the same function
~/ks T, =f(5T/b, T) as the lattice-gas model.
{ii) Owing to critical slowing down ' near T„one
can observe experimentally much larger rela-
tive supercoolings 5T/AT, which in turn corre-
spond to smaller R /(, than far below T, . (iii)
Since g is very large near T„ there is no difficulty
in treating R as a continuous variable even if R /g
is not very large, while far below T, such a cluster
would contain only a small total number of atoms.

In our approach, we study finite systems at su-

persaturated densities in which a stable two-phase
equilibrium state is observed, extending previous
work on the two-dimensional lattice-gas model far
below T, . In Sec. II we introduce a new method
for identifying cluster properties, which is much
less hampered by any ambiguities in cluster defini-
tion than previous approaches. Section III de-

scribes the numerical results obtained from Monte
Carlo simulations, while Sec. IV contains our con-
clusions.

II. TWO-PHASE EQUILIBRIA
IN FINITE SYSTEMS

In the thermodynamic limit with total volume
V~ oo, a state which is a distance 5T below the
coexistence curve {Fig. 1) in thermodynamic equili-
brium is a state consisting of two phases; i.e., mac-
roscopic droplets of liquid density p]Iq~d will coex-
ist with surrounding gas of density p~„, the volume
fraction of the fluid being given by 5p/hp (see Fig.
1 for definitions). The chemical potential of such
a state then is given by p, „, independent of 5p as
long as 0 &5p & dy, and the free energy of this
state is given in terms of the double-tangent con-
struction.

For finite V, this description is no longer true
because now the interface between the coexisting

l caex --—

metastable
stable

lPt P P~
gas

m e
able

(b)

i!
Pgas Pp

P
P.

liquid

p)

Pgas

Ptoex

FIG. 3. Density plotted vs chemical potential
(schematic, p VT ensemble).

FIG. 2. Chemical potential (a) and free energy (b)
plotted vs density near the gas branch of the coexistence
curve, both for infinite and finite volumes (schematic).
Dashed portions of the curves indicate metastable one-
phase branches.

phases makes a contribution of order V ' to the
average free-energy density (Fig. 2). Note that the
volume taken by the minority phase is 5p V/+
and hence there will be an interface area of the or-
der of magnitude of (5p/+)2~3V ~ . The thermo-
dynamic potential of such a mixed-phase state con-
tains, hence, a bulk term proportional to V and an
interfacial term proportional to V . The chemi-
cal potential p =(BF/Bp)z- v then is no longer con-
stant but exhibits a loop, where again p —p, „
~ V ' . This behavior must not be confused
with the approximate description of metastable
states before droplets have been formed as done by
van der Waals or Cahn-Hilliard equations, ' where
one-phase states are continued into the two-phase
region for V~ ao, the free energy of such states
would be enhanced by an amount of order unity,
independent of volume, in comparison with the
equilibrium value.

It should also be noted that the region where F
is a concave rather than convex function of p [and
where (B)u/Bp)r v, hence, is negative] does not con-
tradict the laws of thermodynamics, since these
properties do not survive in the thermodynamic
limit. In fact, since for finite systems the various
thermodynamic ensembles are not strictly equiva-
lent to each other, there is also no problem with
the stability of the system. This is illustrated in
Fig. 3 where the relationship between p and p in
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4mR
M, )us«, ——V(p2 —p) ), Ap ™cluster .

3
(2)

In this expression, we have neglected the difference
between +=p„q„;q—ps„and the actual density
difference entering [Fig. 4(a)] bp'=p~;q„;d —p~.

As a result, knowledge of the function p(p2) for
large V yields a relation between cluster radius R*
and chemical potential which is in equilibrium
with that cluster size R*=R~(p). Such a relation
also is implied by any explicit phenomenlogical
model. For example, from Eq. (1) the condition of
having equilibrium B(~,1«)/BR! x.——0 yields

Rci~s(p) =2fl/(5p~p) . (3)

In the general case, one may define an effective
surface free energy FI'", where 1=Lp(4~R )/3
denotes the cluster excess mass, in terms of the ex-
cess of the formation free energy over its volume
term (see, e.g., Ref. 4)

15p+F

the condition of having equilibrium
B(~)/Bl! I.=0 then yields '

(4)

the p VT ensemble (rather than the NVT ensemble

of Fig. 2) is shown: The response function

(Bp/Bp) ~ T is everywhere positive.
Since p(p, V, T) in Fig. 2(a) for finite V is a con-

tinuous function of p with a finite nonzero deriva-
tive (Bp/Bp)r v!z, it is clear that the density

difference 5p =p~ —pg„ for which p —p, „
reaches its maximum value (~ V '

) must also
vanish for large V (proportional to V '

) ~ Hence,
for large V there exists a regime of densities p2
such that 5pq ——p2 —ps„« 4p but 5pq » 5p . In
this regime, the equilibrium state is dominated by
a configuration of the system, containing just one,
nearly spherical, droplet. A typical configuration
of the system, after some coarse-graining, will

hence exhibit a density profile such as shown in

Fig. 4(a). A droplet of size R » g will exist some-

where in the system and will be in equilibrium
with surrounding gas. Since this state is an addi-
tive two-phase mixture which can exchange parti-
cles, the droplet and the surrounding gas must
have the same chemical potential. As a conse-

quence, the density of the surrounding gas is noth-

ing else but the density p& at the one-phase branch
of the p-vs-p curve in Fig. 2(a). From this fact it
follows that we find the total mass M,~„„„ofthe
cluster in the case of Fig. 4(a) from the density
difference pq —p&, which defines the effective clus-
ter radius R,
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FIG. 4. Typical coarse-grained density profile in one
coordinate direction x, for coordinates y, z identical to
the respective center-of-gravity coordinates of the clus-

ter, for p»&p (a) and p2&p (b). In the latter case,
the center-of-gravity coordinates of both clusters in y
and z directions have, for simplicity, been assumed to
coincide.

(BF'" /Bl) ! ~ =5p .

Now the equilibrium between the liquid droplet
and the surrounding box, which is considered here,
is not an equilibrium at constant chemical poten-
tial 5p—as is well known, this would be an un-

stable equilibrium —but it is an equilibrium at con-
stant total particle number: After all, this fact is
responsible for having a stable equilibrium, under
conditions investigated in Ref. 4. This work also
showed that the "Kelvin equation, "Eq. (3), or its
generalization, Eq. (5), still are valid in spite of the
fact that we consider a constant p rather than con-
stant p ensemble.

Nevertheless, it is important to pay attention to
systematic errors which may arise since one is try-
ing to exploit rather small differences between the
behavior of a finite system and the infinite system
(Fig. 2). There are three types of effects: (i) Close
to the critical point the correlation length g
diverges. Hence it is necessary to choose the linear
dimension V'~' of the system such that V'~' && (.
Even then finite-size corrections of order
exp( —V' /g) may occur. Since we are already
interested in the regime R » g and must have ~

R && V', on the other hand, the finite-size
corrections of order exp( —V'~'/g) are expected
to be negligibly small. (ii) While Eqs. (3) and (5)
describe the average thermal equilibrium, it is
clearly important to also consider fluctuations
around this equilibrium. In Ref. 4 it was shown
that the second derivative of the total free energy
of the system with respect to cluster excess mass 1

is
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g2FsUff

+X 'V
T r=r~

where

X—:—(1/V)(B 0/Bp )

is the second derivative of the grand-canonical po-
tential Q(T, V,y, ) at the gas branch of the coex-
istence curve. In the limit where l is large and Eq.

(1) can be applied, we have

F'" =(36rr)'~'f (II+) ~'

and since I =5p V, it follows that

(BF('" /5l ) ~i p

—= —(321r/81) 3f (5p/hp) V

As a consequence, the relative mean-square fluc-
tuation of l is

(li l~)/l—i=kg T[(5 FIBl )~ y z-
~ i ii] Il

=+G(bp/5p) V '/[1 —(32ir/81)'~ fg(5p/dp) XG V ] (7)

Thus, although the relative fluctuation decreases
asymptotically proportional to the inverse volume
as in usual thermal averaging, the coefficient of
this V ' law is very large, since XG diverges near

T, as P~", bp/5p is also much larger than unity,
and the denominator in Eq. {7) typically is much
less than unity also.

These large fluctuations make a successful sam-

pling of cluster size by Monte Carlo methods very
difficult if one tries to obtain 1 by direct observa-

tion as described in Ref. 4. In the present work,
where l~ =bp(4rrR ~ /3) is defined in terms of
given total densities, p&,p2 and hence not fluctuat-

ing, instead it is the chemical potential p which is
the statistically fluctuating quantity to be sampled.
For three-dimensional systems, the quantity of
interest which is the excess p —p, „~V ' does

exceed the fluctuation of p, (p~ —P )'~i ~ V

and hence the distribution of p values does sharpen

up as V is increased, although much slower than
usual: We find

(P —P ) /{P —
IMCOeX)

As a result the Monte Carlo sampling of p —p, „
will be difficult. For the two-dimensional case
studied in Ref. 4, the excess p, —p~„~ V ' is of
the same order as the fluctuation, and thus the dis-

tribution becomes even "volume independent. "
Similar properties are found with respect to the in-

terface free energy of the system, which is of order
V in three and V' in two dimensions, while

the fluctuations of the bulk free energy are of or-
der V'

Nevertheless, the present method of studying
two-phase coexistence in a finite three-dimensional
volume is a potentially very powerful method for
studying properties of large clusters, if one could

apply analytic methods {such as renormalization-

group approaches) where one would not be ham-
pered by the above fluctuations. In addition, one
would obtain the free energies F,I'i directly [Fig.
2(b)], and hence one could get the cluster forma-
tion free energy ~ rather directly. In a Monte
Carlo sampling, one can obtain the free-energy
difference from thermodynamic integration

Pg
F2 —F~ —— p dp, but this method sometimes is

PI
hampered by hysteresis effects in the curve p(p)
near p, where, due to short observation time, the
data often follow the metastable one-phase branch
rather than the stable one [Fig. 2(a)], at least at
low teinperatures (Sec. III).

(iii) The most serious limitation is important for
R /g not very large where a systematic error in Eq.
(2) is introduced, because not just only states with
one cluster [Fig. 4(a)] contribute to the averaging,
but also states with two or more clusters [Fig. 4(b)]
contribute as well. Of course, if the mass M,]„„„
is partitioned into two clusters with radii R &,R2
such that R &+R2 ——R, the total interface
4~(R ] +R ~ ) exceeds that of 4~R (for at, most a
factor of 2', in the case R ~

——R2). These states
hence cost much more interface energy, but they
have more entropy due to the arbitrary choice of
R )/R2 and relative positions of the clusters.
Thus, states with several clusters will become im-
portant for R /g not much larger than unity, i.e.,
for densities p2 close to p . There the state of the
system changes completely gradually to one-phase
states, where the density of clusters of size R //=1
(i.e., homophase instead of heterophase fluctua-
tions, see also Refs. 19 and 20), is somewhat
enhanced in comparison with one-phase states at
the coexistence curve. The situation can be under-
stood in terms of fluctuations in the interface area
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(Fig. 5). For pq ~&p, the cluster is very large, and

the fluctuations with low free-energy cost are simi-

lar to capillary waves, i.e., the long-wavelength

fluctuations considered for flat interfaces' [Fig.
5(a)]. It is believed that these fluctuations give rise

to the leading corrections to Eq. (1) for large R. '
As p2 becomes smaller, the distortions of the inter-

face are no longer small-amplitude fluctuations,
and hence the actual cluster shapes are strongly
nonspherical (although the auerage density profile
in the cluster center-of-gravity system is spherical
for teinperatures near T, ) [Fig. 5(b)]. The effect of
these strong fluctuations, which is hard to analyze

by the analytical techniques of Refs. 6 and 14, has
led to considerable discussion in the literature (e.g.,
Refs. 2 —4 and 16—21}. The effect of these fluc-
tuations on the "effective surface free-energy" F~'

and the resulting free-energy barrier is one of the
central interests of this paper. Finally, for p2 near

p~ the fluctuations in interface area are so large
that the cluster occasionally splits into parts [Fig.
5(c}]and recombines, and then a clear-cut relation
between the function 5p(p) and properties of single
clusters is lost. Thus the following numerical
analysis will be restricted to the regime R /g )3,
where p2 —p, „))p —p, „.

{a}

{c}

FIG. 5. Typical cluster shapes (full curves) as com-
pared to minimum interface shapes (dashed circles) for
p2& & ~p (a), p2&&p (b), and p2&p (c) (schematic).

III. NUMERICAL RESULTS FOR THE SIMPLE
CUBIC NEAREST-NEIGHBOR LATTICE

GAS MODEL

We performed Monte Carlo simulations for the
temperatures ks T/J =2, 3,4,4.2,4.3,4.4 [note
ks T, /J=4. 51 (Ref. 33)], using lattice linear di-

mensions V' =4, 6, 8, 10, 15, 18, 24, and 36 (this
largest lattice size was used at the temperature
closest to T, only, and only a subset of these linear
dimensions was used at each temperature), apply-
ing periodic boundary conditions. In order to
prepare initial states at a given density p, we put a
mass V(p —p~„) into a cluster in the center of the
box while the atoms representing the remaining
mass Vp~„were distributed randomly in the
remaining volume. This initial condition favors a
two-phase equilibrium state. The value of the den-

sity at the coexistence curve (ps„}was estimated
from the low-temperature expansions for the mag-
netization M of the Ising model, using

pz ——(1—M)/2. For small values of p we also use
a second initialization where all atoms are distri-
buted randomly in the volume, thus favoring a
one-phase state. These two different initializations
enable us to check for hysteresis effects near p
[Fig. 2(a)].

Equilibrium then was obtained in the standard
way of performing Monte Carlo calculations at
constant density, using the Kawasaki nearest-
neighbor pair exchange technique. ' Even
though our initial states are already in a sense
"close" in phase space to the equilibrium states,
equilibration was a rather slow process since parti-
cles typically had to "evaporate" from the central
cluster and diffuse out into the gas region, until
one achieved the correct equilibrium between the
cluster (at liquid density close to p] q~d rather than
the initial maximum density p=1) and surround-
ing gas (at density p~ &pg„, cf. Fig. 2). Since
atoms have to diffuse a distance of order
L = V' /2, we conclude that the time in order to
reach equilibrium is at least of order
t =L /6D= V /(24D), where D is the diffusion
constant [which is much less than unity if one uses
one Monte Carlo step (MCS) per atom as a time
unit]. Thus we have omitted typically the first
1000 MCS per site from the averaging which then
typically was extended over 6000 MCS per atoms.
Very close to T, even larger times were used.

The data for the chemical potential thus ob-
tained are shown in Figs. 6 and 7. The chemical
potential p in Monte Carlo simulation at constant
density is obtained from a method proposed by
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Meirovitch and Alexandrowicz. There one sam-

ples the frequencies v of the local states a (of en-

ergy E~) of each lattice site, using the formula

7

IJ, /kz T = —, g [1n(v /v )+E /kz T] .
a=1

These seven local states are the states where a site
has between zero and six neighboring sites occu-
pied. Note also that p, „=—12J in the simple cu-
bic Ising lattice-gas model. It is seen that the
function p(p) has, indeed, the general structure as
predicted in Fig. 2ia). Hysteresis due to metastable
one-phase states was only clearly established at the
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two lowest temperatures (Fig. 6).
For k~T/J =2.0 we also have used the method

of Ref. 4, where clusters in the system were identi-
fied as groups of atoms connected by nearest-
neighbor atoms (Fig. 8). Such a cluster identifica-
tion becomes meaningless at higher temperatures,
where a "percolating" cluster would appear extend-

ing throughout the lattice. From such a direct
observation of the configuration one obtains the
average size I of the (largest) cluster in the system,
and also checks that during the time of observa-
tion, this cluster keeps its identity (i.e., it does not
split into several parts of comparable size nor does

any other cluster of similar size form by nu-

cleation). The resulting relation p=p(l) is in
reasonable agreement with the relation obtained,
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FIG. 6. Chemical potential plotted vs density for
k&T/J =2 (a), 3 (b), and 4 (c). Monte Carlo data for
various values of V are shown. Point with arrow in Fig.
2(a) shows a slowly relaxing metastable one-phase state.
Curves are drawn to guide the eye only.

FIG. 7. Chemical potential plotted vs density for
kqT/J =4.2 (a), 4.3 (b), and 4.4 (c). Monte Carlo data
for various values of V are shown. Curves are drawn to
guide the eye only.
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FIG. 8. Snapshot picture of atomic configuration in

a two-dimensional system, indicating the definition of
clusters in terms of contours around groups of atoms
connected by nearest-neighbor bonds (schematic) ~

where l =hp(4rR /3) was found from Eq. (2) (see

Fig. 9). Since we expect from Eq. (3) for large /

that 5p ~ l ', we have plotted the quantity
5pl' /k&T, which should tend towards the con-
stant 2(4rr/3)'~ fz/kii T for large /. The Monte
Carlo data are indeed consistent with this behavior;
5pl' /k~T seems to be significantly smaller than

this constant only for values of l as small as l =10.
The data closer to T, have been represented in

similar form, but we here normalize our data such

that they bring out clearly the expected scaling and

universality behavior. Defining x = (2/P)(5p/bp),
where p is the critical exponent of the order

C!

co

(b}

0
0 10

I

20 30 2/3 40
l

FIG. 9. Plot of the quantity (5p/k&T)l' ' vs I' '
where p and I were obtained from the relation p(p) as
indicated in Eq. (2) (a) and from the direct observation

of largest clusters (b) at k&T/J =2. Note that the same
curve fits both sets of data.

parameter [ +=8(1—T/T, )~], it follows from
Eqs. (1) and (3) that the nucleation energy barrier
can be expressed in the form

6',)„,/kg T, =xp/x

where

[fl =f1(1 T/T, )'",(Bp/—Bp)T ——C (1 —T/T, ) r/4, 3v=y+2p], x = =,f,'
3P ks T, (hp) 3P2 B4

The constant xp should be universal; estimates for
it are in the range from xp =1.14+0.10 (Ref. 38)
to xp ——1.30+0.10. Thus, instead of 5pl' /k&T,
we plot in Fig. 10 the quantity

2/3
ks T(dp/d/I, )T~2

xo
ks T, Pbp

(10)

and as an abscissa we choose (R /g)~ [where
g=f i (1—T/T, ) "; the amplitude f i is taken
from Ref. 39], since then all temperatures in the
critical region should fall on the same (universal)
curve. Within the (unfortunately rather large) sta-

I

tistical scatter of the Monte Carlo data, this scal-

ing behavior seems indeed to hold. The quantity
5@i' /k~ T, can be considered as the derivative of
the effective interface free energy FI'" with respect
to the effective interface area: From Eq. (5) and
1=(4r/3)R /dy, one finds

and hence

gFsUff

=2nhpR5p
M g

1/3

4m
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FIG. 10. Plot of the scaled derivative of the effective

interface free energy with respect to the scaled effective
interface area (R /f )2 vs (R /f ); various temperatures

and volumes are shown. Straight dash-dotted lines cor-

respond to xo 1.09 (Ref. 37) and xo -1.20 (Ref. 5).
Broken curves indicate two extreme choices for the
scaled derivative.

From Eq. (1), on the other hand, one would find
dFt'" /BR =42rfr, i e , .a.constant derivative in-

dependent of R. Some data points for large (R /g)
seem to fall systematically above the range of
values within which the scaled derivative of the
surface free energy is expected to occur for
R /g~ ac (the boundaries of this range are given

by the dash-dotted straight lines). Since most of
these data points refer to a temperature distinctly
below T, (k&T/J =3), we expect that this effect is
due to corrections for the leading asymptotic scal-

ing behavior close to T, . In fact, far below T, the
anisotropy of the surface tension in lattice gases is
known to be rather important; it leads to cluster
shapes more resembling a cubic shape rather than

a spherical one. This effect leads to an enhance-

ment of the surface free energy in comparison to
what one would expect according to the present
treatment.

From Fig. 10 it is seen, however, that this
derivative for (R /g) & 20 is distinctly smaller than
its asymptotic value for large R /g. From Figs. 2

and 9 it is clear that near p =JM(p ) we have

p~ —p ~ (p —p~ ) ~I, and hence there

5@i' =(p —p „)I'

which implies that the curve plotted in Fig. 10
starts out at the origin with a square-root-like
behavior 5lsl'/3~3/x, where x =(R/g) . Owing

to the fact that near p the state of the system
changes from a state with a single large cluster to
a state with many smaller clusters (Fig. 5), the
behavior of Apl' for small x is no longer related

to the interface free energy of "single" clusters .In
other words, the variable R has the meaning of a
(single) cluster radius only for R distinctly larger
than g. For (R/g)2« 10, for example, nothing
can be inferred from Fig. 10 concerning the actual
surface free energy of clusters. Of course, this
inaccessible region (R /g) & 10 is not of direct ex-

perimental interest even. Nevertheless, the vari-

ables of I and R are mathematically still well de-

fined even in this regime, and hence Eq. (11) can
be used to find the surface free energy F~'" itself
by thermodynamic integration,

R2F'~— (gF'"+/gR )dR
0

' 1/3

=21rg 5@i
'/'d

4v 0
(12)

Figure 11 shows the resulting surface free energy
in comparison with the corresponding classical pre-
diction,

4~(f, ) 3pB xc R . (13)
ks T, 161rC
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0
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FIG. 11. Surface free energy Fq. lk~T, plotted vs

(R/g), as obtained from the data in Fig. 10 [via Eq.
(12)] and from classical capillarity approximation, Eq.
(13), with xs ——1.15[=(1.09+1.20)/2]. Plotted curve
for F~.lk~T, is the average of the two functions ob-
tained from integrating the broken curves in Fig. 10.

Although there is some uncertainty about the pre-
factor in this relation, due to the uncertainty in the
constant xo mentioned above, it seems clear from
our data that the actual FI'" falls distinctly below

the classical capillarity approximation (FI'" ),~„, in

the range of interest 20&(R/g) &50.
Finally, we emphasize that although we have to

include the region of small R /g for which we can-

not obtain FI'" itself, in the integral equation (23)
also for large R /g, no systematic error is thereby
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introduced (see Appendix). Using the numerical
results of Fig. 11 together with Eq. (5), one readily
obtains the formation free energy LF of the clus-
ters as a function of their effective radius. Since
each cluster radius corresponds to a definite value
of 5p due to the equilibrium condition Eq. (5), and
since p2 —

pgzg 5p(Bp/Bp)~ for small 5p, we can
express our results for dd in a form similar to Eq.
(8), where the energy barrier is expressed as a func-
tion of (p2 —

p~ )/bp. This choice of variables is
motivated by the fact that, in a system with mac-
roscopic volume (where the equilibrium between a
critical cluster surrounding supersaturated gas is an

unstable one, of course), the density of the gas
surrounding the critical clusters (pt) is practically
the same as the total density p (Fig. 1), at least for
the case where M/kz T, is very large and the con-
centration of critical clusters [which varies as

exp( —~/ksT, )] would be negligibly small. Thus
Fig. 12 shows bE/kz T, plotted versus x in or-
der to compare our results to Eq. (8). It is seen
that the energy barrier for x =10—30 (to which
the data recorded in Figs. 10 and 11 correspond)
are distinctly smaller than what one would expect
according to classical theory. This behavior is not
so surprising, since x =1 corresponds to
5p/lhp=P/2=0. 16, i.e., a density far away from
the coexistence curve, which already belongs to the
regime where spinodal decomposition occurs. '
In fact, according to the mean-field (or Ginzburg-
Landau) theory, where P= —, one would predict'2

that dd vanishes at a spinodal curve, which would
be located at 5p, /hp =(1—1/v 3)/2=0. 21; this
value would correspond to x =1.4. Since one
expects that the actual transition from nucleation
to spinodal decomposition occurs much closer to

80
h, F

kBT,

60

40

20

0
0 10 20 30 le 0

[2(p,-p„,)lb pP I

FIG. 12. Energy barrier F~./k~T, against nucleation

plotted vs the variable x ~, where x
=2(p~ —pi„)/ (Php). The straight line is the result of
the classical capillarity approximation, Eq. (8), using

xo ' ——1.15, while the full curve is the result of the
present calculation (dashed portions are tentative extra-
polations).

the coexistence curve than predicted by the mean-
field theory, it is reasonable to locate it for x of
order 10'. It has been emphasized that a sharp
spinodal line where ~/kz T, vanishes does not
exist; rather one expects a gradual transition from
nucleation (~/kz T, && 1) to spinodal decomposi-
tion (~/k~ T, is small and hence no longer mean-
ingful). While classical nucleation theory hardly
shows this transition at all [note that it is not
meaningful to consider values of x of order unity
for which dd'/ks T, according to Eq. (8) would be
small], this transition is clearly exhibited by the
present work. Our numerical results (Fig. 12) con-
firm qualitatively —but not quantitatively —the
predictions of the Cahn-Hilliard theory' and a cal-
culation based on Fisher's droplet model, ' ac-
cording to which dd'/AT, is below its classical
value in the range 20 & ~/k~ T, & 50; unfortunate-

ly, both the precise quantitative amount of this en-

ergy barrier reduction and the analytic form of
~/AT, in this regime remain rather uncertain.

IV. CONCLUSIONS

In this study, the surface free-energy contribu-
tion occurring in two-phase equilibria in systems
with a finite volume V was investigated. It was ar-
gued that the chemical potential differed in the
two-phase region from its value at the coexistence
curve by a contribution of order V ' . This inter-
facial contribution can be used to estimate the
derivative of the interface free energy of clusters
with respect to the effective cluster area. It is
shown that this quantity is consistent with the ex-
pected scaling properties near the critical point and
tends towards the expected universal constant
(xo/ ) for large cluster volumes. For intermediate
cluster sizes [20&(R/g) &100, where g is the
correlation length] this derivative, as well as the
surface free energy itself, seems to be somewhat
smaller than that according to what one would ex-
pect from classical nucleation theory. This reduc-
tion is interpreted in terms of a transition to the
spinodal regime in the vicinity of 5p/hp=0. 05.

Unfortunately, the present results can hardly be
used to establish the precise analytic form of
corrections to the classical nucleation theory. Part-
ly this is due to the rather limited statistical accu-
racy of the data, which is inevitable in view of the
relatively large fluctuations of the excess chemical
potential, and partly is due to imprecise knowledge
of the constant xo, which enters into the prefactor
of the scaled interface energy in classical nu-
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cleation theory. It is hoped, however, that this

work will stimulate related studies with more

powerful techniques rather than the Monte Carlo
methods applied here, which then could narrow

down these uncertainties. More precise experimen-

tal studies of nucleation barriers in the critical re-

gion also would be highly desirable. The quicker
decrease of bE!kz T, with increasing supersatura-

tion (Fig. 12) than that predicted according to clas-

sical nucleation theory should reduce the relative

supercooling 5T/LT close to T, . Taking such ef-
fects into account might improve the agreement of
calculations such as Ref. 5 with experiment (Refs.
28 and 29).
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APPENDIX: THERMODYNAMIC INTEGRATION METHOD FOR THE CLUSTER
SURFACE FREE ENERGY

In this appendix we derive Eq. (12) in a different way, establishing that the physical nature of the states
near p is irrelevant for the validity of Eq. (12) for states at densities pz » p~ (Fig. 2). We start from the
relation for the free energy per unit volume p—:{BF(p, T)/Bp I r, which is integrated as

P2

F(p2) =F(p&)+ p dp .

Since the state at density p2 is a two-phase state where a volume fraction 1 —1/dy V is taken up by gas of
density p& and the rest by the liquid cluster, additivity of thermodynamic potentials yields

I 1 I P2

F(pz) =F(p, ) 1 — +—
Fctggtef Fciggter F(p2)+ V p dp,

i}pV V PI
(A1)

where F,~ „,is the total free energy of the cluster. The bulk part of the liquid free energy at the coex-
istence curve is, from the double-tangent construction, F',t„,"t„=(l/bp)[F(pg„)+p, „hp]. The formation
free energy of a cluster is then obtained from the difference

~X P2~=Fcluster Fcluster = [F(pl ) F(pgss)]+ V ttt "P—llgcues .
hp Pj

Since l = V(pq —p2), one can rewrite Eq. (2) as

Pp

[F(pt) —F(pg~)]+ Vf 5p, dp= [F(pt) —F(pg„)]+F'"

where the interfacial free energy of the cluster is found as

F&'" Vf 5y, dp——.

(A2)

(A3)

{A4)

(A5)

This expression only requires that 5p{p~)=5p(pz) is small, i.e., p2&) p . It is not hampered by any uncer-
tainty about the physical nature of states near p . Equation (4) is equivalent to Eq. (12), since
dl =V(dp2 —dpt), and hence [the variable x in Eq. (12) is proportional to 12r3 ]

F'~= ,'f 5pl'i'd(l'i')—= f 5lgdl=V f 5p, dp f 5lgdp =V—f 5pdp. ,

'Present and permanent address: Faculty of Education,
Yamaguchi University, Yamaguchi 753, Japan

For recent reviews, see J. S. Langer, in Systems Far
from Equilibrium, edited by L. Garrido (Springer,
Berlin, 1980), and Refs. 2 and 3. Earlier work is re-
viewed in Refs. 8 —10.

2K. Binder, J. Phys. (Paris) 41, C4 —51 (1980).
K. Binder and D. Stauffer, Adv. Phys. 25, 343 (1976).

~K. Binder and M. H. Kalos, J. Stat. Phys. 22, 363
(1980).

5J. S. Langer and A. J. Schwartz, Phys. Rev. A 21, 948
(1980).



H. FURUKAWA AND K. BINDER 26

N. J. Gunther, D. A. Nicole, and D. J. Wallace, J.
Phys. A 13, 1755 (1980).

7R. McGraw and H. Reiss, J. Stat. Phys. 20, 385
(1979).

Nucleation edited by A. C. Zettlemoyer (Dekker, New

York, 1969); Nucleation Phenomena, edited by A. C.
Zettlemoyer (Elsevier, New York, 1977).

F. F. Abraham, Homogeneous Nucleation Theory

(Academic, New York, 1974).
' J. Feder, K. C. Russell, J. Lothe, and G. M. Pound,

Adv. Phys. 15, 117 (1966).
' J. S. Langer and L. A. Turski, Phys. Rev. A 8, 3230

(1973); K. Kawasaki, J. Stat. Phys. 12, 365 (1975).
J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258
(1958); +1, 688 (1959).

A. Eggington, C. S. Kiang, D. Stauffer, and G. H.
Walker, Phys. Rev. Lett. 26, 820 (1971);C. S. Kiang,
D. Stauffer, G. H. Walker, O. P. Puri, T. D. Wise,
Jr., and E. M. Patterson, J. Atmos. Sci. 28, 1112
(1971); P. Hamill, C. S. Kiang, and D. Stauffer,
Chem. Phys. 28, 209 (1974).

' J. S. Langer, Ann. Phys. (N.Y.) 54, 258 (1969);41, 108
(1967).

'5B. Widom, in Phase Transitions and Critical Phenome-

na, edited by C. Domb and M. S. Green (Academic,

New York, 1972), Vol. II.
M. E. Fisher, Physics (N.Y.) 3, 255 (1967).
D. Stauffer, C. S. Kiang, and G. H. Walker, J. Stat.

Phys. 3, 323 {1971);see also L. P. Kadanoff, in Criti-

cal Phenomena, edited by M. S. Green (Academic,

New York, 1971).
K. Binder, D. Stauffer, and H. Muller-Krumbhaar,
Phys. Rev. B 12, 5261 (1975).
K. Binder, Ann. Phys. (N. Y.) 98, 390 (1976).

2 R. Kretschmer, K. Binder, and D. Stauffer, J. Stat.
Phys. 15, 267 (1976).
C. Domb, J. Phys. A 9, 283 (1976).
A. Coniglio and W. Klein, J. Phys. A 13, 2775 (1980).

2 D. Stauffer, J. Phys. (Paris) Colloq. 42, L99 (1981);J.
Roussenq, J. Aerosol Sci. 12, No. 6 (1981)~

24D. J. Wallace and A. D. Bruce, Phys. Rev. Lett. 47,
1743 (1981).

25R. B. Heady and J. W. Cahn, J. Chem. Phys. 58, 896
(1973).

D. Dahl and M. R. Moldover, Phys. Rev. Lett. 27,
1421 (1971).

J. S. Huang, W. I. Goldburg, and M. R. Moldover,
Phys. Rev. Lett. 34, 639 {1975).
A. J. Schwartz, S. Krishnamurthy, and W. I ~ Gold-

burg, Phys. Rev. 22, 2147 (1980).
R. G. Howland, N. Wong, and C. M. Knobler, J.
Chem. Phys. 73, 522 (1980).

3'T. L. Hill, Thermodynamics of Small Systems (Benja-

min, New York, 1963/1964).
'Note that in Ref. 4 the symbol I stands for particle

number rather than excess mass of the cluster; hence

Eq. (32) of Ref. 4, which corresponds to the present

Eq. (5), contains an additional factor l —ps /psq„, d.

The condition R « V' is necessary since, due to the
periodic boundary condition in the system, the config-
uration with minimum interface area is that of a
domain with two flat interfaces (of area V ' each) for
densities p2 exceeding a density p2 corresponding to a
radius R, [Eq. (2)] which is given by 4trR, =2Vt~',

R~ =(2~) ' V' . Even for R somewhat smaller
than R, fluctuations in which such a state with flat
interfaces instead of a spherical domain are formed,
and which correspond to 5p =0, could introduce a
small but systematic decrease of the average value of
5p and hence be the source of a systematic error.
C. Domb, in Phase Transitions and Critical Phenome-

na, edited by C. Domb and M. S. Green (Academic,

New York, 1974), Vol. 3, p. 357; see also J. Zinn-

Justin, J. Phys. (Paris) 40, 969 (1979).
K. Kawasaki, in Phase Transitions and Critical Phe-

nomena, edited by C. Domb and M. S. Green

(Academic, New York, 1972), Vol. 2.
Monte Carlo Methods in Statistical Physics, edited by

K. Binder (Springer, Berlin, 1979).
H. Meirovitch and Z. Alexandrowicz, Mol. Phys. 34,
1027 (1977).

H. Muller-Krumbhaar, Phys. Lett. A 50, 27 (1974).
K. Binder, Phys. Rev. A 25, 1699 (1982).

39H. B. Tarko and M. E. Fisher, Phys. Rev. B 11, 1217
(1975).

~C. Rottman and M. Wortis, Phys. Rev. B 24, 6274
(1981);J. E. Avron, H. van Beijeren, L. S. Schulman,
and R. K. P. Zia (unpublished).


