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A one-dimensional, one-parameter-map model for dissipative systems with translational

symmetry is studied. The map possesses confined periodic and chaotic solutions which

form an infinite array on the real line, periodic or chaotic running solutions which pro-

pagate coherently to the left or right, and a variety of diffusive motions where iterates

wander over the entire interval like a random walk. The onset of diffusion in various re-

gions of parameter space is studied in detail and simple dynamical models for the behavior

of the diffusion coefficient near bifurcation points are constructed.

I. INTRODUCTION

Far-from-equilibrium, nonlinear, dissipative sys-

tems display a rich structure of periodic and chaotic
states. If such systems also possess translational

symmetry new types of behavior are possible:
There exist periodic and chaotic running solutions
as well as diffusionlike motions. Likely candidates
for such behavior are systems in which the underly-

ing potential is periodic, and examples which have
been recently studied include a driven superionic
conductor' and a Josephson oscillator in the pres-
ence of microwave radiation. Typically the equa-
tion of motion takes the form

q = —q/z+a sin2mq+p corot,

where q denotes the ion position or superconductor
phase. The first term on the right-hand side ac-
counts for the dissipation, with v the relaxation
time, and the last term is the external force, which
drives the system out of equilibrium. One may also
consider the case of a parametrically driven oscilla-
tor

q = —q/v+(a +p corot)sin2nq . (1.2)

Clearly these equations possess translational sym-
metry.

The multidimensional nature of the parameter
space leads to a fairly elaborate pattern of bifurca-
tions for these systems, but generally a number of
distinctive processes are observed. For certain
parameter values solutions are confined to a speci-
fied q interval (dependent on initial conditions) and

do not cover the entire configuration space. These
confined solutions may be either periodic or chaot-
ic. Another type of motion corresponds to running

solutions in which the particle coherently hops from

one well to another in the periodic potential

again such motion may be periodic or chaotic. The
dominant type of motion is diffusion where the tra-

jectory wanders in a random walklike fashion over

the infinite interval. A common feature of these

systems is the occurrence of broken symmetry,
multistability, and hysteresis. The running solu-

tions obviously possess broken-symmetry, running

either to the right or left, also orbit-doubling bifur-

cations occur where an orbit splits to give two new

orbits rather than one subharmonic orbit with twice

the period.
In this article we attempt to provide a description

of some aspects of the behavior of such systems.
However, we do not study the differential equations
of motion, but instead consider a simple, one-

parameter, one-dimensional map which, by con-

struction, has translational symmetry. This map
model possesses a11 of the different types of solution
referred to above, and, because of its simplicity, per-
mits a detailed study of the pattern of bifurcations
and the mechanisms by which they arise.

In Sec. II we describe the map and give an over-

view of the bifurcation structure as the map param-
eter is varied. Sections II and III are devoted to an

analysis of the onset of diffusion. In Sec. III we

discuss the mechanisms which operate when dif-
fusive motion occurs, and in Sec. IV we construct
models for the diffusion coefficient, which charac-
terizes such random motion in various regions of
parameter space. Section V contains a discussion of
some aspects of the results.
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II. CLIMBING-SINE MAP

Many features characteristic of nonlinear dissipa-
tive systems which possess translational symmetry
are also exhibited by a simple "climbing-sine" map,

x, + i ——x, +A, sin2mx, =S(x,;A,), (2.1)

where A, is a parameter —00 &A, &+00. However,
only either positive or negative A, need be considered
for the following reason: From Eq. (2.1) X=O cor-
responds to a continuous symmetry of the system
where every point x is fixed. For A, &0 the equation
of motion (2.1) becomes

x, +t ——x, —
~

A,
~

sin2nx, (2.2)

or
I 1 1

x,+t+ —,=x, + —, + ~A, ~sin2n(x, + —,),
so that in the plane X={A,)X{x] the solution

structure (stable periodic or chaotic orbits, etc.) for
A, &0 is a mirror image in the line A, =O of the solu-

tions for A, &0, but shifted by half a unit; on either
side of A, =O the continuous symmetry is broken.
The translational symmetry of S also implies that if
{xp,x,, . . . , x„.. . ) is a trajectory then so are

{xp+k,xt+k, . . . , x„+k, . . . , f and {k'—xp)t
k' —xt, . . . , k' —x„.. . j for all integers k and k'

and it is useful throughout the discussion to think
of sets of solutions being generated by such transla-
tions.

While discussing some properties of the differen-
tial flows in the Introduction we noted the existence
of confined, running, and diffusive solutions. Simi-
lar types of behavior also exist for the map, this
motion being characteristic at a particular value of
A, . Operationally these classes of trajectories can be
distinguished by the asymptotic properties of their
first two moments, and in describing them we as-
sume sufficient time has elapsed for transients to
disappear. Confined solutions may be periodic or
chaotic and eventually all their iterates lie within
some finite interval (a,b); such orbits have finite
"diameter" and asymptotically constant mean and
dispersion. Running solutions, however, show, on
average, a linear progress to the left or right with
time. This motion may not be monotone but back-
track regularly; we shall consider only the simplest
case without such reversals. The antisymmetric
form of the map S [Eq. (2.1)] indicates that running
solutions must come in pairs which, taken together,
restore the overall dynamical symmetry. These
solutions may be periodic or chaotic but are disper-
sionless: They have an asymptotically finite second

moment because any connected ensemble of points
running to the left or right will migrate without
spreading. Finally there exists a variety of diffusive
solutions which behave like Markovian random
walks. Although some of these solutions show ini-
tial persistence, i.e., a slowly decaying first moment,
they have a vanishing asymptotic first moment and
a growing second moment that shows a Gaussian-

type increase at long times.
In the rest of this section we use the properties of

simple periodic solutions and running solutions to
illustrate some important dynamical features of the
dispersionless solutions of S. Throughout this
analysis it is convenient to divide the real line into a
lattice of cells with the periodicity of S: The nth
cell is the interval [n —l, n) for integer n Fo.r A, & 0
the cell boundaries x =n are unstable fixed points
and x =n ——,, the cell midpoints, stable period 1

for small A, . For A, &0 the stability of these two sets
is reversed as indicated earlier; this broken symme-
try is shown in Fig. 1. The way the stable period-1
solutions approach the line A, =O is reminiscent of
the behavior of the residual magnetization of a fer-

U'..
'

UU
2

UU .:U
'1 1 1' 2' 22" —IQ

—0.5

x

A:" R, A . , A
—-1.5

FIG. 1. Periodic solutions of S are shown. Vertical
lines at equal intervals are period-1 solutions, stable at
A, =0 and becoming unstable at

~

A,
~

=A,
~
——1/n. Note the

half-integer shifts between the upper- and lower-A. half-
planes. Period 1 subharmonically bifurcates into sym-
metric period 2, shown as (1,2) for one solution. At
A, =—,(1,2) bifurcates to two asymmetric period 2's (1',2')

and (1",2"). At A, b
——0.5483 these bifurcate to two period

4's (not shown). Although truncated at A, =0.9 such solu-
tions persist for all larger A. values. A, M

——0.7326 is the
band-merging (migration) transition; A, q

——1 is the transi-
tion to running solutions. A., =1.4653 is the first tangent
bifurcation to symmetric period 2, paired (1,1), (2,2),
etc. Dashed curves have no mates in the Figure. For
each such pair the outside is initially stable and the inside
unstable. A, =1.5 is the orbit-doubling bifurcation for
these period 2's. Note that narrowing windows, e.g.,
A, l

——vs A,, ——with increasing A, .
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rornagnet. Period 1 is stable for 0&A, &1/m and
superstable at A. =1/2m. For all points x =n or
n ——, (at any A,) d S/dx =0 so that covergence to
superstable period 1 is exceptionally fast.

The period-2 fixed points can be found, as usual,
from the second power of the map

splits by an orbit-doubling bifurcation into two con-
jugate, stable asymmetric period 2's. These orbits
and their basins are interleaved. The symmetric
period-2 bifurcations can be predicted from the
derivative of S' ' which is given by

S' ' = (1+2m.A, cos2n-x)

x =S'2'(x;A. )—:S(S(x;1i,);A, )

or explicitly

sinir(2x +1i,sin2ex)cos(irk, sin2irx) =0 .

(2.3)

(2.4) S' ' =(1+2m A, cos2ex), (2.8)

X [I+2m A, cos2ir(x +)i, sin2nx)] . (2.7)

Using Eq. (2.5) we obtain

The two factors in Eq. (2.4) correspond to distinct

types of period 2. From the first factor we obtain

the equation

2x+A, sin2nx =n (integer n) (2.5)

or

The orbits corresponding to Eq. (2.6) are unsymme-

trical (with respect to either cell midpoints or boun-

daries) but come in conjugate pairs: indeed these

pairs are born out of the symmetrical solutions of
Eq. (2.5). In contrast to integer n in Eq. (2.5), m (or
A,) in Eq. (2.6) determines the diameter of the orbit,
not its position, since x appears only as an argu-

ment of a periodic function.
We now consider the configuration of period-2

solutions in the X plane: For A, smaller than some
critical value A,~- 4 each cell is mapped into itself
under S and trajectories cannot migrate on the lat-
tice. Corresponding to this strictly confined
dynamics for small A, we observe in Fig. 1 that the
symmetric period-2's lying closest to the line A, =O
arise from the stable period-1 solutions by subhar-
monic bifurcation ' at X=1/m. The components
of these period 2's separate as A, increases, first go-
ing through double superstability and reaching mar-

ginal stability at A, = —,. At this point, where the
solutions of Eqs. (2.5) and (2.6) coincide, period 2

S(x;A,)=—x+n .

This latter form is especially convenient for graphi-
cal construction of the fixed points since they just
correspond to the intersections of the family of
straight lines y= —x+n with the map function
S(x;A, ). Equation (2.5) corresponds to symmetric

period 2 whose components are equidistant from
the point n /2, a cell midpoint or boundary; their di-

ameter
~

x —S(x;k)
~

is not greater than A, .
Similarly the second factor in Eq. (2.4) yields

ksin2mx =+(m + —, ) (m non-negative) .

(2.6)

which is always positive. The conditions for mar-

ginal stability of symmetric period 2 are that
S' ' =1 and Eq. (2.5) be satisfied. This is true for

1 1 3
x =n ——, at A, = 1/m and for x =n + 4 or n + 4 at

May has described precisely this

phenomenon for the antisymmetric cubic map.
Correspondingly up to A, =A,~ the bifurcations
within each cell are expected to follow those of the
cubic map, where each pair of basins contains ident-
ical subharmonic cascades into confined chaos,
tangent bifurcations, etc., until eventually the sym-

metry of the solution is restored and at A, =A,M there
is a continuous invariant density whose support is
the entire cell width. For A, & A,M trajectories may
wander between cells and there is a change in the
dynamical origin of symmetrical period 2. Period 1

is unstable at these larger A, values so that period 2
cannot appear by a local subharmonic process; in-
stead the form of Eq. (2.5) implies that symmetric
period 2 arises by tangent bifurcation out of (dif-
fusive) chaos. The orbit components are in this case
well separated and, as usual, appear in stable and
unstable pairs. The lowest-lying period-2 tangent
bifurcation, shown in the X plane in Fig. 1, occurs
at A,, =1.465 28826501. Since the stable orbit corn-
ponents occur at unit intervals and the diameter of
the orbit is nearly A., these symmetric period 2's

necessarily interlace. As A, increases further this
symmetric solution undergoes an orbit-doubling bi-
furcation at A, =1.5. The asymmetric period-2 or-
bits then undergo subharmonic cascade into chaos,
etc., which breaks down into diffusion since the or-
bits are no longer confined within single cells. Or-
bit doubling from symmetric, tangent period 2 oc-
curs at every (larger) half-integer k value, the result-

ing asymmetric period 2's being followed by subhar-
rnonic cascade; this symmetry-breaking bifurcation
connects the sets of solutions of the two factors of
Eq. (2.3). The criteria S' ' =1 and S'2' —x =0 also
hold for bifurcation of these "tangent" symmetric
period 2's and although the period-doubling bifur-
cation can always be found very easily the tangent
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tan2mx —2' +~n =0 (2.9)

and A,, is given by (see Table I for a tabulation of A,,
values)

1
~t o' cos277x

(2.10}

where n has the value appearing in Eq. (2.5). From
1 3

Eq. (2.10) A,, diverges as x tends to n + —, or n + —,,
which alternatively stated means we observe de-

creasing stability windows with increasing A, , the or-

bit components converging to the asymptotic posi-
tions of the map extrema.

The two sets of asymmetric period 2's that arise
from the symmetric tangent orbits are

1 . 2m+1x i
——n + arcsin

1 1

(n —
4 &x &n+ —,)

2m+1 1 . 2m+1
xq =n + + arcsin

bifurcation itself can only be determined from a
transcendental equation. For the components this is

where the + signs refer to iterates running to the
right or left. The solutions of Eq. (2.1) that satisfy
this condition are obtained from

+m =A, sin2mx'-+' . (2.16)

The explicit solutions are

(+) 1 1 . m
x —=n +—+ arcsin

2 2'
(n+ 4 &x&n+ —,) . (2.17)

These solutions are stable for

m &A&(n. +m )' {2.18)

with superstability occurring at A, = [(4H)
+ m ]' W. hen )(, is increased beyond

(e +m~}'~~ in each integer interval of I, this
"period-1" running solution bifurcates to a period-2

running solution and a subharmonic cascade takes

place culminating in a chaotic running solution.

There are actually large numbers of coexisting run-

ning solutions. If we have a running solution with

period 2" then there are, in general, m 2"+ separate

attracting solutions; each point on an attracting or-

bit satisfies the condition

(m+n+ —, &x &m+n+ —,) (2.11) S' '(x'+-'A, )=x'+-'+m 2" . (2.19)

2n +1
x& ——

2

1 . 2m+1
arcsin

2m'

m+I

diffusion

(n+ 4 &x&n+ 4)
i

4' period 2'W2'P ~ confined chaos
period 2

1 . 2m+1
x2 =m +n +1— arcsin

2m' 2i

m +—, & A, & [(2n ) '+ (m + —,)']'~' .

Clearly

(2.13)

x]+x2 ——x2+x', =2n +m +1 . (2.14)

We now summarize the properties of the simplest
(monotone} running solutions which can only occur
above the threshold A, =A,~, like confined solutions
for A, &A~ these may break down into diffusive
motion. They satisfy the condition

x,'+& ——x,'-+'+m (m a positive integer) (2.15)

(m+n+ —, &x &m+n+ —, ) (2. 12)

where A, must satisfy the condition (2m + 1)/
2A, & 1. These solutions are stable for

dif fusion

4 running solutions
IV
w et

diffusion

period 2'~Zf ~confined chaos

period 2

period i

FIG. 2. Diagram depicts some of the major bifurca-
tion sequences for the climbing-sine map. Regions la-
beled period 2 correspond to symmetric period-2 orbits,
while period 2' refers to broken-symmetry period-2 or-
bits. The regions containing the subharmonic bifurca-
tions and subsequent confined chaos arising out of period
2' are not drawn to scale. The vertical arrows in the
upper portion of the figure indicate the directions in

which the boundaries move as m increases. The large
diffusion regions are punctuated by small windows of
other types of periodic and nondiffusive behavior.
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TABLE I. Tabulation of transition points corresponding to the onset of diffusive motion as a function of m. A, , value

of A, at which the probability of jumping from cell n to cell n+(m +1)within one iteration becomes finite; A,„tangent bi-

furcation from diffusion to confined period 2; A, cq, breakdown of chaotic running bands into diffusion; A, «, breakdown of
confined two-banded chaos into diffusion. Running solutions are born out of chaos by a tangent mechanism at A,q

——m.

The correspondence between A., and m is achieved by restricting x in Eq. (2.9) to —&x & —and setting n =m + l. It is

interesting to note that 2AM ——A,, for those )(,, whose integer value is odd. This follows from the fact that Eq. (3.2) and the

defining equation for M, cos2mM =1/2m', ~, are equivalent to Eqs. (2.9) and (2.10) if n and A,, are replaced by 2(m +1)
and 2k~, respectively. An analogous relation exists between those A., whose integer value is even and a set of transition

values A,~ which correspond to the first occurrence of direct mappings from cell n to beyond the midpoint of cell

n+(m+1). The relevant equation is S(M;A,~)=S(—M+m+3;A, ~)=m+ —,where M is the maximum in cell one.

~CR

0
1

2
3
4
5

6
7
8
9

10

0.732644 1325
1.742 727 5076
2.745 385 4573
3.746 6190709
4.747 331 9046
5.747 796 3803
6.748 1230729
7.748 365 3851
8.748 552 2751
9.748 700 8085

10.748 821 6960

1.465 288 2650
2.479 540 3563
3.485 455 0151
4.488 709 0356
5.490 770 9145
6.492 195 1287
7.493 238 1418
8.494 035 0466
9.494 663 8091

10.495 172 5924

1.1082300133
2.056 206 9659
3.037 758 3170
4.028 395 9089
5.022 745 5687
6.018967 7561
7.016264 8727
8.014235 6293
9.012 656 2511

10.011 392 1453

1.541 891 9939
2.525 257 9399
3.5180664833
4.514059 8360
5.511 506 8851
6.509 738 2458
7.5084407121
8.507 448 2178
9.506 664 5281

10.506 0300307

The subharmonic cascade of the confined solutions
described earlier as well as that for the running
solutions satisfy Feigenbaum's scaling. '

In this section we discussed period-1 and -2 solu-
tions: In the parameter regime A, & A,M escape from
any cell is impossible; the solution structure for S is
a periodic analog of the bound solutions for the an-

tisymmetric cubic map; just above this A, value, mi-

gration between cells ensues. At a series of larger A,

values, period 2 arises out of diffusive chaos by
tangent bifurcation and undergoes orbit doubling at
half-integer A, values followed by a subharmonic
cascade into conjugate pairs of chaotic bands, etc.,
which then break down again into diffusive chaos.
The other important nondispersive motions are the
running solutions. Their bifurcation history with
increasing A, follows the usual route of subharmonic
cascade into chaotic running bands with eventual
reemergence of diffusive behavior. Broken symme-

try is an intrinsic feature of these trajectories. The
cycles and sequences of these phases are summa-
rized in Fig. 2 which displays only the dominant
structure discussed above. From Eqs. (2.13) and
(2.18) which refer to such confined and running
solutions we infer that the width of the windows is
0(m ') for large m. In other words we expect the
bandwidth of a hierarchy of solutions to decrease as

Other, finer bifurcation histories are embed-

ded in ()i,J. We now turn to a detailed description

of diffusion under S and its connection with disper-
sionless behavior.

III. MECHANISMS FOR THE ONSET
OF DIFFUSIVE MOTION

The onset of diffusive motion occurs in several
characteristic ways for this map. Diffusive orbits
may arise from both confined chaotic and running
chaotic solutions; also, diffusive orbits may bifur-
cate to give periodic running or confined solutions.
Below we describe the mechanisms by which these
transitions take place and give examples.

A. Chaotic-band merging

The first transition into diffusive motion occurs
at I,=A~ ——0.732 644 1325. . . and involves the
merging of the array chaotic bands that were con-
fined within separate unit cells for A, &A,~. The
band-merging mechanism can be discussed in more
detail by referring to Fig. 3, which shows the map
in the first cell for A. ~A,~. From the figure it is
clear that the maximum M is mapped into 8 while
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C A M

I I

M) Mp

yL~ BD
I I

L) Lp

the minimum L is mapped into A; both A and B are
mapped into the interior of AB. Furthermore, the
intervals OA and B 1 are eventually mapped into AB;
since C and D are the preimages of A and B, respec-

p(x)

FIG. 3. Solid curve is the graph of S(x;A, ) in the first
cell for A, (A,~. Iterates are confined to the interval AB,
where A and B are the images of the minimum L and
maximum M, respectively. Dashed curve depicts S for
A, &A.~. Points in the intervals M and W escape to
neighboring cells.

S(M;A,M) =S(—M+2;A,sr)=1 . (3.1)

The second equality follows from the fact that at
A.M the minimum in cell two, which is located at
—M+2, is also mapped onto one. The density for
a value of A, )A,M is shown in Fig. 4(b). This cell-
wise band-merging process is analogous to that
described by other workers for band merging in the
quadratic map. " ' It is clear that a condition
such as this will apply whenever the maxima and
minima of S pass through an integer value; thus one
may write the more general relation

tively, CA and BD are mapped directly into AB
while points in OC and D1 require more than one
iteration to reach this interval. However, it is gen-
erally observed for A, close to A,M that every open
neighborhood of AB is visited by almost all trajec-
tories starting in AB, so that AB supports a continu-
ous invariant density. This is the usual way in
which banded chaotic regions are formed "",and
in the present case one has an infinite number of
such disjoint bands, one in each cell. The strobo-
scopic density [density for x (mod 1)] for this case
is shown in Fig. 4(a).

As A. is increased the value of the map at the
maximum in cell one becomes equal to unity (of
course, simultaneously the map at the minimum be-
comes equal to zero and maxima and minima in
other cells achieve integer values) and escape to
neighboring cells is possible. At this transition
value of A, ( =A,M ), B, the image of the maximum,
coincides with the unstable fixed point x= 1 while A

coincides with x=O. Thus A,M is determined by the
condition

p(x)

4("~ W M ~A/'ill

(b)

S(M;AM)=S( —M+m+2;AM)=m+1 . (3.2)

However, while the value of A,M obtained from Eq.
(3.1) corresponds to a transition to diffusive motion,
the transition values A.M obtained from Eq. (3.2) for
m+0 lie in a A, region for which the motion is al-
ready diffusive: these values of A,M correspond to
the first occurrence of direct mappings from cell n
to cell n+(m+1). The values of A,M are given in
Table I for several values of m.

B. Tangent mechanism

FIG. 4. Plots of the invariant density p(x) illustrating
chaotic-band merging. (a) A, =0.6328 & A,M, a chaotic
band in cell one. Identical bands exist in other cells. (b)
A, =0.7328) A,, the bands which were confined to cells
have merged.

The large diffusive region which begins at k.M
terminates in a period-1 running solution at A, =1.
(As noted earlier, this region is punctuated by small
windows of various types of nondiffusive orbits.
We shall not discuss such fine structure here but in-
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(a)

X p(x)

x,

FIG. 5. Map iterates (mod 1) for A. & 1. Running solu-

tions arise by a tangent mechanism when the map {mod

1) touches and then crosses the bisectrix.

0 X I

t M~ &r a—~r~

(b)

stead focus only on the major transitions. ) The run-

ning solution is born out of the diffusive solution by
a tangent bifurcation mechanism. This is most
easily seen in the mod-1 representation of the
dynamics shown in Fig. 5, where map iterates (mod

1) are plotted for a value of A, somewhat less than

unity. It can be seen that the map function ap-
proaches and finally touches the bisectrix' , the slope
of the map for X=1 at these touching points has
the value + 1 characteristic of a tangent bifurca-
tion process. Since a tangent mechanism is opera-
tive one expects that the diffusive motion will exhi-

bit intermittency. ' ' For values of A, slightly
smaller than unity iterates (mod 1) consist of small

steps through the channels formed by the bisectrix
and the map function (inod 1) near the inaximum

and minimum. Close to bifurcation the widths of
the channels are small, leading to a large number of
steps, and since the length of the channel is also
small we have a large number of nearly periodic
iterates. In the actual dynamics, motion through
the channel associated with the map maxima con-
sists of iterates running to the right with a step
length of approximately one cell, while the left-
running solutions takes place in the channel associ-
ated with the map minima. Outside these channels,
the motion is apparently irregular and diffusionlike.
Hence, the dynamics exhibit the features charac-
teristic of intermittency: long, nearly periodic runs

to the left or right interspersed with irregular, dif-
fusive motion. Provided one works in a mod-1 rep-
resentation a model for the evolution can be con-
structed which parallels that for the chaos to
period-3 transition in the logistic equation.

As in the case of the logistic equation the dynam-
ics is most conveniently discussed by partitioning
the unit interval into basins and watersheds [cf. Fig.
6(a)].'6 A basin A is a small region of the unit in-

terval in which the motion of the map iterates is
regular and nearly periodic. In the present case we

have two basins chosen symmetrically about the

p (x)

0.235
J

0.265

FIG. 6. (a) Invariant density (mod 1) in the diffusive

region A, &1 which precedes the appearance of running

solutions. Inset shows the partitioning into watersheds

and basins. (b) A magnified picture of the left resonance

spike which shows the decoration by spires arising from

the square-root singularity in the functional map.

map maximum and minimum (mod 1), which con-
tain the channels described above. The left basin

QADI is associated with iterates that run to the right
but the local drift from the initial value (iterate mod
1) is to the left, i.e., while the iterates consist of
steps of approximately unit length to the right, they
become shorter as they progress through the chan-
nel. Similarly the right basin 9F„corresponds to
iterates running to the left with local drift to the
right. The remainder of the unit interval consists of
watersheds where the motion is chaotic. The mid-
dle watershed M is located between A~ and A,
while the watersheds O'I and 8', lie to the left of
AI and to the right of A„, respectively. An analo-

gous description holds near any integer value of A,

except that at A, =m the iterates are able to hop m

cells at each step.
Because of the large number of steps in the basins

the invariant density in the mod-1 representation is
sharply peaked in these regions, as can be seen in

Fig. 6(a), with only a small and roughly uniform
density between the spikes. The local (mod-1)
motion and invariant density within the basins can
be described by a resonance' or continuum' '
model since the steps are small. Given the nature of
the running solution in Eq. (2.15), the "fixed
points" corresponding to these solutions are given



26 DIE'2'USIVE DYNAMICS IN SYSTEMS WITH TRANSLATIONAL. . . 511

by Eq. (2.16). For )(, less than m in each integer in-

terval of A, there are (locally) no real stable solutions

to this equation; )here are, however, complex solu-

tions z+-which close to bifurcation are given by

z —+ —=g, I+ill(+)
4+—(e/2m) ~l 1 2

77

4 +—(e/2m)'
(3.3)

where e=m —A.. These complex fixed points
govern the dynamics on the real line.

The invariant density within AI or 9F„p~ or p„
respectively, can be obtained from a continuity
equation supplemented with a source term':
Iterates which enter the watershed

UM~ UM, are strongly mixed and assumed to
reenter a basin uniformly at a rate r per iteration.
The continuity equation involves the velocities of
the iterates (mod 1), which, near bifurcation, can be
expressed in terms of the real and imaginary parts
of the complex fixed points:

with a= 1 and i) =r)a. The maximum length of a
run before the basin boundary is crossed and entry
into the watershed occurs is t,„=(2/Cg)
&(arctan(X0/g), while the average length of a run
is (t) =(Ci)) ' arctan(XO/i)). We shall have oc-
casion to use these results in Sec. IV where the dif-
fusion coefficients are discussed.

The tangent mechanism is also operative for the
transition from diffusion to confined period 2 that

1

occurs for values of A, somewhat less than m +»
the first transition occurs at k, =1.4652882650.
The second power of the map is plotted in Fig. 7
and shows the maxima and minima that approach
the bisectrix as the bifurcation point is reached.
The analysis is similar to that for the logistic equa-
tion near period 3 except that now one must work
with the fixed-point equation for the second power
of the map and deal with the infinite interval since
the period-2 orbits are interlaced as discussed in
Sec. II.

In order to partition the infinite interval into
basins and watersheds, consider the graph of the

X, I =5, I ——C„I(X, I+gR ), (3.4)

where X, (
——x —g, ( and C„(——+2m)r =+C. The

invariant densites are thus given by the solutions of
the continuity equation

d

dXr,
[6„(X„}p„(X„,)]=r . (3.5)

Very close to bifurcation the density in the basins is
nearly Lorentzian in shape, '

p„((x)= 1 '9z
2 , (3.6)

2~ (X 0;))'+rIR—
1 3

with centers at 4 and 4 with halfwidths g~. These

features are confirmed by the density in Fig. 6. %'e

also note that the uniform reentry of iterates into
the basins, in conjunction with the local flow of
iterates within a basin, leads to the skewing of the
spikes to the left for p~ and to the right for p, . The
magnified left resonance spike [Fig. 6(b)] also exhi-

bits the decoration by small spires which arise from
the square-root singularity in the functional map-

ping. '6

The local continuum model of the map [Eq. (3.4)]
can also be used to compute the probability distri-
bution of runs of length t given a random entry into
a basin. For a channel length of 2Xp the result is'

P (t) = [1+tanz[arctan(XO/rI )—Ci)t ]],
0

(3.7)

~(() +0) ~)
(slo) e]&) (s(() (()(0) (s(I) e[o

FIG. 7. Plot of S(2'(x;A, ) for A, =1.465=A, , illustrating
the appearances of period 2 by a tangent mechanism. In-
set shows the partition of the (infinite) interval into
basins and watersheds.
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second power of the map in Fig. 7. We designate
the two basins associated with an almost resonant
period-2 orbit type one or type two depending on
whether S' '(x;A, ) approaches the bisectrix from
above or below, respectively. The orbits are num-

bered according to the scheme in Fig. 7. Thus,
basins will be denoted by 3F'&'z, where i labels the or-
bit. Note that the ith orbit has fixed points in cells i
and i+m. From the figure one can see that the
basins are interleaved in the sequence I AI",Aq'
A'&'+",Az" I. Watersheds lie in between these
basins. Denote the watershed that immediately pre-
cedes the basin 4''k' by HI,'. It can be seen that
p( H~') &p( P"zJ'). The full watershed is

U, kP k
——M. Motion in P is chaotic and dif-

fusive; when an iterate enters a basin it is trapped
for long periods of time in the period-2 resonance.

For the application of the resonance model to this
case we notice that Eq. (2.3) fails to have real solu-

tions locally for values of A, (A,, but does possess
solutions in the complex plane, which lie close to
the real axis;

z;=S' '(z;;A, ) (i =1,2)

and near bifurcation
' 1/2

7T 2~f

(3.8)

(3.9)

where g; is the solution to Eq. (2.5) at bifurcation
and @=A,, —A,. The motion within each basin is

again well approximated by a continuum model and

the stroboscopic velocity can be obtained from the
expansion of S' '(x;A, ) near bifurcation:

X] p
——5') p(x p A, ) =C] p(X] g+gf ) y

with X~ ——x —g; and

C—=C~ ——(2n) A,,sin2mff= —Cq .

The probability of a run of length t in a basin is
given by Eq. (3.7) with a=C/2HA, , and rj=g, in

Eq. (3.9). The model predicts that the invariant
density in a cell will consist of two nearly Lorentzi-
an resonance spikes with a small uniform density in
the watershed. From an examination of Fig. 7 it is
clear that the stroboscopic flow in a type-1 basin is
from left to right while it is from right to left in a
type-2 basin. Thus both resonance spikes in a cell
will be skewed toward the center of the cell. A11 of
these features are confirmed by the density shown
in Fig. 8.

While both of these transitions can be described
by a tangent mechanism, the underlying physical

p(x)

FIG. 8. Invariant density in cell one for
A, =1.46528026&A, Note that the two spikes in cell 1

are associated with different incipient period-2 orbits.

situation is quite different in each case. In the tran-
sition from diffusion to running solutions the
coherence length of the iterates diverges as A.z is ap-
proached; it is only in the mod-1 representation that
the steps are small and a continuum description ap-
plies. One expects the diffusion coefficient to
diverge. This diffusion is dominated by the contri-
bution from A, the contribution from M being
negligible. On the other hand, for the transition
from diffusion to confined period 2 one again ob-
serves intermittent behavior in the time series but
now iterates are confined for long periods of time.
One expects the diffusion coefficient to vanish at

In this case A contributes nothing to the dif-
fusion coefficient; only the motion in M is impor-
tant. These features will be discussed in detail in
the next section.

C. Chaotic-band breakdown

The running solutions which are born at A,z ——m
subharmonically bifurcate and ultimately give rise
to chaotic running solutions; as A, is increased fur-
ther these solutions break down and a diffusive
state appears. The mechanism for this transition
can be described by referring to Fig. 9. Recall that
the running solutions have broken symmetry,
streaming either to the right or left. Consider the
maximum of the map in cell one, which occurs at
M and belongs to a chaotic solution running to the
right. The maximum is mapped into A +m,
A +m =S(M;I,); A is mapped into B +m,
B+m =S(A;A, ). The point E is also a preimage of
B+m, B+m =S(E;A,). Suppose that E &B; then
(mod-1) points in the interval EB are mapped into
the interior of BA. Similar considerations apply to
the points I., A', B', and E' associated with the
minimum (left-running solution). Points in the in-
tervals OE, AA', E'1 are eventually mapped into BA
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(a)

examination of the mean-square displacement of the
map iterates and the associated diffusion coeffi-
cient, which is defined by the usual relation

((».—xo)')D= lim
1!—+ ao 2n

p(x) (4.1)

I I I

0 AMBE
I I

ESL'A' 2

(b)

p(x)

0 I 2
X

FIG. 11. (a) Invariant densities in two cells for
A, =1.5416 &A,~,. Chaotic band in cell 1 associated with
the map maximum is coupled to that in cell 2 associated
with the minimum. (b) Invariant density for
A, =1.5428)A, c, when the chaotic bands have broken
down.

dition for a transition is again that the points E and
B (or E' and B') coincide. Thus,

S (M ~Ac~) =S (L ~~cr )

=S"'(—M +m +1;Ac, ) . (3.12)

The values of A,~, for several values of m are given
in Table I.

%e note again that while the above mechanisms
are similar the underlying physical processes are
quite different: one expects that the diffusion coef-
ficient will diverge in the transition from diffusion
to chaotic running solutions, and vanish for the
transition from diffusion to confined chaotic solu-
tions.

where x„ is the position at iterate n given the seed

xo. Note that xo determines x„by iteration of the
map. However, in the diffusive regime x„ is a
"wild" function of xo, which allows x„ to be treated
as a random variable in the limit of large n. For
such ill-conditioned motion one identifies the en-

semble average with random sampling of xo over
the invariant density (mod 1). The mean-square
displacement was computed by averaging over an
ensemble of 1000 points in the first cell distributed
according to the invariant density and the diffusion
coefficient was calculated from runs of 10000 map
iterates. These results indicate that near bifurcation
the diffusion coefficient depends on the square root
of the deviation of the map parameter from bifurca-
tion. In this section we discuss the nature of the
diffusive motion in more detail and present models
for the diffusion coefficients in each of the regions,
which show the origin of this square-root depen-
dence.

A. Diffusion ~ confined chaos

From the discussion in Sec. III A it is clear that
the transition from confined chaos to diffusive
motion, which occurs at A,M, arises by iterates
"leaking" from small regions about the maximum
M and minimum L of the map; points near M are
mapped into the cell to the right while points near
L are mapped to the left-hand cell (refer to the
dashed curve in Fig. 3). The motion of iterates at
bifurcation is chaotic and the invariant density in a
cell closely corresponds to that for the cubic map, "
x, +~

——x, (3—4x, ); p(x)=[nv'x(1 —x)) ' (cf. Fig.
4). Thus, with the assumption of chaotic motion of
the iterates, just beyond bifurcation the probability
of a step to the right or left will be proportional to
the measure of the intervals (cf. Fig. 3)
M =(Mi,M2) and W =(L i,L2), p(M) =M2 —M)
and p(W)=L2 —L&, respectively: the measures of
these intervals grow as e'

IV. DIFFUSION COEFFICIENTS p(M) =p(W) =(2e/A~sr )'~', (4.2)

The nature of the diffusive state in the various re-
gions of parameter space can be studied through an

where @=A,—A,~.
The model we adopt for the diffusive motion in
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0 371m&n (4 4)

where the last two lines follow from Eqs. (4.1) and
(4.2) and the known values of Ms (the maximum at
the bifurcation point, henceforth denoted by the
subscript B) and A,M, Mz ——0.284 851 6736 and
A,M

——0.732 644 1325. The numerical results given
in Table II and displayed in Fig. 12 are in good
agreement with the predictions of this model. The
hopping which gives rise to diffusive motion is
similar to the band-to-band hopping discussed by
Shenker and Kadanoff. '

One additional feature of this transition should
be noted. From Fig. 3 one can see that in a transi-
tion to a neighboring cell a parcel of probability
fluid is mapped into an O(e) region [$(M;A, )—l
and S(L;A, ) are O(e) near bifurcation] near the un-

stable fixed points at x =0 and 1. Before such a
parcel of probability fluid can be reemitted there
must be time lapse O(in@). This rather weak depen-
dence on e does not appear to vitiate the simple

4,0
O

0
0 5.0

~
7.5

E. x )O

FIG. 12. Diffusion coefficient as a function of 6'

(lower) (~), chaotic-band-merging region; solid circles

(upper) (~), confined period-2 region; open circles (0),
chaotic period-2-band region. Error bars refer to +1
standard deviation.

this region is an unrestricted random walk with
probabilities p and q of taking steps to the right or
left, respectively, given by

p= f p(x)dx =q= I p(x)dx, (4.3)

where the invariant density p(x) is normalized to
unity on the unit interval. The probability of an
iterate remaining in the same cell is, of course,
r =1—(p+q)=1 —2p. Given this model for the
diffusive dynamics the diffusion coefficient is easily
obtained from the known mean-square displace-
ment ((M„) ) =[p+q —(p —q)2]n. Hence, near
bifurcation D is given by

D =p=p(Ms)(2e/AMP)'~

TABLE II. Diffusion coefficients near bifurcation. '

Numerical estimate Model

Diffusion ~
confined chaos
Diffusion~
running solutions
Diffusion~chaotic
running solutions
Diffusion~
confined period 2
Diffusion~
chaotic period 2

0.379

0.348

0.630

10.8

2.27

0.371

0.354

0.823

6.30

1.69

model of the diffusive motion and justifies the sim-

ple independent trial model for escape [Eq. (4.3)]
where these memory effects are neglected. A fur-
ther point is that a continuous invariant density im-

plies positive Liapunov number for the motion and
mixing within each cell before escape. This is com-
patible with an underlying assumption of statistical
independence. In fact, using the equation D =p and
the numerically calculated values for p yields a good
approximation for D throughout the interval
A,M & A, & 1 (excluding, of course, the neighborhoods
of small windows containing nondiffusive solu-
tions).

B. Diffusion ~ running solutions

At A,z ——m a running solution is born out of the
diffusive state by the tangent mechanism described
earlier. The intermittent behavior of the system
consists of long segments of correlated iterates run-

ning to the right or to the left interspersed with
chaotic motion. Thus, close to bifurcation a very
simple representation of the diffusive motion is pos-
sible: Since the iterates in the basins consist of steps
of roughly m cells (there is a slight drift in the m-

unit displacement per iteration due to the motion
across the resonance basin, but this is small com-
pared to the hopping distance, which is at least one
cell long) the actual velocity (not the velocity mod 1

discussed in Sec. III),

VI =XI+ i —XI =S(X~,'A. ) —XI, (4.5)

is apparently constant in the basins and is equal to

'Near bifurcation all diffusion coefficients have the
form D =de+—' . The table lists the values of d for the
various cases. The model calculations use the theoreti-
cal estimates of lifetimes, etc.
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D= lim
n —1n —1

I =0 I'=0

+m; the fraction of time spent in the watershed is
small' O(e' ) and motion in the watershed simply
serves to randomize the velocity, i.e., provides ran-
dom entry into the right or left basins. A typical
trajectory will therefore consist of long runs where
the velocity is strongly correlated (=+m) interrupt-
ed by "collisions, "which randomize the velocity.

The above description of the motion suggests a
calculation of the diffusion coefficient based on the
velocity autocorrelation function. Using Eq. (4.5),
the expression for D in terms of the mean-square
displacement may be written in the form

&ugup) = f ds (s t)P—(s),
t

{4.7)

which is m times the average lapse before a col-
lision. The diffusion coefficient is given by

D= m (4.8)

Using the expression for P(t) given in Eq. (3.7),
(t ) may be explicitly calculated for small e with
the result (t )=2(t) =(4me) ', and

1 —t/s. Combining this conditional result with the
above probability of selecting such a segment we
have for the velocity correlation function

= lim
n —1

g (v;up) . {4.6a)

3/2

(4.9)

In the continuum model for the dynamics discussed
in Sec. III, the maximum time that the velocity can
remain correlated is t,„, the maximum length of
time for passage through a resonance. Thus,

The diffusion coefficient is predicted to diverge as
E as the running solution is approached; this is
confirmed by the results in Fig. 13 and the data in
Table II for the case m = 1.

D= f dt(u, vp) . {4.6b) C. Diffusion ~ chaotic running solutions

The diffusion coefficient and velocity autocorrela-
tion function are now easily calculated from
renewal theory if we assume the duration of the
velocity randomizing "collisions, " i.e., time spent in

the watershed, is negligible compared to the time

spent in the basins, which will certainly be true
close to bifurcation. Since collisions are assumed to
completely randomize the velocity, it will remain
correlated for a time t provided no collisions occur
in this time interval. More specifically, the calcula-
tion proceeds as follows. The time series consists of
segments of correlated iterates, with independently
and identically distributed lengths, interrupted by
collisions. Selecting an initial point at random, the
probability that it falls on a segment with length be-

tween s and s+ds is (t) 'sP(s)ds, where P(s) is
the probability of a run of length s given a random

entry into a basin [Eq. (3.7)]. This expression is just
the fractional length that all such segments occupy
in the time series. The velocity will remain corre-
lated during the time interval from t =0 to t pro-
vided the right end point ("collision" vertex) of the
segment with length s does not lie in this interval.
Clearly segment lengths with values less than t must
certainly occur in this interval. Given that we have
selected a segment of length s the right collision
vertex will have a rectangular distribution and
therefore the probability that this end vertex, for
s)t, does not lie in the interval of length t is

3.0—

2.0

I.O

0
0 1.0 2.0

E ~ x IQ

3.0 4.0

FIG. 13. Diffusion coefficient as a function of E

Solid circles (~), periodic-running-solution region; open
circles (0 ), chaotic-running-solution region.

Although diffusive motion arises in this case by
chaotic-band breakdown the diffusion-coefficient
calculations is similar to that for the tangent
mechanism. We described earlier how leaks develop
in the chaotic bands as A, is increased above A,~~. In
the diffusive state near bifurcation iterates remain
trapped in the chaotic bands for long periods of
time since the escape probability per iteration, yz, is
small. Although the local (mod-1) motion. in the
chaotic bands is irregular once an iterate is trapped
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it hops coherently to the right or left depending on

the band which it enters. Again it is these long
coherent runs that determine the value of the dif-
fusion coefficient. We first compute the escape
probability and then present the model for the dif-

fusion coefficient.
The measure of the leaking region of a band can

be calculated by considering Fig. 14, which shows a
local (mod-1) representation of the dynamics; in this

representation the equation of the bisectrix is

y =x +m. Points lying in the interval

M=(Mi, M2) will escape. Referring to the figure
the value of Oi follows from the solution of the
equation

while Oz can be found from

A, sin2~02 ——Oi —02+m . (4.11)

S(Mi, i, ) =m+02 . (4.12)

Near bifurcation these equations can be solved for
p(M) =M~ —Mi,

sin2~M&+ a
p(M) =2

2ir A.ca sin2irMa

1/2

(4.13)

To find M& and M2 we need to calculate the inter-
sections of the line VV', which has the equation
y=1+O~+(02 —Oi)=1+02, with S(x;A, ). We
have

I, sin2mOi ——m, (4.10)
I

where

a= [m+[S'(Ba'kca) —ll(m +Ba —~a) I /[~caS'(Aa'kca)[S'(Ba'kca )—11j (4.14)

y 1+x
I

I

I

B Oi
I s

l M,'
Mi Mp

FIG. 14. A local (mod-1) representation of the dynam-
ics for A, near A, ~q for m =1. Local representation is
achieved by iterating with respect to the shifted bisectrix

y =1+@.

and M~, A~, and B~ are the location of the max-
imum and its images under S and S' ' (mod 1) at
the bifurcation value A,gg. A similar calculation
can be carried out for the chaotic solution running

to the left.
The escape probability per iteration is given by

ya =I p(x)dx=p(Ma)p(~), (4.15)

where the invariant density is normalized over a
bandwidth. (The maximum at bifurcation is

Mz ——0.2729358383.) Within a chaotic band the
invariant density closely corresponds to that for the
logistic equation x, +i ——4x, (1—x, );
p(x)=[nv'x(1 —x)] ', " and a direct estimate of
ya (for m =1) is possible, ya

——1.214e' . Given

I'(t) =r~exp( —XRt) . (4.16)

The average sojourn time is ~cg =gg =ÃggE'
For m = 1 Eq. (4.15) predicts @ca——0.823 while the
numerical computations give the result

~,„=0.781.
The picture of the escape dynamics near bifurca-

tion is just a Poisson process: There are long runs
of iterates to the right or left with velocity +m
(there is, of course, a small dispersion about this
value due to the chaotic motion in a band) inter-
rupted by collisions, i.e., entry into the watershed
followed by re-entry into a band. Since an iterate
can be reinjected into either right- or left-running
chaotic bands once it enters the watershed, col-
lisions serve to randomize the velocity just as in the
tangent case. Given that the lengths of segments of
correlated iterates are exponentially distributed, we

may select the initial time t =0 in the velocity
correlation function to correspond to an entry into a
chaotic band. The velocity correlation function is
again related to the probability that no collision oc-
curs in the time t, which is now given by

(u, uo) =m I ds P(s),

and the diffusion coefficient is

2
2 2 —1/2D=Nl 'Tgg = =ltd

Cygne

'Yn

(4.17)

(4.18)

I

that the motion is chaotic within a band (mod 1)
and the escape probability per iteration is small, the
sojourn times in the chaotic bands will be exponen-
tially distributed,
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We again have the prediction that D should di-

verge as e ', which is born out in the results of
Table II and Fig. 13.

D. Diffusion ~ confined period 2

The mechanism by which period 2 is born out of
a diffusive state by a tangent bifurcation process
was described in Secs. II and III. Because of the in-

termittent character of the chaotic motion near a
tangent bifurcation the dependence of the diffusion
coefficient on the parameter distance from bifurca-
tion can be obtained by arguments which are analo-

gous to those given earlier for the transition from
diffusion to running solutions. However, now the
"laminar" part of the motion is confined and does
not contribute to the diffusion coefficient; also the
intertwined character of the period-2 orbits leads to
a more complicated description of the diffusive
dynamics.

The results in Fig. 12 indicate that the diffusion
coefficient vanishes as e' near bifurcation; the ori-

gin of this dependence is easily explained on the
basis of the intermittency picture presented earlier.

Close to the bifurcation point the time series will

consist of long segments of period-2-like motion
where the iterates are confined to basins, inter-

spersed with small segments in the watersheds
where the motion is diffusionlike. From the
analysis in Sec. III the average length of time spent
in a period-2 resonance grows as e ' (r,

) (Ref. 24) while the average length of
time of a chaotic burst in the watershed r~ is
presumed to be independent of e. [One may esti-
mate that x~=7. 13 (Ref. 25)]. Hence, the fraction
of the iterates which contribute to the diffusive
motion is

t

f~ =r~l(r, +r~)-.t t

gt

and the diffusion coefficient is

(4.19)

where D ~ is the diffusion coefficient which charac-
terizes the dynamics in the watershed. The details
of the entries into the various watersheds from the
basins (cf. Sec. IIIB) and the subsequent dynamics
in the watershed are somewhat involved. For exam-
ple, Hz' can be entered from 4'2'+" and A'i" while
Wi" cannot be entered directly from a basin. If one
ignores such details relating to the initial correla-

tions of iterates in the watershed and simply as-
sumes motion in the watershed is random and
characterized by a mean step length i=At/2, a
crude estimate of D ~ is possible:

D~ ] /2 gt/8. Thus,

2

D= e
rM~t

84't
(4.20)

The t.' behavior of D is verified by the results in
Fig. 12 while data in Table II show that the crude
estimate of the prefactor given above is in rough ac-
cord with the numerical result.

E. Diffusion ~ chaotic period 2

The description of the transition from diffusive
motion to the confined period-2 chaotic bands oc-
curs by chaotic-band breakdown and the diffusion-
coefficient calculation closely parallels that of the
previous subsection. Since the probability of escape
from a band is small for values of A, slightly above
A,~t the time series consists of long segments of
iterates confined to the chaotic bands interspersed
with runs of iterates which lie in the regions be-
tween the bands; motion in this region also appears
to be chaotic.

Given this description of the dynamics, a rough
calculation of the diffusion coefficient is easily car-
ried out. Those iterates which lie in the chaotic
bands will not contribute to the mean-square dis-

placement or diffusion coefficient. Thus, we again

expect the overall diffusion coefficient to be given

by the product of the fraction of time spent in the
watershed fg. times the diffusion coefficient which

characterizes the motion in the watershed D~-;
D=f~Dg. If r~'is the a. vera:ge length of a dif-

fusive period in the watershed and r~t is the average
length of a confined period in the chaotic band,
then, as earlier, fg =rgl(rg +Tci). Now-, howev-

er, the calculation of rct follows from considera-
tions similar to those given for the running
chaotic-band case and depends on the probability of
escape per iteration from the chaotic period-2 bands

3t'
The escape probability per iteration yt can be

computed by referring to Fig. 15. From this figure
one can see that iterates which fall in the region M
will "leak out" of the chaotic band. The local
description of iteration is given most conveniently

by writing the equation of the bisectrix as

y =m+1 —x as in Fig. 15. The equations deter-
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mining the points 0& and 02 in this figure are S(O),A, )=m+1 —Op . (4.21)

S(Og, A, )=m +1—02 Close to bifurcation Oi and 02 can be found by a
perturbation calculation about their transition
values, Az and B~, respectively. We find

OI ——Ag+

(m +1—2B~) —(m +1—Ag —Bg)
1+S'(Bg',A,c, )

A,c,S'(Ag', A,c, )
6 =Ay +cxgE' (4.22)

and

esin2~B&

1+S'(Ba~~c~)

I

two cases reported in Table II, but we have not at-
tempted to do this.

V. DISCUSSION

The points M~ and M2 are determined by the inter-
section of the line VV' with the map function:

1/2
sin2mM~+a,

p(m) =M, —M, =2
2HA, c,sin2m Ms

(4.23)

The probability of escape per iteration from the
chaotic period-2 bands is given by

1', =f p(x)dx y(M)p(Ms), (4.24)

where the density is normalized to unity in a band.
For m = 1 we find (Mz ——0.266457 38)

y, =1.425'' . Thus, the average lifetime in the
chaotic period-2 bands is obtained from arguments
such as those in Sec. IV C and is

Tc( = 1/y, =4'c,e ' . Equation (4.24) yields

4c, ——0.702 while direct computation gives

@et ——0.663. Since rot -O(e '~'), fg -O(e'~2).
and the diffusion coefficient is predicted to vanish
as e'",

Because of the simple structure of the climbing-
sine map, a rather detailed discussion of the bifur-
cation patterns and description of the diffusion pro-
cess could be given. The results indicate that dif-
fusive motion arises through several mechanisms
for this translationally invariant system: For all
mechanisms the diffusion coefficient depends on e,
the parameter distance from bifurcation, as e' or

, arising from the smooth quadratic character
of the map, and the dynamics in the various param-
eter regions can be distinguished by the characteris-
tic features of the time series from which the
mean-square displacement is constructed.

We have noted in the Introduction that this study
was motivated by the observed dynamics of systems
with periodic forces that possess translational sym-
metry. Our one-dimensional-map model was not
derived from the differential flows of Eq. (1.1) or
(1.2) so the general applicability of some of our con-
clusions needs further testing. It is clear that the

ct 2 cp 2
&&2

&~~ct I&2D= e E'

2C cs 8C'cs
(4.25) V

where the last two equalities follow by assuming a
simple random-walk model with steps of length
I=A,c, /2 in the watershed. The lifetime v~ may be
roughly estimated as in Ref. 25 and one finds
r~=3.73, while direct numerical calculations yields
~~=11. As the data in Table II and Fig. 12 show
this simple model provides a good approximation to
the numerical results.

In all five cases considered above there is strong
numerical evidence for the predicted e-+' behavior.
In addition, the prefactors of e+-' are also ade-

quately given by the rather crude dynamical
models. More elaborate models of the diffusive
dynamics can be constructed, especially for the last

=2-x

I

Qp B

FIG. 15. A local description of map iterates used in
the estimate of the size of the leaking region. In this rep-
resentation map iterations are carried out with reference
to the bisectrix y =2—x.
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map model exhibits all of the expected types of
behavior: confined, running, and diffusive solu-

tions. Other features, e.g., the intermittent charac-
ter of the diffusive motion preceding the appearance
of running solutions, are also in accord with the
map's behavior. However, there has been no work,
to our knowledge, on quantitative aspects of the dif-
fusive state in these systems, such as the calculation
of diffusion coefficients and a study of their
behavior as the differential flow parameters are
varied. The computational difficulty associated
with such calculations was one motivation for our
one-dimensional-map study. It would be interesting
to see to what extent the map predictions for the

diffusion coefficient near the bifurcation points ap-

ply to differential flows and real systems.
After this paper was prepared we became aware

of recent related work by Geisel and Nierwetberg
that considers the chaotic-band-merging transition
to diffusion, with and without noise, for one-
dimensional maps with translational symmetry.
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