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A nonrelativistic theory of charged-particle scattering by a background potential V(r} in

the simultaneous presence of a magnetic and a laser field is developed. The particle motion

in the magnetic and laser field in dipole approximation is treated exactly. Transitions be-

tween exact quantum-mechanical states of the charged particle are considered to lowest-

order Born approximation in V(r). Conservation laws and selection rules for the scattering

are derived for the case of laser light circularly polarized in the plane perpendicular to the

magnetic field direction. It is shown that nonlinear bremsstrahlung may occur accom-

panied by a corresponding change of the electron's angular momentum component along

the magnetic field axis. Transition amplitudes for these cases are presented in closed form

and their electric and magnetic field dependences are discussed in the limiting cases of
weak and strong magnetic and laser fields. The connection of this approach to previous

work is established.

I. INTRODUCTION

In recent years considerable efforts have been de-

voted to the experimental and theoretical investiga-

tions of the interaction of intense radiation fields

with matter. One of the most extensively studied

phenomena is the potential scattering of charged

particles in such fields. ' Moreover, much interest

has been devoted to the study of charged-particle

scattering in strong magnetic fields, mainly in con-

nection with magnetically confined plasmas. ' Ap-

parently, both phenomena also have considerable

relevance to astrophysics, where extremely strong
electromagnetic fields may occur. We think, there-

fore, that the study of the joint action of a strong

magnetic and a radiation field is of practical impor-
tance as well as an interesting problem in itself. Re-

cently, Ferrante et al. "' ' have developed a for-
malism to treat the potential scattering of charged
particles in the simultaneous presence of a magnetic
and a laser field. They found that during scattering
the particle may emit or absorb integer multiples of
light quanta firn and make transitions between dif-
ferent Landau levels at the same time. Their treat-
ment, however, was restricted to the case in which

the polarization of the laser light was parallel to the

direction of the magnetic field. This allows a
separation of the equation of motion, i.e., the laser

field in dipole approximation only influences the

motion of the particle in the direction of its polari-

zation whereas the magnetic field confines the

motion to a plane perpendicular to its direction and

gives rise to the appearance of the Landau levels.

Altogether, the problem has cylindrical symmetry.

Classically, we have helical motion and the axis of
the helix is determined by the direction of the mag-

netic field. Since the scattering potential usually

has inversion symmetry, the cylindrical symmetry is

maintained even after inclusion of the scattering po-

tential. This symmetry property permits separation

in cylindrical coordinates and the whole scattering

problem can be treated analytically.
The case of a laser-light polarization not directed

along the magnetic field causes more difficulties,
for then the cylindrical symmetry is lost and the

motion induced by the laser field gets coupled to the

motion in the magnetic field. Thus the problem be-

comes intrinsically time dependent. Furthermore,

the symmetry of the scattering potential cannot be

exploited to its full extent which makes the deriva-

tion of an analytic expression more difficult.
In Sec. II we brieQy outline the solution of the
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Schrodinger equation for a particle in a magnetic
and in a laser field. Recently the exact states were

found for this problem by two of the present au-

thors. In Sec. III we develop a formalism for the
calculation of transition amplitudes, based on these
exact quantum-mechanical states. The formalism is
similar to the one used previously by the present au-

thors to describe scattering phenomena in intense
radiation fields. We derive conservation laws for
energy and angular momentum. These yield simple
interpretations. The transition amplitude splits into
an infinite sum of incoherent amplitudes each of
which corresponds to the emission or absorption of
n light quanta. The same integer n appears in the
conservation of angular momentum. In Sec. IV we

summarize our main results, their connection with

previous calculations and with other possible ap-
proximation methods. Special attention is paid to
the case of a weak magnetic field. Moreover, we

present a simple physical interpretation of our re-

sults. Finally, we discuss another implication of
our results according to which stimulated emission

may be favored as compared with absorption and
thus net amplification may occur. For the free-
electron laser as a device very popular in present in-

vestigations, this possibility suggests the use of
nonconventional arrangements, i.e., an axial guiding
magnetic field. This aspect of the problem, howev-

er, still needs more elaboration.

II. QUANTUM-MECHANICAL STATES
OF A CHARGED PARTICLE

IN A MAGNETIC AND A LASER FIELD

(2.2a)

where AL (t) corresponds to the laser field in dipole
approximation

At (t) = [A„(t),A, (t),A, (t)], {2.2b)

and A~(r) is the vector potential of the magnetic
field which we assume to be oriented along the z
axis

As(r)=[ —( —,)By, ( —, )Bx,0] . (2.2c)

In solving (2.1) we first note that we can easily el-
iminate the z dependence and the irrelevant AI
term by the ansatz

P(x,y,z, t) =g~(z, t)X(x,y, t), (2.3a)

where etc(z, t) is the one-dimensional nonrelativistic
Volkov state

The Schrodinger equation of a particle of mass m

and charge e in an external field reads
2

i A =(1/2m) p — —Aal( A
(2.l)

at c
L

In our case the vector potential A is composed of
two parts

A(r, t) =AL, (t)+A&(r ),

1
Px(z, t) =

Lz

—1/2

exp AKz —(1/2m)

X J {[fiK (e/c)A, (t)—] +(e A„/2mc ) + (e2A~/2mc ))dr (2.3b)

The structure of the equation for 7(x,y, t) is more easily recognized if we introduce absorption and emission

operators (a,a ~), (b, b ~) instead of (x,p„), (y,p~) with the usual definitions for harmonic oscillators of frequen-

cy (co, /2), where co, =(e8/mc) is the cyclotron frequency. Then X(x,y, t) obeys the equation

iA = [ fi(c0, /2)(a a + , )+Pi(co,—/2)(b b+ —, ) +(a +ib)a+(a ib )cc' i'(c—o, /2)(ab— ab)]X, —' ax = 1 f 1

(2.4a)

where

a=[efico, /2c(marco, )'~ ](A~+iA ) . (2.4b)

Equation (2.4a) describes two resonantly coupled harmonic oscillators both exhibiting a complex, time-
dependent displacement. These displacements differ by m/2 in their relative phase but have equal magnitude.

If we define displacement operators D„., as introduced by Glauber, '
by

n a~-n'a
(2.5)~a
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and similarly for D, then we can define the following new wave function:

P=D~ 'D~ ' exp — f 2Re(cr, a)dr X(x,y, t) . (2.6)

We subject the parameters 0., and orb of the displacement operators to the conditions

o, =—r'co, cr, —(i/fi)o.", cr = —io, .

Substituting (2.6) into (2.4a) and using (2.7) we find the Schrodinger equation for P to satisfy

(2.7)

i' a
at

=[A(co, /2)(a a+ —,)+Pi(co, /2)(b b+ , ) —i%—(co, /2)(abt at—b)]P . (2.8)

This equation describes a charged particle in a magnetic field alone. If we return to the coordinate representa-

tion (x,y) and introduce cylindrical coordinates (p, P}, the stationary solutions of (2.8) can be written as

P„,(g,P, t) =Cs„,(g, g)exp — —[fico,(n + —, )t] (2.9a)

with

(2.9b)

(2.10)

sP„,(g, g) =exp[i (n s)$]I„,(—g),
(y/ir)1/2(n I& ))

—)/2exp —g/2gs —n)/2L s —
n( f )

I„,(g) =
()//'n)' (n)s'!) ' exp f/2/n —s)/2L n —

s(g), s (n
Here the Lg denote the associated Laguerre polynomials g= yp and y= (eB/2ch }. Equations (2.9a) and (2.9b)

are the stationary solutions of the two-dimensional harmonic oscillator, where n =0, 1,2, . . . is the principal
quantum number of the nth Landau level with energy fico, (n+ —,). The energy levels are degenerate with

respect to the quantum number s (s =0,1,2, . . .). The number m =n —s determines the value of the angular
momentum component along the direction of the magnetic field. On account of (2.9a), (2.6), and (2.3a) the
complete solution of the Schrodinger equation (2.1) can be written as

P(r, t)=1Ptc(z, t)D D~ cP„,(g,g)exP — —I [iricoo(n+ —, )+2Re(cr, a)]dr

which we shall employ in the evaluation of the
scattering amplitude.

I

tion amplitudes between such states are given by

III. TRANSITION AMPLITUDE
OF POTENTIAL SCATTERING

We assume the interaction of the charged particle
with the magnetic and laser field and/or its kinetic
energy to be larger than the interaction with the
ionic background described by the potential V(r).
We therefore treat V(r) as a perturbation. Accord-
ingly, we shall describe the initial and final states of
the electron in a magnetic and a laser field by the
wave functions (2.10). Details of such a perturba-
tion theory in which the basis is formed by the ex-
act quantum-mechanical states of the charged parti-

cle in the intense field(s) and where all the other in-

teractions are treated as perturbations can be found,
e.g., in Ref. 11. To lowest order in V(r) the transi-

(3.1)

To carry out all the integrations contained in (3.1)
in the general case of arbitrary geometrical configu-
rations of the two fields is very clumsy though ex-
pressions in closed form may be derived even in
that case using the exact solutions (2.10). We there-
fore restrict our further considerations to a few par-
ticular configurations. First of all we find in the
case Ez

~
~B that cr, =oh ——0 and so (2.10) reduces to

the wave function employed by Ferrante et al. and
consequently Ty; coincides with their expression.

This treatment shows that the laser-field component
parallel to the direction of the magnetic field can al-
ways be included in the description since it only ap-
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pears in that part of the equation of motion which

is unaffected by the magnetic field. We therefore
assume E,=0 and we shall only investigate in detail
the case for which the radiation field has corn-

ponents perpendicular to the direction of the mag-
netic field, i.e., polarization in the xy plane.

Let us start by writing the explicit expressions of
u, and orb for some particular cases as follows:

(a) Linearly polarized laser light along the x axis
The vector potential reads

AL, (t) =[ (cE—/co)sincot, 0,0], (3.2)

where E is the field amplitude and co the angular
frequency. Introducing this expression into (2.4b)
we can immediately calculate o, and crb from (2.7).
This yields

( )~+elcof+ ( )~—
e

—lcilf

Vlf(r, t) =D~ D~ V(r)D~ D~ (3.9)

taken between the states employed in the calcula-
tions of Ferrante et al. Using the displacement

property (3.8) and replacing in V(r) x and y by

x =(A'/mco, )'~ (a+at),
y=(fi/ma), )' (b+b ),

(3.10}

we immediately realize that V,ff( r, t) can be put into
the form

V,ff(r, t) = V(r —3rt)) .

In the cases enumerated above, r(t) is given by

(3.11)

transition amplitudes can be written in the form of
the transition matrix elements of an effective poten-
tial

&bl. = —&&aL. s

where

(3.3a) r(t) = [rt, coscot, (co, /co)rt sincot, O),

rt eE/m(co—— co, ), — (3.12a)

cr+= —[eEco, /2co(co+co, )(mba, )'/ ],
/, (33b)

o = —[eEco, /2co(co —co, )(m fico, )
' ] .

In (3.3a) the subscript L refers to linear polariza-
tion.

(b) Right handed cir-cularly polarized (rcp) laser
light in the x-y plane. The vector potential is

At, (t)= [ (cE/co)sin—cot, + (cE/co)coscot, 0],

for linear polarization;

gr t) =(r+ coscot, r+ sincot, O),

r+ =eE/ma)(co+co, ),
for rcp; and

r(t) =(r coscot, rsincot, O)—,

r =eE/mco(co co, ), —

(3.12b)

(3.12c)

and for 0., and orb we obtain

(3 4) for lcp. From (3.12b) and (3.12c) we infer that in

cylindrical coordinates the argument of V,ff for the

rcp and lcp cases can be simply represented by

(3.5)

where the subscript r refers to rcp.
(c) Left handed circ-ularly polarized (lcp) laser

light in the x-y plane. The vector potential now
1eads

~

r —grt}
~

=[z +p +r+

2pr+ co—s(((}+cot)]'

(3.13)

and for cr, and orb we obtain

(3.6)

At (t) = [ (cE/co)sincot, —(cE/co)coscot—,0] We now concentrate on these two cases and insert

(3.13) into (3.11),using (3.1}in the form

—IN'
0'tgI =0' e s 0'bI = —l 0'+I, (3.7)

fj — dt f fkf ff Pgl fg. ~

where the subscript l refers to lcp.
To proceed further, we recall the following prop-

erties of the displacement operator D (Ref. 10):

D 'aD =a+cd, D 'a~D =a~+cr' . (3.8)

If we insert (2.10) in (3.1) we recognize that the

(3.14)

The superscript 0 refers to the unperturbed wave

functions (2.9a) of the two dimensional harmonic
oscillator as used by Ferrante et al. We moreover

specify V(r) to be a screened Coulomb potential
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V(r) =(Ao/r)e

[A /(g+z2)1/2] —a(g+z2)1/2

(3.15)

Then the effective scattering potential can be ob-
tained by replacing r by

~

r r(—t)
~

from {3.13).
Taking into account the explicit expression (2.9a)
for f' k we can carry out in (3.14) the integration
over z, yielding'

f dz exp( —iqf;z)[exp[ —a(g,tt+z )' ]/(g, tt+z ) ] =2Kp[g tt (qf +a')' '];
(3.16)

qf; ——Ey —EC; is the momentum transfer and Eo denotes the zeroth-order Bessel function of imaginary argu-

ment. Furthermore,

ggff p +r+ 2p—r+ cos({()+cot) (3.17)

with rcp (upper sign) and lcp (lower sign), respectively. We are now left with the evaluation of the integral

Tf;= (iA—p/Ry) f dtdgdctiI„, {g)I„,(g)Kp[g tt(a +qf;)' ']e

Xexp —[[irPKf/2m —fi K; /2m+(nf n;)Ac—o, ]t] (3.18)

where m =n —s.
Here we used explicit expressions for the unperturbed wave functions of the Landau levels as well as for the

phase factors of the exact solutions (2.9a) and (2.10). Application of the summation theorem for Bessel func-

tions [see Gradshteyn and Ryzhik, ' Eq. {8.530.2)] yields

J„[(qf;+a )'/ p]K„[(qf;+a )'/2r+]e'"1&+"", p&r+

Kp[ttt {qf;+a')'"]= "

J„[(qf;+a )' r+]K„[(qf;+a )' p]e'"'&+"", p) r+ .

(3.19)

The J„are the nth-order Bessel functions of the first kind and the K„are the nth-order modified Bessel
functions. If we substitute these expressions into (3.18) two of the remaining three integrations can be car-
ried out.

The P integration yields the conservation of angular momentum

f dge f ' =21r5

Similarly the time integration yields the conservation of energy

f dt exp —[irPKf /2m fPK~/2m—+ (nf n; )~,+n it—co]t

(3.20)

=2&5[%Kf/2m fi K; /2m+(nf n;)—Ace +—n~] . (3.21)

Using in (3.18) the results of Eqs. (3.20) and (3.21) we find that the transition amplitude can be represented

by a sum over incoherent n-photon scattering processes

Tf;= g Tfi
(n)

Tf,
"' 2@i5[5 Kf /2—m ——AK, /2m +—(nf n; )fico, +nice]t—f',". ',

where

(3.22)
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tg,"'=(2irAo/yL, ) f d(I„, (g}I„,.(g} [e(g —g+)K„(Pg' ')J„(Pg'+')+e(g+ —g)J„(Pf'/ )K„(Pf'+ )] .

8 stands for the Heaviside step function and we have introduced the notations

(3.23b)

rf';'=(2nAp/yL, ) f d(I„, (g)I„...(f)KO(P(' )

p (~2+g~2)i/2y —i/2
g ~2~

tf; contains a single integration over the variable g=yp . This integration cannot be carried out analytical-

ly, except in the limiting cases of very low and very high field strengths. In the case of very low light inten-

sity, i.e., (+~0, J„(pg+ ) can be replaced by 5„0 and only the first term in (3.23a) survives with
K„~KO(@'/ ). This is just the scattering amplitude for a magnetic field alone and for this case the exact
expression was found by Ventura':

[(s;!/n;!)(sf!/nf!)]' P(s;+ l,s; —sf+ 1,x)L„'(x), n; &s;
=(A p/L, )

[(nc}/sc!)(nf!/sf!)]' f(n;+ l, n; n/+1, x)L—,, '(x), n; &s; . (3.24)

Here g(a, b,c) is the confluent hypergeometric function and x =P /4. We can also find an analytic expression

when the electric field is strong and the entire contribution to the transition amplitude practically comes from
the second term in (3.23a). In this case we can neglect the first term in (3.23a) and extend in the second term
the upper limit of integration to infinity. Then [cf. Eq. (7.422.2) in Ref. 12] for rcp

ty,"'=(Ao/L, )( —1) ' 2 ~" "P"e & / L, ' /(P /4)L„/ '(P /'4)K (Pg'/2)(n;I~;!8/ls i) /
l Nf

(3.25)

[if, e.g., mf &0, mf &0 and n &0, n; &n/ Unfo.rtunately, the cases of practical interest lie outside the ranges
of applicability of (3.24) and (3.25) and numerical methods have to be used for the evaluation of the general

expression (3.23a). Unfortunately, the cases of practical interest lie outside the ranges of applicability of (3.24)
and (3.25}and numerical methods have to be used for the evaluation of the general expression (3.23a).

Finally we derive from our result for the transition amplitudes the transition probabilities per unit time

P~ and the scattering cross section cr. Taking the square of the modulus of the transition amplitudes and

dividing it by the transition time we find

P/c
—— g ~ t/,

"'
~

5[sf e;+(n/ —n;)Ace,—+nfico] . (3.26)
e

Since this expression still contains a delta function, we multiply it with the density of final states in the z
direction and integrate over a11 final states which are allowed by energy conservation

X I, rfc I p(e/) ef =e; (n/ n;)Ac—o, n—Aco, —27r (n) (3.27)

where

p(ef )=L,m/2v —
Kg .

(3.28)

The total cross section is obtained by dividing Eq.
(3.27) through the flux component along z of the
incident particles, j;„,=fiK;/L, m yielding

cr„,= g(I,,m /AK;Kf'"')
~ tf

I

should be. We see that the quantities tf,". ', given by
Eq. (3.23a), enter into all the quantities relevant for
scattering (transition probabilities per unit time and
cross sections). Therefore the description of any
scattering process depends on the accuracy to which

t~,
". ' is known.

IV. DISCUSSION

Since
~ t~,

"'
~

is proportional to L, , the expression
(3.28) for the cross section is independent of L, as it

In previous papers we developed methods to
describe scattering processes of charged particles in
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the presence of an intense radiation field. ' " The
methods were essentially based on the use of the ex-

act quantum-mechanical states for a charged parti-
cle in an intense field as the basis set of perturbation

theory. Then scattering was treated as a small per-

turbation and we investigated first-order transitions

between these states. A similar approach was em-

ployed to treat potential scattering in a magnetic
field. With a slight extension of the method the

case of a magnetic field and a laser field polarized

along the direction of the former has also been

included, "" ' since in this case the wave function

of the particle factorizes into two parts. The first

part, describing the motion along the direction of
polarization is just the nonrelativistic Volkov solu-

tion for a particle in an external time-dependent

electric field. The second part corresponds to the

motion in a plane perpendicular to the direction of
the magnetic field and it is described by the wave

functions of a two-dimensional harmonic oscillator.
Classically this can be visualized as a confined cir-
cular motion and in quantum mechanics the energy

belonging to it is quantized in integer multiples of
%co, (Landau levels).

The extension to more general field configura-
tions seemed, however, to be a difficult task, for if
the laser field has polarization components in a
plane perpendicular to the magnetic field, the two

types of motions are coupled and the problem be-

comes intrinsically time dependent. Nevertheless,
we recently derived exact solutions for the general
field configurations. In Sec. II of the present pa-

per we briefly rederived this solution in a form
more suitable for the subsequent calculations of the
transition amplitudes, i.e., a form which clearly
shows the connection with the Landau level wave

functions. We found the following: The motion
along the magnetic field direction can still be
described by a nonrelativistic Volkov-type wave
function. The part corresponding to the motion in
the plane perpendicular to the direction of the
magnetic field can now be represented (instead of
the stationary states of the two-dimensional har-
monic oscillator) by displaced harmonic-oscillator
states (2.10), where the displacement is a function
of time.

In Sec. III we applied our solution to the
description of scattering of a charged particle by a
static background potential in the simultaneous
presence of a magnetic and a laser field. The po-
tential was taken to be a screened-Coulomb poten-
tial which is expected to describe most of the phe-
nomena in plasmas. By means of the wave func-

tion (2.10) we derived analytic expressions for the
transition amplitudes [Eq. (3.23a)] for the cases of
left and right circular polarization of the laser field
in the xy plane. The problem of linear polarization
can also be approximately included in two cases.
If co, &&co (which holds for optical frequencies and

a wide range of magnetic field strengths) the small

displacement in (3.12a) in the direction perpendicu-

lar to the polarization of the laser field can be
neglected and r(t) is one-half of the sum of the lcp
and rcp displacements [Eqs. (3.12b) and (3.12a)].
For co, &&co we therefore expect that the transition

probabilities and the cross sections for the linearly

polarized radiation field can be approximated by
the average of the lcp and rcp probabilities and

cross sections. If, on the other hand, co, =co then

only the resonant part of rl gives a contribution
and it essentially becomes identical with the lcp
case.

Furthermore, we have also shown that the ex-

pression (3.23a) reduces to the pure magnetic-field
results ' if no laser field is present. The integra-
tion in (3.23a) can also be carried out analytically
at the other extreme of very intense radiation
fields. The intermediate cases, which are the most
interesting ones from the point of view of practical
applications, require a numerical analysis of Eq.
(3.23a). This is now in progress. Before doing so
it appears to be useful, however, to proceed as far
as possible with the analytic calculations and to
present the corresponding results here, since they
permit a clear physical interpretation and reveal

some of the properties of the scattering process.
First we discuss the implications of the conserva-

tion laws. From the conservation of energy, deter-
mined by the 5 function in Eq. (3.22), we conclude
that the particle can absorb (n &0) or emit (n &0)
light quanta during the scattering leading to an in-
crease or decrease of its energy (nonlinear direct or
inverse bremsstrahlung). The total electron energy
is clearly composed of two parts, one belonging to
the translational motion in the z direction and the
other one stemming from the rotation in the xy
plane. During the scattering either of them can be
increased or decreased separately, thus giving rise to
a large variety of processes. On the whole, this con-
servation law is similar to the one found for the
case of laser-field polarization along the z axis.
However, the conservation law for angular momen-
tum gets modified. For polarization in the z direc-
tion the angular momentum components along this
axis remain conserved (my ——m;), while in the case
of circular polarization in the xy plane the angular
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momentum conservation law, Eq. (3.20), yields

mf ——m;+n where the upper sign holds for rcp and
the lower sign for lcp, respectively. This has a very
clear interpretation. Since the angular momentum
carried by a photon is +A or —A for rcp and lcp,
absorption of n rcp photons (n &0, upper sign) or
emission of n lcp photons {n ~ 0, lower sign) will in-

crease the angular momentum of the scattered par-
ticle by irt

~

n ~, etc.
The expressions (2.10) for the wave functions

and (3.11)—(3.14) for the transition amplitudes can
be also viewed from a different standpoint. In in-

tense field calculations, a frequently used approxi-
mation method is based on the so-called space
translation transformation originally proposed by
Henneberger. ' The method can be briefly
described as follows. Let us introduce the quantity

S(t)= —(e /mc) I At, (r)dr

and define the unitary operator

(4.1)

—{ilfi)S {t)p=e (4.2)

To lowest order of approximation the space-
translation method yields for the perturbed wave
function

IIy(o) (4.3)

where g' ' is the solution of the unperturbed prob-
lem which in our case is given by (2.9a). To relate
the expression {4.3) to our exact solution {2.10), we
write 0 in the form of a product of displacement
operators of the type (2.5)

(4 4)

denominators of (3.3b) then we see the connection
of the exact cr's with the space translated 0's given
above and in all cases we may write

o "'=Reo(co, «co) . (4.6)

Consequently, our method of solution yields an
essential improvement over the space-translation
approximation. In the case of the harmonic oscil-
lator the method becomes exact and it also in-
cludes resonances. Thus it may serve as a starting
point for the description of atomic resonance phe-
nomena as far as atoms in the vicinity of reso-
nances can be approximated by harmonic oscilla-
tors.

Finally, we briefly discuss the field dependences
of the cross section (3.28) since they shed light on
another aspect of the problem. We first consider
the dependence on the laser-field intensity. This is
determined by the functions J„(P(+ ) for g & g+
and K„(Pg+c ) for g & (+. At low laser intensities

(g+ small) the region g& g+ gives the main contri-
butions to the integral in {3.23a) and the depen-
dence of the cross sections on the laser intensities
will be [on account of J„(z)-(z/2!" for small z and
the explicit expression for pg+c ]

o''"'-[eE(a +qf;)' /mco(co+coo)] "

—(eEqf /mco (4.7)

The last expression holds for small screening and
far from resonances. For high laser intensities (g+
large) and conventional magnetic fields the region
g& g+ still yields the main contributions. Using
the asymptotic form of Bessel functions for large
arguments, viz. ,

The explicit forms of o.,"' and ob" for the cases dis-
cussed in Sec. III are as follows [cf. (3.3)—(3.7)].

(a) Linear polarization:

J„{z)=

we find

' 1/2
2

cos[z —(2n + 1)ir/4],

cr,"= [eEco, /2co (m—fico, )' ]coscot,

ob —0,{s) (4.5a)

0 -2m'(a+coo)/n. eE(a +qf; )'

=2m' /neqf E . (4.8a)

(b) rcp:

cr,"= [eEco, /2coi(mt—ice, ) ]coscot,

ciI, = —[eEco, /2co (m fico, ) ]sine'ot;

(c) icp:

cr", = [eEco, /2co (m fico, )
' ]c—oscot,

crib'i=+[eEco, /2co (mAco, )' ]sincot .

If we neglect co, as compared with co in the

(4.5b)

(4.5c)
(4.8b)

The field dependences in the cases described by

For strong magnetic fields the region j& g+ gives
the main contributions and with the asymptotic
form for the modified Bessel functions for large
arguments„~E„(z) = (m./2z) ' exp( —z), we find

cr [irmco{co+-coo)/2eE{a +qf; )' ]
X exp[ 2eE(a +qf; )' /m—co(co+coo)]

=(mme /2eqf;E)exp( —2eEqf;/men ) .
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o P-"=B". (4.9)

For large P (or equivalently for small B) we can
immediately apply Eq. (7.422.2) of Ref. 12 and use
the asymptotic form of the Laguerre polynomials,
i.e.,

I cr( )
V —o/2 —]/4 o/2 —]/41

X cos[2V ny —(2o + 1)tr/4] .

Thus we find, approximating the product of the two
1

cosine functions by —,, for small 8:

o -P B. -—2 (4.10)

Equation (4.9) contains the results of Ferrante
et al. as a special case, for if we put n =0, the
strong magnetic-field limit of the cross sections be-
comes independent of the magnetic field. On the
other hand, (4.10) suffers from the same difficul-
ties as the known expressions for scattering in a
magnetic field, i.e., it does not reduce to the cross
sections without magnetic field in the limit B~O.
We can overcome this difficulty as follows. The

(4.8a) or (4.8b) are reminiscent to the field depen-
dences of the cross sections for field emission in dc
fields. We point out, that in the case of a reso-
nance where the arguments of the Bessel functions
tend to infinity the formulas (4.8a) or (4.8b) should
also be used.

The simultaneous analysis of the dependence on
the magnetic field is slightly more difficult. The
dependence is dominated by the functions I „(pg)
for g & g+ and J„(Pg) for g & g+ in (3.23a). Using
the asymptotic formula for small z

K„(z)= [(n —1!)/2](z/2)

and applying Eq. (7.422.2) of Ref. 12 we find for
small P (i.e., for large B)

stationary eigenstates of the two-dimensional har-
monic oscillator (2.9a) a priori contain this diffi-
culty since they do not reduce to free-particle
states in the limit co, ~0.

Therefore, in the case of a weak magnetic field
we have to construct a superposition of states (2.9)
such that in the limit co,~0 the energy of this su-
perposition become p /2m, i.e., the energy of a
free-particle. This can be accomplished by taking
a coherent superposition of the states (2.9),

q, = g (a"/v n!)g„,exp( —
~

a
~

'/2),

(4.11)

with a=ip/(mfa', )' . These g, show the
correct behavior for co, ~0. To investigate transi-
tions between these states (4.11) is, however, far
more complicated than for the states 1(„,.
Nevertheless, we can demonstrate that in the limit
8~0 the transition amplitudes tend to the form
expected in the field-free case.

Finally we mention one interesting application of
our results. In recent theoretical and experimental
investigations of free-electron lasers, axial magnetic
guiding fields have been introduced in addition to
the usual wiggler field. " Our results on the non-
linear stimulated bremsstrahlung indicate that the
collisions of electrons of the beam with other parti-
cles may favorably contribute to the coherent part
of the emission processes in a free-electron laser.
This, however, would have to be confirmed by re-
lativistic calculations.
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