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Propagation and smoothing of nonuniform thermal fronts
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Calculated Rayleigh-Taylor growth for perturbations on ablation fronts may be reduced

by an order of magnitude due to thermal smoothing. Because studies of the development
of perturbations on ablation layers have generally derived growth rates by assuming that
conditions are quasisteady in a reference frame moving with the front, they neglect this sta-
bilizing effect. If confirmed experimentally, this will allow substantial improvements over

present designs for inertial confinement fusion implosions. Using a combined Galerkin
perturbation technique, we develop analytic models for the propagation of a rippled ther-
mal front into a uniform medium. We find that the mean front advances slightly more

rapidly than a uniform front, and the perturbation on the front rapidly dies off.

I. INTRODUCTION

The stability of thermal fronts is of great impor-
tance in the design of targets for inertial confine-
ment fusion. Such fronts produce ablation in the
outer shell of such targets, producing a rocket effect
which accelerates the shell inward. Instabilities can
adversely affect the target, requiring thicker abla-

tors and consequent larger power and energy fluxes
to achieve a given implosion velocity.

Despite a great deal of theoretical effort, the
question of how stable these fronts are has not been

satisfactorily resolved. Theoretical work generally

takes one of three approaches. Full two-

dimensional numerical simulations' cannot cover
a broad region of parameter space due to cost, have

complicated physics which obscures the physical
mechanism, and have problems obtaining sufficient
resolution. To date they have given conflicting pic-
tures of front stability. One-dimensional simula-

tions of implosions with subsequent two-

dimensional perturbation evolution calculated about

the basic state produced in the one-dimensional

runs are less costly but have the other problems.
Simple theoretical models " must make simplify-
ing assumptions and approximations, first lineariz-

ing and then neglecting one or more terms. The ex-
perimental work to date' ' has not detected any
instability growing as fast as the classical Taylor in-

stability; this is not surprising, as there have been

many stabilizing mechanisms proposed that would
reduce the growth rate of perturbations on an abla-
tion layer relative to the growth rate of perturba-
tions on an interface between two distinct, immisci-

ble, liquids.
Because of the contradictory results of the vari-

ous theoretical treatments of the problem, along
with the lack of experimental guidance, the simple
theoretical models should be of great value in clari-
fying the important physical processes in determin-

ing the stability of ablation layers and gauging their
stability. One approximation these models all seem
to contain is that, in a frame moving with the abla-
tion front, the conditions are assumed to be in-

dependent of time. This simplification generally
permits the assumption of a simple time dependence
for the perturbation of the form exp(yt) (but see
Refs. 15—17 for studies of more classical forms of
instability which do not make such an assumption).
In this paper it is shown that the assumption of
constant properties in the moving frame neglects an
important stabilizing effect; namely, that as a per-
turbed or rippled ablation front advances into a uni-
form material, it tends to smooth itself due to the
diffusive nature of its penetration. Thus the pertur-
bation acting as a source to the hydrodynamic in-
stability is itself decreasing with time. The evolu-
tion of the perturbation with the hydrodynamic
Rayleigh —Taylor instability of the ablation layer
included is not treated, but only the self-smoothing
of the front. A simple model will be quite adequate
for demonstrating this self-smoothing. In the re-
gime of quasisteady conditions near the ablation
front and small enough perturbations to justify the
simple linear theories, the effects of the self-
smoothing and hydrodynamic growth of the pertur-
bation are separable. Self-smoothing can easily
reduce perturbation amplitudes by an order of mag-
nitude or more for parameters of interest, hence
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greatly reducing the growth that would otherwise be
expected.

II. MODEL

field Tp and the perturbation field T& are obtained
by successively multiplying Eq. (1) by 1 and f(y)
and averaging over the y coordinate using the
operator:

a„8=a„8,+a,8,f(y),

where in the former case ep and Bi and in the
latter case B„ep and B„ei are specified constants.
The former case is of interest with regard to pertur-
bations induced by nonuniformities in the shells of
inertial confinement fusion (ICF) targets, and the
latter is of concern with regard to asymmetries in
the illumination providing a seed perturbation for
instabilities. We will therefore consider both cases.

By introducing a "modal expansion"' for 8,

8= Tp(x r)+ T](x r)f (y) (2)

a form of Galerkin approximation, the problem is
reduced from one partial differential equation in
three independent variables to two equations in two
independent variables, while retaining the important
physics of the problem. Equations for the mean

The equation to be solved is

a,8=v ~(e)ve,
where 8(x,y, t) is the temperature field, a function

of time t. The coordinate x is normal to and y is

along the front, and the thermal conductivity a is in
general a function of 8. Two special cases are con-
sidered: constant ~, and power law dependence
~=8",where n =2.5, the value characteristic of the
Spitzer conductivity of a plasma. The constant ~ or
n =0 case leads to linear equations, the general case
giving a nonlinear problem in e. e is separated
into a mean temperature field ep(x, t) and a "rip-
ple" or perturbation field 8~(x,y, t). On the plane
x =0, we impose the boundary condition: either
specified temperature, 8=8,+8,f(y) or specified
flux:

&f)=2 I, fdy

The following properties of the ( ) operator are
used, where f =2'~2 sin(ky): (f ) =0, (1)=1,
(f') =I, &ff~ ) = —k'&f') = k', (—f ) =0, and

(f~)= —(ff~~) =k . Expanding,

s =T"=(Tp+fTi )"

=Tp+nTp 'fT~+n(n —I)/2f Tp T, +
and it is assumed that

~
T,

~
&&

~

Tp
~

permitting
the ripple to be treated as a perturbation on the
mean field. This assumption is physically reason-
able and rigorously justifies the severely truncated
expansion employed; from experience' it is ex-
pected that the modal expansion will be qualitative-

ly valid over a much broader range, however. Posi-
tivity of the temperature field requires

~
T,

~
&

~
Tp ~. In general, an expansion of 8 as

Tp(x, t) + g f (y) T; (x, t) may be used if it is con-

sidered desirable to do so. We then find the equa-
tion for the evolution of the mean field is
(D =a„,~,=a~ran
Keff—x +n ( n —1 ) /2 T

~ Tp (4)

B,Tp ——D(~,ffDTp)+DTpTp n (n —1)T&DT&

+lrr[T)D T) + (DT, ) ] .

The "fluctuation field" T~ acts through the fac-
tor ~,ff to enhance the penetration of the mean field
in that it contributes (for n & 1) positive semidefin-
ite terms to an effective diffusion coefficient jeff.
The other terms modify Tp(x) near the front.
These terms have little effect on the solution, as
verified by numerical solution of Eqs. (5) and (6)
(see below).

The equation for the fluctuation field T& is

B,T& ——Tp(D T, —k T, )+ (T"—~D T T, +2T" 'DTpDT&)+n(n —1)T (DTp) T& . (6)

d, T =D[aDT ] . (7)

We see that the terms in the equation for the
mean field Tp involving the fluctuation field T) are
all of second order in that field; hence to an excel-
lent approximation in Ti we may neglect these
terms, obtaining for the Tp field the equation

Approximate solutions to (7) are at hand in Ander-
son and Lisak ' for the nonlinear case, and exact
solutions exist for the linear, constant a (n =0)
ca'e. For the linear case, T] satisfies

Qg Ti =K(D —k )T) (8)

which is solved for the fixed-temperature case and
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which may be solved following Ref. 23 for the fixed
perturbation flux case. Note that in the linear case,
Eq. (8) reduces to Eq. (7) if k =0. For fixed tem-
perature,

Tp ——1 —erf(Z) =erfc(Z), Z =x/2(xt)', (9)

Ti ——T, (x =0)/2[exp{kx)erfc(Z +b /Z)

+exp( —kx) erfc(Z b—/Z) ]
(10)

with b =kx/2, normalization T&(x =0)=1, while
for the case of an imposed flux

To ——2[exp( Z) [—trt /rr] '~ x l2—erfc(Z) J,
Ti DTi—(—x =0)/(2k)[exp( —kx)erfc(Z —b/Z) —exp(kx)erfc .(Z+b/Z)] .

Anderson and Lisak ' give the following results for nonzero n, with the fixed-temperature solution:

[1—Z/Zo+8Z~/{12Zo)]~~ p =1/(1+n) 0&Z & 1
Tp

0, Z»

(12)

(13)

and for fixed flux

Pts(1 Z/Z, )—, 0&Z&1
P= 0 Z&1

with

(14)

crease Ti. The approximation is worst at very early
times which are not of interest.

III. FRONT VELOCITY

q =1/(n +2),
F=((n+2)[DTo(0)] Jv,

Zi (n +——2)/(n +1) [(n +2)[DTo(0)] J
"s,

Zp ——2(n +2)/(n +1)
Equation (6) will be solved numerically, but the fol-
lowing simple approximation may be justified a pos-
teriori. The approximate ' and exact solutions
for Tp all show that Tp is almost constant out to a
temperature "front, " beyond which Tp is zero.
Hence DTp and D Tp are substantial only near the
front. Furthermore, as will be shown, the Tz field

propagates more slowly than the Tp field; conse-

quently, it can be substantial only where Tp is ap-

preciably constant. Thus T& for nonzero n is ap-
proximately the same as that for the n =0 cases.
The numerical results below show this approxima-
tion is good throughout and excellent away from
the front; there, the neglected terms serve to in-

To interpret the solutions obtained in the previ-
ous section, let us define a "front" velocity as the
rate of propagation of an isotherm. For the non-
linear conduction case, which have well-defined
fronts, this is a weak function of the isotherm
chosen, since the variation in temperature is con-
fined to a small region. If the front temperature is
Tf, then the front velocity is

dx —()T ()T
Vf ——

dt r (15)

For the linear k =0 case, i.e.,
To ——erfc(Z), Vf ——{tt/t) ' [inverf(1 —Tf )], where
y =inverf(x) is defined by x =erf(y), and the front
position is xf=2(at)' [inverf(1 —Tf)] (a is con-
stant); note Vf ——xf /(2t); the general a =T" case has
the same dependence upon t and a. For the linear
case with general k, we find, from Eq. (10),

Vf =(xf /2t)/[ coshkxf +0.25k (mat)' exp(Zf +k T )[exp( kxf )erfc(Zf bf /—Zf )

—exp(kxf )erfc(Zf +bf /Zf )]J, (16)

with T =(set)', bf ——0.5kxf, and Zf —xf /
[2(at)'~ ]. Note that for k =0, (16) becomes
Vf —xf/2t, in agreement with the k =0 result
above. The denominator is composed of two posi-

I

tive definite terms [compare Eq. {12) with the
second term] and greater than 1 unless k =0. It is
therefore clear from (16) that the perturbation tem-
perature field T] with nonzero k will have a smaller
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FIG. 1. (a) Temperature fields for the linear heat conduction case (constant ~), at time t =0.6. The upper curve is
mean temperature To and the lower curve perturbation temperature T~ for k =2m.. (b) Position of the t =0.1 isotherm for
the same case, plotted as a function of time, upper curve for To field and lower for T&. (c) Velocity of the T =0.1 iso-
therm, for the same case. (d) Same as (b) but for T =0.9 isotherm. (e) Same as (c) but for T =0.9 isotherm.
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velocity than the mean field Tp with k =0. For
large kx~ the ratio of velocities can clearly be large,

so the mean field will leave the perturbation field

far behind; thus at the ablation front, which will be

xf for the Tp field, TI wi11 be completely negligible.

Figure 1 displays the Tp and TI fields and the
"front" positions and velocities, with Ty taken as ei-

ther 0.1 or 0.9 of T;(x =0}=1(fixed-temperature
boundary condition i =0, 1), with TI having wave

number k =2m (the reason for this choice will be

given in Sec. IV}. For the linear case (n =0), the

fields are uncoupled.
The concept of a front is less arbitrary for a non-

linear case (nonzero n), since the temperature field
will then vanish sufficiently far into the material.
The leading order approximation for Tp in the
fixed-temperature boundary condition case is of the
same form for both Anderson and Lisak ' and
Petschek et al. '5 To ——(1.—Z/Zo)'~" +"', with the
former giving Zo ——2(n+2)/(n+1), the latter

Zo (n+——2)(n+1 5)!(n.+1). Note that for
n =2.5, there is a 40% difference in Zp and hence
front position depending upon which approxima-
tion is used. We may invert this to find
xf =[K{X=0)t]' Zo(1 —Tg +'), and, exactly as in

the linear case, V~ ——x~/2t. Here a, evaluated at
x =0, is in our normalization 1 since ~= Tp and the
boundary condition is Tp(x =0)=1; we retain ~ in
the formula merely as a reminder of the dimen-
sionality. As the laws for V~ are identical in linear
and nonlinear cases, the cases should be qualitative-

ly similar in behavior. Figure 2 illustrates this
behavior. The amplitude of the perturbation field
was taken as T&(x =O, t) =0.25, with the mean field
boundary condition Tp(x =O, t)=1.0, with k =2m
(fixed-temperature case). The Tp and T& fields are
coupled, and the relative amplitudes can matter, but
the effect on Tp of even such a large T& field is
negligible. Figure 2 presents the data for this non-
linear case in a manner analagous to Fig. 1 for the
linear conduction law case. TI has been scaled by
dividing by TI(0) for ease of comparison of its spa-
tial dependence with that of Tp. The remaining

graphs are analagous plots for the solutions of (7)
and (8), illustrating the effect of the nonlinear cou-
pling terms. Except at early times, the behavior is
qualitatively the same in all cases and clearly shows
the perturbation being left behind by the mean ther-
mal wave. Figure 3 presents the analagous results
for the solutions of the simplified Eqs. (7) and (8).
The Tp field is essentially unchanged as compared
to the Tp field when calculated with the full equa-
tions; the T& field is more like that of the linear

(n =0) case, and smaller near the front than the Ti
field as calculated with the full equations.

For the fixed flux boundary condition case,
reductions in the ratio TI/Tp near the front are

even greater. Such numbers will not be tabulated

because they may be easily evaluated from formulas

(11}and (12) for the linear case and (14) used for
comparison in the nonlinear case.

IV. IMPLICATIONS FOR ABLATIVELY
DRIVEN ICF TARGETS

How much does an ablation front smooth during
the implosion of a typical ICF target shell, due to
the mechanism considered in this paper? The most
damaging wavelength is generally considered to be
approximately equal to the shell thickness, since
smaller wavelengths become nonlinear and grow
much more slowly when their amplitude is of order
of the wavelength, while much longer wavelengths
grow more slowly. Hence, scaling all lengths by the
shell thickness T, the wave number is k =2m. The
distance traveled by the ablation front is a fraction

f times the shell thickness, with f typically about
0.8. Using the approximate expression for xy
presented above, this distance is then
Zo[a(x =0)t]', giving us a nondimensional time
of(f/Zo) .

Figure 3 shows typical temperature fields for a
case with k=2m. and dimensionless time = 0.6.
The boundary conditions Tp(0) =1,TI(0)=0.25
were used, with 4T& being plotted to simplify com-
parison of the behavior of the two fields as a func-
tion of x. Near the Tp front, at the Tp ——0.5 iso-
therm, the ratio [Ti/T, (x =0)]/[To/To{x =0)] is
0.1. Closer to the front isotherm temperature, the
ratio is smaller. Hence we have an order of magni-
tude of smoothing. The smoothing is approximate-
ly the same when the analytic approximation to T&

is used. The smoothing is similar but somewhat
higher for fixed flux boundary conditions, the Tp
field tending to advance somewhat more rapidly in
this case than in the fixed-temperature case [com-
pare Eq. (14) vs Eq. (13)], while T, moves more
slowly [compare Eq. (12) vs Eq. (10)].

Consequently, due to the diffusive nature of the
front, there will be smoothing of perturbations by
an order of magnitude during the course of an im-
plosion. If the ablation front is unstable, the veloci-
ty at which the "bubble" of the Taylor instability
penetrates the shell, relative to the mean ablation
front, is of concern. This velocity will be approxi-
mately v~=v;+UI —Up where v; is the velocity due
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FIG. 2. (a) Temperature fields for the nonlinear conductivity case x=8,n =2.5 (Spitzer plasma conductivity), the
solution of Eqs. (5) and (6) with fixed-temperature boundary conditions Ti(x =0)=0.25, Ts(x =0)= I, wave number for
T& mode 2m. The mean temperature field To is the upper curve while the lower curve is the perturbation temperature T i.
(b) Position of the 0.1T(x =0) isotherm vs time for the solution of (a), upper curve for To and lower for T&. (c) Velocity
of the 0.1T(x =0) isotherm vs time. The To field has the large velocity for all but very early times. (d) As in (b) but for
the 0.9T(x =0) isotherm. (e) As in (c) but for the 0.9T(x =0) isotherm.
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to the hydrodynamic instability, and v~ and Uo are
the velocities of the respective temperature fields.
Let us assume that the instability is still small so
that the nonlinear interaction between the instability
and the smoothing diffusion discussed here may be
neglected and the two effects superimposed. Since
u; is much smaller than vo, and v; soon tends to ap-
proach a constant value (for classical Taylor insta-
bility), vz can conceivably become zero or negative.
This may have been seen in the numerical simula-

tions of laser fronts (private communication, C.
Verdon}, although other effects such as the finite
thickness of the shell may play a role in the calcula-
tion.

V. CONCLUSION

It has been shown that ablation fronts smooth
themselves as they propagate through a medium.
For 'cases of interest, this results in about an order-
of-magnitude reduction in the perturbation, neglect-

ing other effects (i.e., instabilities) that might be
present. Consequently, simple theories that assume
a quasistatic situation in the frame of the moving
ablation front can overestimate perturbation growth

by about an order of magntiude. Ablation fronts
can therefore be significantly more stable than cal-
culated on the basis of simple theories, even if those
theories correctly account for other stabilizing ef-
fects.

It has also been shown that the rippled front sees
a somewhat larger thermal conduction coefficient in
the nonlinear case, resulting in slightly accelerated
diffusion of the mean temperature isotherms. This
effect is not large, however, and would only be sig-
nificant, if at all, at very early times.

The physical mechanism responsible for the
smoothing is the same as that for the so-called
"fire-polishing" ' stabilization of the ablation
front, namely, the lateral diffusion of heat which
produces increased ablation of any cold "spikes" of
material at the ablation front. Whereas fire polish-
ing acts to reduce a temperature fluctuation which
is maximal at the front, and which is produced by
hydrodynamic effects, the mechanism considered
here reduces the "seed" perturbation which could
give rise to such an instability, and consequently
acts in addition to any smoothing of local front
temperature fluctuations due to hydrodynamic in-
stability. It would merely be a question of seman-
tics as to whether the smoothing discussed in this
paper should be called fire polishing, since this term
has never been precisely defined. I prefer to reserve
it for smoothing of perturbations which develop at
the front (e.g., due to hydrodynamic motion as
might be caused by instabilities); others might in-
stead consider this paper the first quantitative, non-
phenomenological treatment of the effect.

Two-dimensional simulations have not been at-
tempted, nor have calculations with more than two
modes, or extensive numerical work with flux boun-
dary conditions; however, it is unlikely that these
would give rise to any qualitative changes in the re-
sults.
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