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Path-integral approach to problems in quantum optics
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A formalism for applying path integrals to certain problems in nonlinear optics is con-
sidered. The properties of a coherent-state propagator are discussed and a path-integral
representation for the propagator is presented. This representation is then employed in
evaluating the propagator for general single-mode and multimode Hamiltonians which are
at most quadratic in the creation and destruction operators of the field. Some examples
involving parametric processes are given.

I. INTRODUCTION

Path integrals and the approximations to which
they have led have been used very much in quan-
tum field theory in recent years. The path-integral
representation of the propagator allows one to see
more clearly than the standard operator approach,
the connection between the classical and quantum
dynamics of a system. Semiclassical approxima-
tions can then be derived in a natural way. ' So
far, however, these techniques have not found
much use in quantum optics. In this paper we
will develop some of the formalism which will be
of use in applying path-integral techniques to cer-
tain problems in nonlinear optics.

The types of problems to which we would like to
apply these techniques are those in which the
medium with which the light interacts can be
described by a nonlinear susceptibility tensor.
These include such processes as parametric ampli-
fication and harmonic generation. The interaction
between the different modes is then described by
products of various powers (depending upon the
specific process) of the creation and destruction
operators of the modes involved.

The type of path integral which we will consider
is not the one usually used in quantum field theory
in which one makes use of a coordinate representa-
tion of the field. We will be interested in problems
in which only a few of the modes of the field are
important and we will use a path integral which
makes use of a representation of these modes in
terms of coherent states. Because the Hamiltoni-
ans which we will consider will be expressed in
terms of creation and destruction operators, and
not the corresponding position and momentum

operators, coherent states, which are eigenstates of
the destruction operator, are natural objects to use.
The coherent-state path integral can be used to cal-
culate the matrix element of the time development
transformation between two coherent states. This
matrix element can be regarded as a type of propa-
gator. This form of the path integral was first dis-
cussed by Klauder and was subsequently examined
by Schweber in the context of Bargmann spaces.
Klauder in later work showed that the coherent-
state path integral is but one example of a more
general class of objects known as continuous repre-
sentation path integrals.

In Sec. II, we discuss some properties of the pro-
pagator and show how it can be used to calculate
various quantities of interest in quantum optics.
In Sec. III, we derive formulas which can be used
to calculate the propagator for single-mode systems
with Hamiltonians at most quadratic in the
creation and destruction operators. These are then
used to calculate the propagator for the case of
second subharmonic generation when the pump
field is classical. In Sec. IV, we generalize our re-
sults and calculate the propagator for an N-mode
system whose Hamiltonian is quadratic. This re-
sult is then used to calculate the propagator for a
parametric amplifier with a classical pump field.

II. COHERENT-STATE PROPAGATOR

We consider a system which consists of one
mode of the radiation field. Let the corresponding
time-evolution operator be U(t2, tt), i.e., if

~
P(t, ))

is the state of the system at time t& then the state
at time tz is
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~
y(t2)) =U(t2, t])

~
y(t])) .

If the Hamiltonian governing the system is given

by H(t) then the time-evolution operator is {where
we have chosen units such that ]]1=1}

C2

U(t2, t, )=Texp i—f, H(t')dt'
1

where T is the Dyson time-ordering operator.
We wi11 consider the propagator

(2)

(3)

(4)

K(a2, t2,a],t])=(a2, t2 ~a],t])
(a2 I

U{t2.0}U(t] o} '
I a] & .

K {a2,t2 ,a],t]') = (a, I
U(t„t, }

I a, &,

where the coherent states
~
a; ) are the eigenstates

of the destruction operator a with eigenvalue a;, at
time t =0. Another expression for the propagator
K(a2, t2,'ai, ti) can be derived by noting that the
coherent state, at time t [i.e., the eigenstate of a (t))
is given by

~a, t)=U(t, O) '~a) .
We then obtain

In quantum optics, one is usually interested in
evaluating certain correlation functions of the field.
For a one-mode field these are proportional to the
expectation values of products of the creation and
destruction operators. These correlation functions
can be expressed in terms of the propagator
E(a2, t2,'ai, t~ ). We assume that, at t =0, the den-
sity matrix has a P representation, i.e.,

p= f d aP(a)
~
a)(a ~,

so that the expectation value of any operator, O(t),
in the Heisenberg picture is given by

(O(t)) =Tr[pO(t}]

=f d aP(a)(a
~
O(t)

~
a) .

On using the completeness property of the
coherent states, namely,

f d a~a, t)( at
~

=1,

it can be easily shown that

(u(t)&= —' f f d a]d'a2P(a2}
I
K(a] t]'a2 0}

I
a] (9)

(a (t])a(t, )&=—' f f f d a]d a2d a3P(a3)K(a], t],'a2, t2)K(a2, t2, a3,0)K(a3,0a],t])a]a2, (10)

(a (0)a (t)a(t}a(0))=—f f f d a]d a,d'a, P(a, )K (a,,t;a, ,O)K(a, , t;a3,0)
~
a3

~
a2a] .

The determination of the propagator thus enables us to calculate any correlation function of the field opera-
tors.

The propagator K(a2, t2,a„t, ) is related to the Q representation of the radiation field, i.e.,

Q(a, t)= —(a, t (p~a, t),1

in a natural way. On substituting for p from Eq. (6},we obtain

Q(a, t)= —f d a]P(a])
~
K(a, t;a],0)

~

1
(13)

In particular, for an initial coherent state, P(a])=5 (a] —ao), and it follows from Eq. (13) that

Q(a, t)= —(K(a,t;a0,0)
~

(14)

The Q representation has the property that the expectation value, at time t, of any antinormally ordered
function Oq(a, at) of a and a may be determined via the relation

(15)(Oq(a, at)) =f d a 0~(a,a~)Q(a, t) .
The close relation of propagator to the Q representation makes it easier to evaluate the expectation values of
antinormally ordered products than the normally ordered products. For exam~ple, the mean number of pho-
tons at time t is most easily evaluated by using the commutation relation [a,a' )=1, as follows:
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(a (t)a(t))=(a(t)a (t})—1=—f d ai f d a2P(a2) ~K(ai, t;a~, O)
~

~ai
~

(16}

Finally, we note that the Q and P representations are related to each other via the following relationship:

Q(a, t)= f d aiP(ai, t) ~K(a,O;a, ,O)
~

(17)

We now turn to the calculation of the propagator itself for a particular set of systems.

III. REPRESENTATION OF THE PROPAGATOR

A. Path integral for the propagator

It is possible to express the coherent-state propagator in terms of a path integral. Here we outline the
derivation of the path-integral representation which was first obtained by Klauder.

We consider a system which is described by a Hamiltonian, H (a,a;t), which is expressed in terms of the
creation and destruction operators at and a. We suppose further that H (at, a;t) is normally ordered. By
inserting n resolutions of the identity into Eq. (5) we find that

K(af, tf', a;, t;)= — d ai . . f d a„(af,tf
~
a„,t„)(a„,t„~ a„ i, t„ i) ' (ai, ti ~a;, t;) .1

(18)

We also have that

(afytJ
~ aJ iyitJ i) =(aJ

=(a,

T exp i f, —dr H (r) aJ i)j—1

t.
1 i f, —drH(a, a;r) aJ i)j—1

—= (aJ ~ aj i)[1—i'(aJ', aJ i', t& i)]

—=exp[ ——,( ~aJ ~
+ ~aJ i

~
}+a&aJ i i'(a&,a—

z i, J i)],
where e=(tf t; )/n + 1, t&

—t;+j e, a——nd the function H(a" ~,a', t) is defined as

(
„,

)
(a" ((H(at, a;t}~a')

(19)

(2O)

Inserting Eq. (19) into Eq. (18) immediately yields

@+1
K(af, tf,a;, t;)= lim — f d a, f d a„exp g [——,( ~aJ ~

+ ~aJ i ~
)+aja~

5-+ co '1T j=1

We note that

a+1
g [——,(

I aJ I'+
I aj-i I')+aJai-i —t&H«J aJ-i'ti-i)1

—ieH(aj, aJ „tJ i)] (21)

1——a.
2 J

uj —aj ~, aj —a&6+ 2 ctj e—i'�(aj,aj ),tj ])

f
dr[ , (aa ~ —a~a) —i—H(a~,a;r)], (22)

as a~0. It then follows that
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t~
K(ay, ty, a;, t; )=I&[a(r)]exp, dr[ , (a—a« a—«a) i—H(a«, a;r)]

tl

where J S'[a(r)] designates the integration over all paths a(r}, such that a(t; )=a; and a(t~) =a~.

{23)

B. Quadratic Hamiltonian

(24)

where f(t) and g(t) are arbitrary time-dependent functions. The evaluation of the path integral (21) corre-

sponding to this Hamiltonian is outlined in Appendix A. The resulting expression for the propagator is

Eg

K(a~, t~,a;, t; ) =exp i I, d—r[2f (r)X(r)+f (r)Z (r)+g(r)Z(r)]
l

If the Hamiltonian is at most quadratic in a and a, it is possible to evaluate the path integral explicitly

(Yuen has calculated this propagator using a different method). The most general quadratic Hamiltonian is

given by

H(at, a;t)=co(t)a a+f(t)a +f«(t)a" +g(t)a+g«(t)a

t~——,( ~a~ ~
+

~
a;

~
)+Y(tI)aIa;+X(t~)(ay) ia; I—drf(r)Y (r)+Z(tr)a~

l

tg—ia; I dr[g(r)+2f(r)Z(r)]Y(r)
l

where X(t) satisfies the differential equation

(25)

2it0(t)X—4if (t)X—if«(t), —
dt

with X(t;)=0 and
t

Y(t) =exp i I d—r[co(r)+4f (r)X(r)]
tl

t t
Z (t) = i I —dr[g«(r)+2g (r)X(r)] exp i J dr'[co{—r')+4f (r')X(r')]

(26)

(27)

(28)

(29)

The nonlinear differential Eq. (26) for X(t) can be
solved if we can express f(t) as

t
f{t)=f(t)exp 2i I drto(r)

L

where f(t) is real or imaginary. We now consider
a simple example where this condition is satisfied.

tical device is given by

( g) ~g tg +~(e 2icotg 2+e
—2icotg 1'2) (30)

where sc is a coupling constant and co is the mode
frequency. The Hamiltonian (30) is the same as
that given by Eq. (24) if we make the following
identifications:

C. Degenerate parametric amplifier
co{t}=co, f(t)=~e ' ', g(t}=0. (31)

The quantum statistical properties of the degen-
erate parametric amplifier have received consider-
able attention in recent years. This nonlinear de-

vice is predicted to exhibit photon antibunching'
which is a strictly quantum-mechanical effect.
Squeezed states, which could prove to be useful in
the efforts to detect gravitational waves, are also
predicted to be generated in a degenerate
parametric amplifier. "

The Hamiltonian that governs this nonlinear op-

X(t)= —.e '"'tanh[2Ic(t t; )], ——21cot

21
(32a)

Y(t) =e ' sech[2a(t —t;)],

Z(t)=0.

(32b)

(32c)

On substituting from Eqs. (32a) —(32c) into Eq.
{25)we obtain

Under these conditions Eq. (26) can be solved and
we obtain
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K{afgtf,a;, t; ) = Isech[2a(tf —t;)]) '

Xexp[ —
z { laf I + I ai I )+afa;e '""I "'sech[2K(tf t')]

, i—(af) e tanh[2s(tf —t;)]—, i—a;e ' tanh[2z(tf —t; )) ) . (33)

This expression for the propagator which we have
derived using a path-integral approach can also be
derived using a more conventional approach. '

IV. MULTIMODE PROBLEMS

A. Path integral

K{af,tf, a;,t;)=(af
~
U(tf, t;)

~
a; &, (34)

where a; and af are N-component vectors with
components denoted by a~", u2", . . . , aN' ( similar-
ly for af ), and

I
a &

=
I
aI" & @

I

a'z"
& 3 Ig

I
a'4'& .

It is also possible to apply these techniques to
problems involving more than one mode. If one is
dealing with N modes the propagator becomes a
function of 2N complex variables. In particular we
have

I

Correlation functions can be computed from this
propagator in ways similar to those used in the
one-mode case. One must simply evaluate more
integ rais.

There is also a path-integral representation for
the N-mode propagator. One has

K(af, tf,'a;, t;)=I 8'[a(r)]e'

=I 9'[a)(r)] I ~[ay)(r)]e'

(35)

where

r N
iS=I dr g —,(a„a„a'„a„)—iH(—a, a;r)

n=1

a(t;)=a;, o.(tf)=af, and if H(ai, . . . , a„,
a~, . . . , a„;r) is the normally ordered Hamiltonian
for the system

H(a"*,a', r)=(,a" ~H(a, , . . . , tt„,a~, . . . , a„;r)
~

a'&/(a"
~

a'& . (37)

B. Quadratic Hamiltonian

If the Hamiltonian is quadratic in a &, . . . , aN and a i, . . . , aN one can again explicitly evaluate the path
integral. We express the Hamiltonian as

H =g g [to&(t)a;a/+fs(t)a;aj+f J(t)tt; aj ]
i =1j=1

(38)

and we assume that f has been chosen so that fJ{t)=f1;(t). The detailed calculation of the propagator for
this Hamiltonian is performed in Appendix B. We find that

K(af, tf, a;,t;)=exp '2i I d—rTr[X(r)f{r)]——,[(af) af+(a;') a;]+{af) Y(tf)a;
t

+ (a f ) X(tf )a f—i I dr a; Y (r)f (r)Y(r)a; (39)

In the above equation X(t) and f(r) are N XN
symmetric matrices. The elements of f(t) are sim-

ply the functions f/{ t) which appear in the Hamil-
tonian. The matrix X(t) satisfies the equation

dX i (cd +X~+f'+ 4XfX—)
dt

where co(t) is an N XN matrix whose elements are
co,j.(t), and X(t;)=0. The N XN matrix Y(t) -is

given by

ff
Y(t)=T exp i f dr[—to(r)+4X{r)f(r))

i

(4&)
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The superscript T appearing on some of the vec-
tors and matrices in Eq. (39) denotes transpose.

C. Parametric amplifier

Considering first the equation for X(t), Eq. (40),
we find that

0 1
X(t)= ——,ie ' tanh[tt(t —t;)]

The parametric amplifier with a classical pump
field is a system which has been much studied in
quantum optics. ' Here we would like to use the
formulas developed in the preceding section to find
the propagator for this system.

The Hamiltonian we wish to consider is

u(t)= Y(t)a; .

The vector u satisfies the equation

(45)

Rather than solve for Y(t), we instead solve for the
vector

H = co~a &a~+co2a2a2

iol3t —l aP3t
+K(e a~a2+e a ~ay), (42)

du

dt
i (tou—+4Xfu ), (46)

(43)

where e&q
——co, +coi. The matrices co(t) and f(t) are

N] 0
co(t) = 0 N2

,r01f(t)= , tte—

where u(t;)=a;. One finds that

—im, (t —t,. ) (;)e 'a~
u(t) =sech[x(t t;)]-l —lCal2 t —t; (l)

2

The final result for the propagator is then

(47)

K(at, tI, a;,t;) =[seclvc(tI —t;)]exp ——,[(a~) a~+(a';).a;]—, ie ' —tanh[s(t~—t;)](aI) o, ai

—lCOi(t~ —t )f t

+sech[a(t~ t; )](a y—)
0

—iru2(t~ —t ) +i

l C03tt. ~T——, ie 'tanh[a(ti —t;)]a;oiu; (48)

where oi ——(~ 0).0 1

V. CONCLUSION

We have shown how a formalism incorporating coherent-state propagators and path integrals can be of
use in the consideration of certain problems in nonlinear optics. Here we concentrated on the formalism it-
self and certain basic results for the path integrals. These are necessary steps toward the development of ap-
proximation schemes for more complicated systems. It is in these approximations that the promise of these
techniques lies.
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APPENDIX A

According to Eq. (21) the propagator K(ay, t~,a;, t;) corresponding to the Hamiltonian (24) is given by
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5

K(aj, tf ,a;', t;)= lim — . g d aj e
1

" s„
5-+ eo 77 j=1

where

(Al)

n+1
[—z( ~aj ~

+ ~aj ~ ~
)+(1 ie—coj)ajaj ~ iefj—&aj &

ief—~'aj ieg—j &aj &
ie—g&'aj] .

j=1

(A2)

The a; integrations in Eq. (Al) are lengthy but straightforward. The resulting equation is

1
K(af, tf,'a;, t; )= lim

g (1+4ief;X;)'j

Xexp g ie fjZj +gjZj i egjX—j fj Yj2

1+4iefjXj 1+4iefjXj
+ . a;

2fj YjZj+gj Yj +2a; +X„+&af + Y„+)a;af+Z„+)af1+4ie jXj
(A3)

where Xj, Yj, and Zj satisfy the following recursion relations:

(1—r et0, )'Xj
(A4)

(1—i ecoj. )Yj

1+4i ef, )Xj

(1—ie~j)(Zj 1
—2ieg&Xj 1)

Zj = —l5gj +
1+4iefj )Xj

with Xo ——Zo ——0 and Yo ——1. On taking the limit n —+ 00, we obtain

Il ffP (1+4iefX;)' exp 2i f drf(r)X(r)
i=1

(A5)

(A6)

(A7)

j=0

2 2
~e(fjZj +gjZj tegjXj—)

t f drZ(r)[f (r)Z(r)+g(r)],+ "j j 1

ief Y—
i f dr f(—r) Y2(r),1+4ie jXj

(A8)

(A9)

j=0

ie(2fj YjZj+—gj Yj)

1+4iefjXj

tf
i f, dr [—2f(r) Y(r)Z(r)+g(r) Y(r)],

l
(A10)

X„+1,Y„+1,Z„+1—+X(tf ), Y(tf ),Z(tf ), (A11)

and, in view of the recursion relations (A4) —(A6), the functions X(t), Y(t), and Z(t) satisfy the differential
equation
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dX
dt

dF
dt

i—[to(t)+4f (t)X(t)]Y,

dZ
dt

2i—co(t)X 4i—f(t)X if—' (t),

i [t—o(t)+4f (t)X(t))Z —i [g'(t)+2g(t)X(t)],

+Y(tf )afa;+X(tf )(af ) ia; —I, drf(r) Y (r)
i

tf
ia;—f, dr[g(r)+2f(r)Z(r)]Y(r)+Z(tf)af

l

where X(t;)=Z(t;}=0and Y(t;)= l.
On substituting from Eqs. {A7}—(Al 1) into Eq. (A3), we obtain

K(af, tf,'a;, t;)=exp i I—dr[2f{r)X(r)+f(r}Z (r)+g(r)Z(r)] ——,(~af ~
+ )a; ~

)
l

(A12)

{A13)

(A14)

(A15)

Equations (A13) and (A14) can be integrated and the resulting solutions for Y(t) and Z(t) are
t

Y(t}=exp i f—dr[co(r)+4f (r)X(r)]
l

Z(t)= i f—drg~(r)[1+2X(r)] exp —i I «'[to(r')+4f (r'}X(r')1

wh. re X(t) is determined by solving Eq. (A12) subject to X(t; ) =0.

(A16)

(A17)

APPENDIX B

We would like to compute the propagator for the system governed by the Hamiltonian given by Eq. (38).
As in the one-mode case we have that the propagator is given by

'n
1 iS„

K(af, tf', a;, t;) lim dai da„e
Jl ~ oo

(B1)

where da =d an't'd ag' . . d ag' andj
n+1

iS =g [ [{ai)a—i+—{ai,.} ai i]+{at)ai i ie[{ai)—toiat i+at if( i—ai i+(ai} fi(ai)]]
1=1

(B2)

In the above equation a designates the transpose of a and fi =f(ti) is an N XN matrix where ti t; +le. ——
To perform the integrations it is necessary to split each aj ' into real and imaginary parts. That is, for

each I we must go from a N-dimensional space, C (of which aI is a member), to a 2N-dimensional space.
It is best to view this space as a tensor product space C SC . If g;GC is the vector whose ith com-
ponent is 1 and whose other components are 0, and vi EC is the vector whose jth component is 1 and
whose other component is 0, then a GC ~zGC 8 C, where

N
Z =g (XJ'rij 8 Vi+Jljrtj 8 Vp) (B

j=1

and the components of a are az ——xj. +Iy&. It is then possible to express the action as
n a+1

iS„=—$ zi Mtzt+ $ zt~Ltzt i
—

z [(a f ) af+(a i ) ai] i&[ai~fi at+(—a f ) ffa f]
1=1 1=1

(B4)
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where Ml =I + i~(fI S y, +f1' 8 y2), LI
=(IN i—ecpi ) Sp, , I is the identity on C SC, IN
is the identity on C, and

In general, if one has done l —1 of the integrations
the part of the action containing zl can be ex-

pressed as

r2=
1 —i

—i —1

1

71

{B5)

T I T T—zl Ml zl +zl + 1LIzl +vl zl &

where Ml' and vl obey the recurrence relations

I ] —1 T
Ml+1 ™l+1—4 Ll+1(Ml ) L

(B10)

(B11)

We now want to do the integrations starting
with l =1, then going to l =2 and so on. To do
this we make use of the formula for the integral
(assuming that it exists)

ul =
4 [Li+1(MI ) +LI+,(MI }]ul (B12)

Note also that each integration contributes a factor
of

ir"{detMI' )
'~ exp( , ul Mt—'ul).

~ ~ ~dx1 . dx„e
~/2

(1/4) y A ~
y (B6)

One can show from the above recursion relations
that it is possible to express Ml' and vl in the form

Ml =Ml —Xl 3y2, vl=~l e1
where A is a symmetric n )(n matrix and y is an
n-component vector. Using this formula to do the
l =1 integration we pick up a factor of

H(detMi) '~ exp( —,zpL IM, 'Lizp)

and terms in the exponent which are linear and
quadratic in z2. We can express the part of the ac-
tion containing z2 (after having done the l =1 in-

tegration) as

+4Xlfl+ IXI»
ul+1 =ul l ( elc—0+I lu+4XI Iflul ) .

(B13)

(B14)

Upon taking the a~0 limit these equations be-
come

where ei ——(I/v 2)(vi —i v2) and, to first order in e,
Xl, and ul obey the recursion relations

XI+1= I I&( cpl+2XI+ Icpl+2+fi+1

where

T & T Tz 2M2z2 +z3L2z2 +v 2zp (B7)
dX
dt

i {cpX+—Xco+f» +4XfX), {B15)

I —1 T
M2 ——M2 —4L2M1 L2 (B8) du

dt
i (cpu +—4Xfu), (B16)

u2 ——
4 [L2M1 Lizp+L2(M1 ) Lizp] . (B9}

where X(t;}=0and u(t; }=v2a;.
Upon performing all n integrations we find that

n

K(af, tf', a;,t;)= lim g
1 (detMJ )'/

r

&&exp —
z [(a,') a;+(af) af] zf(M„'+. I

—I—)zf+u +izf

n

+ —, g ul (Ml' ')ul if[a f;a;+(af—) ffaf]
l=1

(B17)

We now take the limit n~ 00 and find that
n E~

exp 2i J, d—r Tr[X(r)f (T)]
1

(detM')'

—zf (M„'+1 —I)zf~ ( a f ) X(tf )a f,
T 1

v +1Zf~ (a f ) u (tf )
'V2

(818)

(B19)

(B20)
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Pf tf
4 X "I (~l )Ut~ —

2 t I drtl (r)f(r)tt(r) .
l=1 l

We can reexpress the terms involving u (v) by defining a matrix
f

F(t)=T exp i—I dr[co(r)+4X(r)f (r)]
~l

and noting that

tt (t)=v 2F(t)a;,
so that K(af, tf,'a;, t;) is given by the expression in Eq. (48).

One can check that this expression is correct by observing that E(af, tf,'a;, t; ) satisfies the equation

(B21)

(B22)

(B23)

and verifying that, indeed, the expression given by Eq. (48) does satisfy this equation.
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