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A theory of the multicomponent wiggler free-electron laser is formulated in the small-

signal regime. Analytical expressions for the spontaneous spectrum and the corresponding

small-signal gain are derived. The expressions are valid for an arbitrary wiggler configura-

tion consisting of any number of constant or tapered sections and drift spaces. Thus, opti-

cal klystrons are included as a particular case of the two-component devices. As a natural

result of the derivation, it is proved that Madey's theorem holds for any multicomponent

wiggler configuration including the optical klystron. As particular cases, several two-

component wiggler schemes are discussed in detail. Based on the simple-gain expression an

upper limit is obtained for the small-signal gain. It is shown that this cannot exceed the

maximum gain of a constant wiggler of the same effective length by more than 25%.

I. INTRODUCTION

The free-electron laser (FEL) is a device that uti-
lizes the interaction of relativistic electrons and the
radiation in a periodic magnetic field (wiggler) to
generate coherent and tunable electromagnetic radi-
ation. It is well known that a properly tapered
wiggler can extract more electron energy than an

untapered wiggler to amplify the input signal of a
small output wavelength (A, & 10 pm) FEL at high
powers ()10 MW). ' The physical principle is
based on keeping the phase velocity of the pondero-
motive potential well, formed by the interaction
wiggler field with the electrons and the radiation
field, in pace with the electron mean velocity in
such a way that the energy extraction process can
be continued down the wiggler. This is accom-
plished by either spatially varying the phase veloci-

ty of the potential (well) bucket or by replenishing
the longitudinal energy lost by the electron beam to
radiation. The phase velocity can be varied in a
controlled manner by adiabatically tapering the
wiggler period whereas the longitudinal electron en-

ergy can be replenished by either adiabatically
tapering the wiggler amplitude or introducing a dc
longitudinal electric field. The electrons that are in-

itially trapped in the bucket tend to remain trapped
if the motion is sufficiently adiabatic. As the buck-
et energy or its amplitude decreases, the mean ener-

gy of the trapped electrons is reduced. The extract-
ed electron beam energy provides the amplification
of the input laser signal.

The appropriate taper of the wiggler depends on

the rate of change of the electron beam energy
which is, in turn, strongly related to the radiation
field strength. Therefore, a wiggler with a given

taper is optimum only for certain input laser power
level. The single-pass gain decreases for either
higher or lower input power. At low input powers
(small signal), the gain can drop to a much lower
value than at high powers. Further, for low input
powers, the gain can become negative for those fre-
quencies that are optimum at high powers. This
could present serious problems for the startup of a
free-electron laser oscillator.

If the oscillator is started by injecting a low

power signal at the desired wavelength, the system
will be practical only if the injected power is less, at
least, than one-tenth of the optimum power. Usual-

ly, this power level is well within the small-signal
regime. If the roundtrip cavity loss, including the
output coupling, is larger than the single-pass gain,
the oscillator can never start. The characteristics of
the tapered wiggler FEL at optical frequencies are
such that even in cases where the small-signal gain
is higher than the threshold value, the net gain is
usually too small for the radiation field to reach its
saturation within a finite number of passes (typical-
ly, for a high currect rf linac accelerator, there are
only several hundred micropulses in an electron ma-
cropulse) ~ The problem may be alleviated by utiliz-
ing storage rings, superconducting linacs, or other
electron sources that are essentially cw systems.
%ith the present state of the art, however, these ac-
celerators cannot support the extremely high
currents (I & 50 A) that are necessary to obtain gain
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above threshold for the small wavelengths and high
powers of interest. Recently, it has been suggested
that the small-signal gain, as well as the large-signal
gain, could be enhanced by utilizing multicom-
ponent devices or optical klystrons 5,6

If the oscillator is started from the noise level, it
will oscillate at the wavelength where the gain is
maximum. The maximum energy extraction occurs
when there is maximum overlap in the interaction
region between the electron mean velocity and the
bucket phase velocity (resonant). However, at small
signals, the electron energy loss is slower than the
rate for which the tapered wiggler is designed.
Thus, to obtain higher gain at small-signal levels
the starting electron energy would have to be lower
than the resonant energy. For fixed electron energy,
this means that the wavelength at which the max-
imum gain occurs varies with the input power.
This effect can produce a shift of the operating ra-
diation wavelength as the radiation builds up inside
the cavity. In addition, it also suggests that inject-
ed oscillators should be started with a signal at the
maximum gain wavelength instead of the fina1,
desired wavelength. Although this might solve the
start-up problem, it can delay the time to reach

steady state beyond acceptable limits. The adiabatic
condition for the shift and how it proceeds at the
expense of the interaction gain need to be studied
carefully.

In order to analyze these two aspects of a tapered
wiggler FEL oscillator, we undertook the study of
the more fundamental problem that is reported in
this paper: the analysis of the small-signal gain
spectrum which determines the gain magnitude as
well as the operating wavelength. The result from
these studies motivated a full investigation of the
novel multicomponent wiggler scheme. The
analysis of this scheme as well as the frequency-
shift mechanism will be reported in the near future.

In Sec. II, the spontaneous spectrum of a tapered
wiggler is discussed briefly. In Sec. III, an analyti-
cal expression of the small-signal gain is derived for
an arbitrary wiggler and expressed in terms of the
spontaneous spectrum. Different schemes, such as
constant wiggler (CW), tapered wiggler (TW), mul-
ticomponent wiggler (MCW), and optical klystron
(OK) are studied in Sec. IV based on the simple
gain expression. In Sec. V, an upper limit is set for
the small-signal gain. Its implication is then dis-
cussed. The results are summarized in Sec. VI.

II. SPONTANEOUS SPECTRUM

In this section, we calculate the classical radiation due to the periodic electron motion in a tapered wiggler.
Earlier calculations on the spontaneous emission for a constant wiggler have been given by Motz and Col-
son. The wiggler is assumed to have plane polarization and the vector potential can be written as

z
Az(z)=A(z)cos k (z)dz x .

0

The calculations can be easily generalized to any field polarization. Far away from the wiggler, the energy re-
ceived at the detector d8', per unit angle d0, per unit frequency interval dao, is'

i(cc/c) J [I S p(z))d—z.
dQdro 4 c

where n is the direction of observation, I. is the
wiggler length, P(z) is the electron velocity at posi-
tion z in units of the light velocity in vacuum c, and
co is the emission frequency.

The integral in (2) represents the complex field
amplitude and contains all the information of the
electron motion inside the wiggler. We are especial-
ly interested in the forward spontaneous spectrum
where n =z. In this direction, the complex ampli-
tude becomes

i(cc/c) f [)—P, (z)]dz
) (z)8 0 dz

0

p, (z) =—,cos k (z)dz
eA (z)

C

I

In the integrand in (3), p)(z) is the electron trans-
verse velocity indicating the radiation strength at
position z while

co/e f [I—P, (z)]dz

is the relative phase delay of the radiation arriving
at the detector. If the longitudinal velocity p, is a
constant (for example, in a constant helical wiggler),
the complex amplitude is the Fourier transform of
the electron transverse motion. If p, is not a con-
stant, the situation is more complicated. Ho~ever,
the fast oscillations in P, can be averaged over to
obtain
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L
Q= — f a (z)e-'t(*)dz,

2r

where

f(z)= f g(z)dz,

k, a (z)
g(z)=k (z) — l+

2 . 2

eA (z)a„(z)= 2, k, =—.
mc

(4)

III. SMALL-SIGNAL GAIN

g (z) is the local detuning function between the elec-

tron and the ponderomotive potential. f(z) is the

accumulated phase factor. For given a (z) and

k (z), the spontaneous spectrum can be obtained by

calculating the integral in (4). The detailed result

for several wiggler schemes is shown in Sec. IV.

where E is the radiation field amplitude, and t/i is

the phase position of the electron in the ponderomo-
tive potential well. In Eqs. (Sa) and (Sb), we have

averaged over the fast oscillations of the electron
motion at the radiation and wiggler period. The
term (a,a„cosP) in (5b) is small and usually neglect-

ed in the calculation of the gain. However, we find

this term is essential in providing an exact relation

between the small-signal gain and the spontaneous

spectrum as it will be shown later.
In the small-signal regime, the dynamic variables

g and f can be expanded in powers of a, :

$0)+g() )+g(2)+

y(0) ~ y() ) +
where g'"' and f'"' represent the terms proportional

to a,". Substituting (6) into (5), we have the follow-

ing iterative equations:

d = —k, a,a (x)sini((,
dz

k, a (z)
=k„(z)— l+ —a,a (z)cosP

dz
" 2 2

(5a)

The interaction of an electron with the radiation
inside the wiggler can be described by the following
one-dimensional equations of motion: (1)

= —k,a,a„(z)sing' ',
dz

k, g") a (z)
1+

dz 2g(0) 2

(7a)

(7b)

g= f (k +k, )dz to, t, — (Sb)

k, a,a (z)
+ (0) COSQ

2g
(7c)

eE
Qg=—

2k, mc

(2)
= —k,a,a (z)l(")cosl(' '; (7d)

dz

with the initial condition g( '=y, g"' and g' ' can

be obtained by straightforward integrations of (7):

L
k, a, f a„(z)s—in[$0+f(z)]dz,

k, a, 2

4 0f a (z)cos[$0+f(z)]dz

x a~(z')
+ '

4 f a (z)cos[l(t04-f(z)]dz f 1+ dz'
2r 0

(8a)

X f a„(z")sin[()(0+f(z")]dz", (8b)

(9a)

where $0 is the initial phase of the electron and f(z) has been given in (4). We are interested in the electron

energy in units of the electron rest mass y, which is related to the dynamic variable g as

r(i)
g())

2r '

(2) (2)
(i)2

2y 4y
(9b)
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Substituting (g) into (9), we obtain the first- and second-order corrections to the electron energy. ~e can
then go on to calculate the ensemble averages (over the initial phase 1(0) of two quantities: the phase averaged

energy change (by) and the phase averaged energy spread ((by) ) that are related to the small-signal gain
and the spontaneous spectrum, respectively, for small-gain systems and monoenergetic beams. Although this
calculation is straightforward, it utilizes a number of algebraic manipulations that are described in detail in

Appendix A and yields the following results:

&(by)') =(y"' &

k a= * ' f dz,

«y& = &y"'&

2a2
= — ''f dz,

L
dz2a„(zi )a (z2)cos[f (z, ) —f(z2 )],

0

L 2 B
dz2 —— [ a„(zi )a (z2)cos[f (zi ) —f(zq )] ] .

. y 'y.

(10a)

(lob)

Comparing (10b) and (10a), we prove Madey's
theorem" '2

&by) =— ((by)'& .
2 By

(12)

2

I Q I

'e(i)—e(0) ~~. ~, B

J radiation 2& By

{13)

It has to be emphasized that we have proved this
theorem for any wiggler configuration. Further, the
wiggler variation does not need to be symmetric as
the assumption given in the original paper. " Since
there is essentially no restrictions on a (z) and
k (z), the theorem is also applicable to the mul-

ticomponent wiggler or the optical klystron as long
as a~(z) and k {z)are slowly varying.

The small-signal gain in the radiation power
8' =cE /8~ can be derived from the extraction effi-
ciency g, if it is assumed that all the energy lost by
the electron beam goes into electromagnetic energy:

«y&
I Q I'

y y By

I

It is derived for arbitrary variation in the magnetic
amplitude and period including multicomponent de-

vices and optical klystrons. In these devices, the
drift space can be represented by a (z) =k (z) =0.
As will be shown in Sec. IV, an optical klystron is a
particular case of the multicomponent device. In-
stead of its physical drift distance, we have to apply
the effective drift distance which is due to the use
of dispersion magnets.

IV. APPLICATIONS

In this section the formulas derived in Secs. II
and III for the spontaneous spectrum and small-
signal gain are applied to particular devices. We
first show that for a constant wiggler the standard
result is obtained and afterwards generalized to a ta-
pered wiggler and a multicomponent wiggler.

A. Constant wiggler

For a constant wiggler, the complex field ampli-
tude is reduced to

where K represents input power and
I Q I

was

given in (4). From (9), we find that the small-signal

gain is exactly proportional to the slope of the spon-
taneous spectrum. Note that if the small term in
(5b) would have been neglected, the small-signal
gain would be

2

h =k — 1+
2

(15)

2

+—
I Q I

'~' By y.
(14)

Although (2/y) is much smaller than (B/By) in the
relativistic limit, it violates the exact relation that
follows from Madey's theorem.

The gain expression in (13) is completely general.

dw
dQ dco

2 2 2L2
j0(X)

161r Cy x hLi2= (16)

The small-signal gain, obtained as shown in Eq.
(13), is

Hence, its spontaneous spectrum is the well-known

spherical Bessel function squared
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2 3 2

6, = pk L ~ 2 —2cosx —x sinx

2c X x =hL
(1'7)

and it peaks at hL =2.6, yielding the standard for-
mula

functions. ' Since

C( —p) = —C(p); S(—p) = —S(p),

the spectrum is symmetric about p = —q, i.e.,

h = —aL/2,

(21)

(22)

Gc,max=0 27

B. Linearly tapered wiggler

g(z) =h+az

and calculate the spontaneous spectrum to be

2 2 2dS' e aw n 2—
I [C(p) —C(q)]

dQdco 16m cy a

(19)

+[S(p)—S(q)]' j,

For a tapered wiggler with the variations a (z)
and/or k (z), Eqs. (4) and (13) can be used to calcu-
late the gain and the spontaneous spectrum numeri-

cally. Since the spectrum is the result of interfer-
ence of the fields radiated from different parts of
the wiggler, the phase factor f(z) is far more im-

portant and sensitive than the radiative strength
factor a (z). For simplicity, we consider the linear-

ly tapered wiggler with the variation

k A, (0)—A, (L)
L A, (0)

(23)

which means that the wavelength at which the spec-
trum is centered is determined by the parameters at
the mid wiggler. If we choose to fix the wiggler
parameters at the entrance, as we vary the wiggler
taper, it is expected that the center of the spectrum
will shift to lower values of h (shorter wavelengths
for a fixed electron energy) with increasing tapering
for positive a. The spectrum, for values of
czL =0, 10,20, 30,40, 50 is shown in Fig. 1. When
the taper increases, we find that the peak intensity
drops while the first sideband is enhanced. In par-
ticular, at aL =30, the magnitudes of the funda-
mental and first sideband are almost the same and
the spectrum shows a plateau extending over a wide
range. For aL larger than 30, the center intensity
drops even further and the spectrum extends rather
irregularly.

It is useful to relate the parameter a to the taper
rate for constant amplitude or constant period
wigglers. For constant amplitude

a
1/2

hL+~, (20)

and for constant period

a k a (0)—a (L)

1+@ /2 L a (0)
(24)

h

where h is the initial energy detuning, a indicates
the degree of linear tapering, C and S are Fresnel

I

In the TRW 10.6-pm experiment, a 3% tapering in

a~ gives aL =10.
The small-signal gain for a linearly tapered

wiggler is obtained by taking the derivative of (20):

co~za'k v n.
p ill N

2c yava
Kpcos

2
—cos [C(p)—C(q)]+ sin —sin [S(p)—S(q)]

2 2 2
(25)

which is identical to the result obtained by Brau. '

The gain spectrum is antisymmetric about the point

p = —q and is shown in Fig. 2 as a function of the
wiggler taper and the energy detuning. To simplify
the figure, the negative gains are suppressed; how-

ever, they can be figured out easily from the an-

tisymmetry relation. Figure 2 shows that the main
bump in the spectrum decreases appreciably and
disappears completely after aL =30. The small

bumps on the negative side of h vanish even faster
except for a rising bump within the range

I

—2m. & (hL +aL /2) & 0. This becomes the major
contribution at large tapering. It is interesting to
note that the peak gains shift toward negative h and
decrease in magnitude as the taper rate increases.
Eventually, the first side lobe disappears completely
and is replaced by the main peak, as the shift of the
whole structure continues, the relative amplitude
between the main peak and the remaining sidebands
decreases and can become smaller than one. Thus,
the spectrum tends to remain rich in structure and
with its maximum gain near h=0 (y=yz). In or-
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FIG. 1. Spontaneous spectra at different wiggler

tapers.

der to compare with Fig. 1, the gain spectrum is
shown explicitly in Fig. 3 for the corresponding
linear taperings.

In Fig. 4, the relative value of the gain is shown

in contours of equal gain. The value indicated on
each curve is the gain compared to the maximum

gain (0.27) for the constant wiggler [see Eq. (18)].
Note that, at y=y~, the gain can be negative for
certain tapering ranges. Obviously, for the oscilla-
tor startup at the desired wavelength, these regions
should be avoided.

50
-30 -25 -20 -15 -10 -5 0 5 10

hL

FIG. 3. Gain spectra at different wiggler tapers.

a free-drift space between them [Fig. 5(a)]. For a
first component or prebun cher of appropriate
length, the electron bunching usually increases with

the drift distance. In order to increase the drift dis-

tance without affecting the device length, dispersion
magnets are introduced in the drift space. A typical
arrangement is shown in Fig. 5(b). The free-drift
space can be represented by a =k =0. The phase
advance of the electron relative to the radiation in

the free-drift space can be calculated from the phase
equation. With a drift distance LD, the phase
change is

C. Two-component wriggler and optical klystron

A two-component wiggler device is composed of
two wigglers (constant or tapered ) in series wi2 '4 ith

I.D .S
(26)

2

For two electrons with energy difference hy, the
difference in the phase change is

Og

10

OL 10

20—

30

40

50~
-50 -25 -20 -15 -'0 -5 0 5 10

hL

aL
2

20

30

40

50'
-4m -2~

hL

20

30

40

50

2FIG. 2. Gain structure as a function of the taper aL
and the detuning parameter hL. The negative gains are
suppressed.

FIG. 4. Value of gain shown in contours. The value
indicated on each curve is the gain compared to the max-
imum gain of a constant wiggler (0.27).
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magnetic field geometry shown in Fig. 5(b), the in-

duced phase difference for 4y is found to be

Lp
I

L2

ekL'
48y mc

(28)

PISPERS)ON MAGNET

l

Ll — i- L p I L2

Comparing (28) with (27), we conclude that an opti-
cal klystron with a dispersion magnet is equivalent
to a two-component device with an effective drift
distance

A A A A AV V

(b)

A AA AAAe ZV V v v v
3

Lpa ea
LD ——

48 mc2
(29)

FIG. 5. Typical geometry of a two-component wiggler
(a) and an optical klystron (b). The lowest curve shows
the wiggler field and the dispersion magnetic field in the
drift space.

k,LD
(27)

For the dispersion magnets, the electron flight
time is highly energy dependent. For the dispersion

I

The effective drift distance is proportional to the
magnetic field squared and to the cube of the physi-
cal distance between two sections LzD. Since these
two devices are equivalent, both can be described by
calculating the gain for a two-component device
with an effective drift distance LD. In order to cal-
culate the small-signal gain we first have to evaluate
the integral Q in the spontaneous spectrum.

Since
I Q I

is a double integral of real functions,

2 1 L L

I Q I

= f dz1 f dz2a (z1)a (z2)cos[f(z1) —f(z2)],
4 0 0

(30)

the integration can be divided into three regions: (i) 0&(z1,zz)&L], (ii) L1+LD&(z1,z2)&L; (iii)
0&z1 &L1,L1+LD &z2 &L or 0&z2 &L1,L1+LD &z1 &L. The integral in the first region represents the
spontaneous spectrum from the first wiggler while the integral in (ii) represents the radiation from the second
wiggler. The integral in region (iii) represents the interference of the radiation fields radiated from different
wigglers. Therefore

Ll L2
IQI'= IQ1I'+ IQ2I'+ '

f, 'd» f, 'dz2u 1(zl)u 2(z2)cos

k,
X f1(L1)—f, (z1)+f2(z2)—

2y'
(31)

where
I Q, I

and
I Q2 I

are the terms corresponding to the spontaneous emission from individual sections
without mutual interference. From (31), we observe that the spontaneous spectrum, in general, is not the same
when we exchange the position of two wigglers unless the whole device is symmetric, i.e., L1 ——L2 and

a 1(L1—z)=a 2(z),

g1(L1 z) g2(z)

(32)

where g(z) is the local detuning parameter defined in (4). The small-signal gain, which is the derivative of
I Q I, is thus not the same for both cases.

In what follows, we will analyze two two-component wiggler devices: constant-constant wiggler (CCW) and
constant-tapered wiggler (CTW). CCW is the usual case considered in optical klystrons while CTW is sug-
gested for the enhancement of the small-signal gain of TWFEL. For the case of CCW with the same constant
parameters a„and k,

I Q I
is calculated to be
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hL] hL2 k,LD
~ Q ~'=, 1 ——,coshL& ——,coshL&+2sin sin cos —, hL, +hL,

2h 2

The small-signal gain is obtained by taking the derivative of (33) with respect to y. In the case of an optical
klystron with dispersion magnets, LD is much larger than L] or L2, and we have

B~Q~~ a kLD hL hLz k,Lp
sin sin sin —, h(L~+Lz)

By h~ 2 2
(34)

OK
Gc,max 1 LD

0.54(1+0 /2) Lp
(36)

which shows the factor of gain enhancement by an
optical klystron. The result is in agreement with

previous derivations. From (35), we find that the
maximum gain is proportional to the interaction
length squared L p, and the effective drift distance
LD. The width of the gain spectrum can be found
from (34):

k,LD

2

or

LD
(37)

I

The values of hL i and hL2 are of the order of uni-

ty. The quantity (k,Lnl2y ) can be varied within a
range of 2~ by just changing LD within a magnetic
period. Therefore, we can always adjust LD such
that the third sine function becomes one. The func-
tion (sinhL ~ /2 sinhL2/2) is maximum when
L i =L2 =Lp. Therefore, for the same total interac-
tion length, we get the best efficiency when the two
sections are identical. The maximum gain for an
optical klystron with dispersion magnets is obtained
at h =0.

2 2 2
Q~ro&COL DLD

Gmax =
2c

Comparing this gain to the maximum gain of a
constant wiggler of length 2Lp, we find

I

When LD is large, the value in (37) is very small
and highly restricts the electron energy spread to
avoid a decrease in gain. For example, for A,, =10
pm, LD ——10m and y= 50; the electron energy
spread is required to be less than 0.25%.

One has to be reminded that the introduction of
LD has two purposes. It transforms the energy
modulation of the beam from the first wiggler into
space modulation and places the modulated beam at
the best phase position for the energy extraction in
the second wiggler. The space modulation process
needs a length comparable to or longer than the in-

teraction length and is responsible for the high
maximum gain in (35). The phase adjustment re-

quires a much shorter distance of the order of the
magnetic period; it appears in the argument of the
last sine function in (34)~ These two characteristic
distances are so different in their orders of magni-
tude that they can be taken as independent parame-
ters.

Next, we consider a two-component device where
one of the wigglers is linearly tapered. The constant
section can be put in front of the tapered section
(constant-tapered wiggler, CTW) or after the ta-
pered section (tapered-constant wiggler, TCW).
Both schemes can be used to enhance the small-

signal gain over that of a tapered wiggler of the
same total length. CTW is also especially useful at
large signals because the constant section provides a
bunched electron beam for the tapered section. By
substituting the function f (z) for both sections into
(31), we can calculate the interference term in

~ Q I
. The details of this calculation are presented

in Appendix B:
1 /2

~ Q ~

i~„«&= — sin [ cosM[C(p) —C(q)]+sinM[S(p) —S(q)] ],a (38)

where a, p, and q are given in (20) in terms of the parameters of the tapered section. The subscripts c and t in-
dicate the quantity for constant and tapered sections, respectively, and

M=

h~ ksLD bcLc+ — '
for CTW

2lt 2 2

(aL, +h, )' k,I.D h, L,
+ for TCW

2(1

(39)
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where h, and h, are the degrees of detuning for the CW and TW, respectively. Therefore, both schemes pro-
duce similar spectrums except for the argument M.

If LD is much larger than L, or L, (which is the case if a dispersion magnet is used) the gain can be ob-

tained easily by taking the derivatives of sinM and cosM in Eq. (38) and all terms except those proportional to
LD can be discarded. In that case

' 1/2 2
a)I,a~a~, k LD h, L,

cyh, 2
sin [ sinM[C(p) —C(q) ]—cosM[S(p) —S(q) ]], (40)

where positive and negative signs are for CTW and
TCW, respectively. The gain becomes maximum at
h, =0. If h, is also chosen to be zero and aL is a

1

large number, we have C(p) =S(p)= —, and

C(q) =S(q) =0. The functions sinM and cosM are
fast oscillating as L~ varies. The value in the curly
brackets in (40) can be maximized by adjusting the
drift distance within a magnetic period. Choosing

h, =0 and M=(n+ 4)~, the maximum gain for
both schemes becomes

2I a~a~r LcLDk~6=
2c

1/2

(41)

Note that the length of the taper enters in the gain
expression through a, . From (25), we find that the
maximum small-signal gain for a tapered wiggler of
length (L, +L, ) is

(~2—1)coqa„k
G max 2

1/2

3
&ct

(42)

6 k L,Lg)a~5 L,

G,„(2—v 2)pz(L, +L, ) L, +Lg

1/2

(43)

To simplify the comparison between (41) and (42),
we assume that a =a,(0)=a (0) and a„,(L, )=
a (L, +L, ), i.e., both tapered wigglers have the
same percentage change in a~ or a,L,
=a„(L,+L, ) . The gain-enhancement factor is
then obtained by taking the ratio of (41) and (42):

[

where 5 is the percentage change in a for both ta-
pered wigglers. For example, if we have L, =L,
and a = 1, the enhancement factor becomes

6 LD—=2.55
Gmax

Thus, the enhancement could be orders of magni-
tude large.

In order to simplify the analytical expression, we
have calculated the small-signal gain enhancement
of a tapered wiggler by using dispersion magnets,
with LD &gL„L,. However, if an enhancement of
gain by about ten times is sufficient for our pur-

pose, we find that a two-component device without
drift space is good enough. For example, if the
small-signal gain of a 3-rn long tapered wiggler is to
be enhanced, it can be broken into a 1-m constant
section and a 2-m tapered section with the same
percentage change in a . We keep a small gap be-

tween the two sections. The gap, which is about the
distance of a magnetic period, works as a phase
adjustor such that the modulated electron beam that
comes out of the constant section can be placed at
the optimum phase for the energy extraction in the
tapered section at large signals. Numerically, we
find that the gain can be enhanced by five to ten
times without reducing the gain in the large-signal

regime. In this case, the small-signal gain is, in
general, determined by the constant wiggler section
small-signal gain which is well above the threshold
value for a FEL oscillator.

V. MAXIMUM GAIN

The gain expression has been obtained in a double integration of real functions

Np CO~
2

G=
3 dz& dzza~(z&)a~(zz)(z& —zz)sin[f(z&) —f(zz)],

4 c' o o
(45)

where for the purpose of this discussion we have neglected the term (2/y) compared to (B/By). From (45), an
upper bound for the small-signal gain can be set easily because the absolute value of a sine function cannot be
larger than one:
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2
Q)p COw6 + Glimit =
4 c

2
pCOw

4y c3

L LI dz) J, dzpu~, .„~z) —z2
~

2 3
aw, m~

3
(46)

where a,„ is the maximum value of a (z). Comparing (46) to (18), it is found that the upper limit for the
small-signal gain can exceed the maximum gain for a constant wiggler only by less than 25%%uo if no dispersion
magnets are used. An interesting question is the following: VA'thin this small margin is there any other
wiggler variation which can give a higher gain than the maximum gain of a constant wiggler with the same
total length?

This question can be answered by using an approach similar to the calculus of variation. For simplicity, we
consider that a small perturbing variation is introduced to the phase factor but not to the radiation strength of
the constant wiggler

f(z) =hz+5rl(z); a =const, {47)

where 5 is an arbitrarily small number so that results can be expanded in powers of 5, and g(z) is an arbitrary
function. After substituting (47) into (42), the gain can be expanded in power series of 5. If there is no other
variation which can give a higher gain than the maximum gain of the constant wiggler, the following condi-
tion must be satisfied for any function q(z):

aG
as hL =2.6;5=0

This identity requires the following function to be zero:
L LJ= dz~ dz2{z& —z2)[g(z&) —rl(zz)]cos[h(z& —z2)]0 0

L L
=2 dz, g(z~ ) dz2(z, —z2)cos[h(z, —z2)] .

0 0

(48)

(49)

Since g(z) is arbitrary, it can be chosen to be a set
of orthogonal functions in the interval [Og,] for ex-

ample, g(z) can be the Legendre functions if the in-

tegration range is properly transformed into

[—l, l]. From the completeness of orthogonal
functions, the following integral has to vanish for
any value of zl.

fL
dz2{z~ —z2)cos[h(zt —z2}]=0 . (50)

0

It is straightforward to check that (50) cannot be sa-

tisfied. Therefore, the conclusion is that the
constant-wiggler gain is not the maximum gain that
can be obtained. By properly recontouring the
wiggler variation, we expect that the gain can be in-

creased although the proof does not show a best

way to change the tapering. It is interesting to
point out that the linear taper given in {19)does
satisfy the condition (48). However, if the perturb-

ing function g(z) is chosen to be cubic, the condi-
tion {45) is not satisfied and we obtain a gain higher
than (18). The increase in the gain is obviously due
to the generation of complex structures in the spon-
taneous spectrum. The change in its slope cannot
be very big and thus the increase in gain is very lim-

ited.

The analysis can be generalized to the perturba-
tion on any given wiggler variation. For example,
consider a wiggler with the variation f(z). Follow-

ing a similar procedure, we can prove that the gain
for that wiggler is a maximum only when

dz2(z~ —z2}cos[f(z~ ) —f(zq)] =0 (51)
0

for any value of zl. Again, it is straightforward to
show that (48) cannot be satisfied for any variation

f(z). Therefore, a generalized conclusion is that for
any wiggler configuration, another configuration
can be found that produces a higher gain within the
25% margin. Thus, the gain can always be in-
creased, within the 25% margin, over the maximum
constant-wiggler gain, by properly changing the
tapering.

The results presented in the previous sections
were spot checked numerically with a 1D particle
simulation code that includes electron beam energy
spread, finite emittance, and a Gaussian diffraction
of the total radiation power. Although some of the
structure of the small-signal gain was smoothed out,
it was found that the numerical results were in
agreement with the analytical predictions for the
maximum small-signal gain within 10 to 20%%uo for
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parameters similar to those of the present TRW ex-

periment. ' The details of these simulations will be
published in the near future. '

VI. SUMMARY

We have completed a small-signal theory for an

arbitrary FEL wiggler. The spontaneous spectrum

and the small-signal gain are derived analytically

for a cold electron beam and a plane input wave.
Madey's theorem is then proved for the most gen-

eral wiggler configuration. The gain expression is

applied to special cases such as constant wiggler,
linear tapered wiggler, two-component devices, and

optical klystron. An upper limit is found for the
small-signal gain of any wiggler configuration
which can exceed the maximum gain of a constant

wiggler of the same 1ength by less than 25%%uo. The
significance of its implication is discussed. For an

optical klystron with dispersion magnets, it is found
that the upper limit is determined from the
equivalent device length which is much higher than
the value determined from its physical length. The
gain is thus possible to be highly enhanced with
dispersion magnets in the drift space. In addition,
for a tapered wiggler, it is found that the small-
signal gain can be enhanced even without dispersion
magnets or drift space by exchanging part of the ta-
pered wiggler by a constant-wiggler magnet. '
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APPENDIX A

In this appendix, we show the derivation of {{hy) ) and (hy) in detail. From (ga), we have

g'" =kga, f a~(z)sin[go+ f{z)]dz
L L

=k, a, dz, dzza (zi)a (zz)sin[$0+f(zi)]sin[1()0+f(zz)]; (Al)

the phase average of (A1) gives

k(g") )= ' ' f dz, f dzia (z )) aN(zoic}os[f(z )}—f(zz)] . (A2)

By substituting (A2) into (9a), we obtain the result in (10a). To calculate ( hy), we use the relation (9b)

(&) g(2) ())~

2y

Equation (gb) shows that g(z) consists of two terms

g(2) g(2) +g(2)

(A3)

(A4)

where g( ' is the square of an integral while g's(
' is a triple integration. g,

' ' is very similar to g") . Actually,
following the same procedures in (Al) and (A2), we find

To simplify the calculation of {gb '), we rearrange the order of the integrations for the last two integrals:

f dz' f dz"= f dz" f dz', „
and g~

' becomes

3 2 2 I
[2) k, a, z s a (z)f a (z)cos[1{0+f(z)]dz f a (z")sin[1{o+f(z")]dz"f 1+ dz' .

(A6)

(A7)

By taking the phase average of (A7) and noting that
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a (z')I 1+ dz'= ~ [f(z)—f(z")]
2 =k ar

(As)

we get

k
(g's ) = I dz J dz"a„(z)a~(z")sin[f(z") —f(z)] [f(z)—f(z")] .

4& p p
(A9)

Since the intggrand of the double integral in (A9) is symmetric in z and z", the range of integration can be ex-
tended to J dz f dz". The result is

22
{gP')= ' ' f dz, I dz2a (z&)a (z2) I cos[f(z&)—f(z2)] ] .b 8 p p

(A10)

By substituting (A10) and (A2) into (A3), we obtain exactly the result shown in (10b).

APPENDIX B

In this appendix, we calculate the interference part of the spontaneous emission for a constant-tapered
wiggler (CTW) or a tapered-constant wiggler (TCW).

For a CTW, the phase functions are

f) (z, ) =h, z, ,

Q
f2(z2)=hazy+ —zg .

2

The integrand in the double integral (31) becomes

ks a2 ks
cos f~(L ~ ) —f~(z~ )+fq(z2) — LD ——cos h, L, —h,z&+h,z2+ —z2 — LD

2y' .
' ' ' 2 2y'

The integration over z~ can be easily calculated and we have

a~a g t a 2 ks . a 2 ks
~Q ~I„t,e= dz2 sin h, L, +h,z2+ —z2 — LD —sin h,z2+ —z2 — LD

2 h, o ' ' 2 2 2 2

a~a~, Lt h L, h L, k~Lo a
h,

dzzsin
2

cos
2

— +h&z2+ —z2
2 2 2

(B1)

(B2)

(B3)

(B4)

The result in (38) and {39)follows when the integration in (B4) is carried out and expressed in terms of the
Fresnel functions.

For a TCW, the phase functions are

f)(z, )=h,z)+ —z),
2

f2{z2)=h, z2 .

The integrand in (31) becomes

k, k,
cos fi(Li) —fi(zi)+f2(z2) — Ln ——cos h, L, + Li hz, ——z~+—h, z2 —— LD

2y' 2 2 ' 2y'

The integration over z2 results in

(B5)

(B6)
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gyt
L a 2 a 2 ks

~ Q ~;„«a= dz, sin h, L, + L—
&

h&—zt ——zt+h, L, — LD
2yh, o 2 2

a a2 ks—sin h L +—L —h z& ——z~ — LD

(B7)

a~aN& t
& h, L, h, L,
dz

&
srn cos

h, 2

k, a a
2y' ' 2 ' 2

LD+h, L, +—Lr —h,z& ——z~ (B8)

Again, the integration over z gives the result in (38) in terms of the Fresnel functions with different constant
M.
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