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The response of an atomic or molecular system to an external perturbation is studied
within the framework of time-dependent Hartree-Fock theory. Quadratic response func-

tions are defined and analyzed with regard to their poles and residues, from which an ex-

pression for matrix elements of an arbitrary operator between excited states is deduced.
For one-particle operators the matrix elements (m

~

A
~

n ) are correct through first order
in correlation and the hypervirial relation (E, E) (—m

~

A
~

n ) = (m
~
[A,H]

~

n ) is sa-

tisfied. Spurious poles, which have no counterpart in an exact theory, are encountered in

the quadratic response functions. Their appearance is attributed to well-known deficien-

cies in the time-dependent Hartree-Fock approximation.

I. INTRODUCTION

The rapid development of laser spectroscopy in

the nonlinear domain during the last decade calls
for a theoretical description of second-order pro-
cesses. ' It is, of course, well known that a
knowledge of the excitation energies of the system

and the matrix elements of the various perturba-
tion operators between the ground state and excited
states and between excited states provide all neces-

sary ingredients to obtain cross sections or transi-

tion probabilities for all types of linear and non-

linear optical processes. But the formal "sum-
over-states" expressions are difficult to use in prac-
tice and a direct determination of response func-

tions is often more feasible.
Efficient calculations of linear response func-

tions are now being carried out by several groups'
and particularly encouraging results have been ob-

tained recently within the framework of multicon-
figurational Hartree-Fock theory. ' Linear
response functions provide by means of a pole and

residue search the excitation energies and transition
moments between ground and excited states but
not between excited states. It is possible to estab-
lish plausible expressions for such matrix elements

by using the excitation operators which are ob-
tained from a spectral representation of the linear
re"ponse functions. These formulas are not
unique, however, because they are based on con-
sistency requirements on the approximate ground
state, which are normally only approximately ful-
filled. An identification of the desired matrix ele-
ments from quadratic response functions appears

therefore to be a worthwhile approach to this prob-
lem.

It is the purpose of this paper to describe how

quadratic response functions may be calculated in

the time-dependent Hartree-Fock approximation
(TDHF) as well as related schemes. Some formal

aspects of response theory are reviewed in Sec. II,
which include definitions of the quadratic response
functions to be studied in the remaining part of the
paper. In Sec. III an outline is given of the TDHF
calculation of the linear and quadratic response to
an adiabatically switched-on perturbation. We
choose here the Hartree-Fock state as a ground- or
reference-state representative, but the formalism

can, with relatively little effort, be generalized to
more involved schemes, in particular, the multicon-
figurational TDHF approach. Matrix elements of
the type (m ~A

~

n ), where
~

m ) and
~

n ) denote
excited states of the system, are derived from the
spectral representation of the quadratic response
functions in Sec. IV. It is proven that these matrix
elements are correct through first order in correla-
tion and that the hyperviral relation

(E„E)(m
~

A
~

n ) =—(m
~
[A,H]

~

n )

is satisfied for arbitrary one-particle operators.
Conclusions concerning applications and possible
generalizations of the TDHF quadratic response
functions are stated in Sec. V.

II. ELEMENTS OF RESPONSE THEORY

Our aim is to analyze the response of an atom or
molecule to an adiabatically switched-on perturba-
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tion of the general form

IV(t)= f da) V„exp[ —i{co+ia}t], (

where cz denotes a positive infinitesimal such that

lim 8'(t) =0 .

For the perturbation operator to be Hermitian we
also require that

V+=V „. (3)

Since response theory is a standard topic in quan-
tum mechanics only the results will be stated here.
An account on the subject, which is particularly

useful for our purpose, has been written by Zu-

barev. Assume for the moment that
~
0) is the

exact unperturbed reference state and that
~
P) is

the corresponding solution to the time-dependent

Schrodinger equation in the presence of the pertur-
bation given by Eq. (1), i.e., with the initial condi-
tion

lim ff)((P[= )0)(0[ .

The result, which we shall employ, is then that the
expectation value at time t of an arbitrary operator
A takes the form

( 1{
~

A
~

1{) = (0
~

A
~

0) + f dao ds ((A (t); V„(s)))exp[ i (c—a+i a)s ]

+ f dcodco'ds ds'((A(t }V„(s);V„(s')))exp[ i(co—+ia)s i(co—'+ia)s']+ .

where all integrations over frequency and time variables s,s' are from —00 to ao. Several definitions have
been introduced here. First, A (t) and V„(s) are operators in the interaction representation, i.e.,
A(t)=exp(iHt)Aexp( iHt) T—he qu.antities in the double angle brackets are the linear and quadratic
response functions. ' Zubarev defines the retarded two-time propagators or Green's functions as

((A(t);B(s)))= —i(0
~
[A(t),B(s)]

~
0)8(t —s) . (6)

Various definitions of Green's function of higher order have been discussed by Rickayzen. ' For the present
response calculation it is most convenient to adopt the following definition:

((A(t);B(s);C(s'))) = ——,(0
~
[[A(t),B(s)],C(s')]

~
0)8(t —s)8{s—s')

——,(0
~
[[A(t},C(s')],B(s)]

~

0)8(t —s')8(s' —s), (7)

which arises naturally when using time-ordered products in perturbation theory. In a preliminary study of
quadratic response only the first part of the right-hand side of Eq. (7) was retained in the definition of
second-order response functions. There are two reasons for the change made here. Firstly, the present de-
finition is more directly related to observable molecular properties. Secondly, the Fourier transforms of each
of the two terms in Eq. (7) contain singularities, which are absent in the sum. It should be noted that

((A (t);B(s);C(s') )) = ((A (t);C(s');B(s ) )) .

It also follow from the definition (6) and (7) that the propagators are invariant under time translations, i.e.,

((A(t);8(s) )) = ((A(0);8(s —t ))),
((A(t);B{s);C(s'))) = ((A (0);8(s—t);C(s' —t) )) . (10)

Fourier transforms of the linear response function may therefore be calculated as '

((A;8))E= f drexp(iEr)((A(0);8( r))), —

where E is a complex variable. The function ((; ))E is analytic in the upper half of the complex plane, and
Eq. (11) has the inverse relation

r

((A(t);8(s))) = lim f deexp[ ie(t s)](( A; 8))—, +~ .—
~~p+ 2 lT co

(12)

Similarly, we introduce a double Fourier transform for the quadratic response functions as

((A;8;C))sE ——((A;C;8 ))s s ——f dr dr' exp(iEr+iE'r')((A {0);8( r);C( —r') ))—. (13)
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Introducing formally a complete set of states t I
m ) I which are eigenstates of H, we find by using Eqs. (6),

(7), (12), and (13) that the spectral representations may be written

E E+—Ep

(0
I
B

I
m )(m IA I 0)

E+E —Ep
(14)

and

&0[A[m&&m IB[m'&&m'IC IO& &0[A Im&&m [C Im'&&m'IB [0&
(E+E E~—+Ep)(E' —E +Ep) (E+E —E~ +Ep)(E—E~'+Ep)

+ ~ ~ +(0[C lm)(m IB lm')(m'IA [0) (0[B lm)(m[C lm')(m'IA [0)
(E+E'+E ' Ep)(E—'+E Ep) — {E+E'+E ' Ep)(E+—E Ep)—

(0[B lm)(m IA lm')(m'[C [0) (0[ C lm)(m IA lm')(m'IB [0)
(E+E —Ep)(E E~'+—Ep) (E +E Ep)(E——E '+Ep)

(15)

It is apparent from Eq. {14}that the linear response function via its poles and residues provide transition en-
ergies and transition moments for transitions involving the ground state, or reference state, directly. In ad-
dition, the quadratic response functions furnish us with transition amplitudes between two excited states as
can be seen in the following manner. Suppose that the linear and quadratic response functions have been
calculated as functions of the complex variables E and E', and assume that the linear response function has
a pole at E=coJ =(Ez —Ep—} and at piJ (Eq Ep——). The—n it follows from Eq. (15) that

lim [ lim (E piJ){E'+coq—)((A;B;C))zz]=——, (0[ C
I
J')((J'IA

I
J) 5JJ (0—[A [0))(JIB[0)

E ~—Ci)J~ E~NJ

(16)

provided that the states involved are nondegenerate. Since the matrix elements (0
I
C

I
J') and (J I

B
I 0)

are known from the linear response function we can determine (J' IA I
J) as well.

The Fourier transforms of the response function or propagators provide an alternative expression for the
influence of the external perturbation given by Eq. (1) on the expectation value of an arbitrary operator

OI A 10& = f dpi((A; V„»zexp( iEr)+ f d~—d~'((A;V„; ~„))zz exp[ i(E+E')—t]+

(E=co+ I',a, E'= co'+ I',a) (17)

where we have used Eqs. (5), (9), (10), (11), and (13). Equation (17) shows that, depending on the particular
choice of operators, the quadratic response functions are proportional to the second-order nonlinear optical
susceptibility, "and a description of the second harmonic generation in light scattering may be given in
terms of the quadratic response function evaluated at the relevant frequencies. This fact together with the
information on transition amplitudes between excited states gives the main motivation for extending current
efforts in the theory of propagators to include the quadratic ones.

%e conclude this section by noting that the propagators satisfy equations of motion

E((A;B))z——(0 I [A,B]
I
0) + (([A,H];B ))z

(E+E )((A;B;C))zz (([A,H j;B&C))zz——+ , (([A,B];C))z+ —,—(([A,C];B))z .

Most approximate calculations of propagators have
been based on equations of motion or the moment
expansions derived from it, ' and also the quadrat-
ic response function can be calculated approxi-

I

mately by forming Pade approximants to their mo-

ment expansions. This approach will not be pur-
sued in this paper, however. Equations (18) and

(19) can be proven by introducing the spectral rep-
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resentations (14) and (15) into (18) and (19). A
more illuminating approach is to require that Eq.
(17) should be consistent with Ehrenfest's
theorem'

i —(g
~

A
~

I( ) = i (1
. d aa
dt at

III. TDHF RESPONSE FUNCTIONS

We proceed now to outline the calculation of
linear and quadratic response functions in the
TDHF approximation as well as related but more
general schemes. An algebraic formulation is
adopted here; the reader is referred to a recent pa-
per by Smet et al. ' for a second-order TDHF
method, which employs effective one-particle
operators and differential equations.

As an ansatz for a time-dependent reference
state in the presence of the external perturbation
given by Eq. (1) we introduce the expression~'~

(
t/r) =exp(iA)

(
0)exp( ie), — (21)

where A is a Hermitian one-particle operator,
which generates unitary transformations of the or-
bitals, and e is a real parameter. We choose e such
that'

Pi H —WQ =0- —' d
dt

(22)

or

dE'
0 exp( —iA) &+8 —i—exp(iA) 0d

dt dt

(23)

but in what follows we shall not concern ourselves
with e, since it does not enter the calculation of
response functions.

+(y~[A,H+W]~|l) . (20)

The steps which lead to Eqs. (18) and (19) are a
differentiation of the right-hand side of (17), which

gives an expansion in terms of E((A; V ))s and

(E+E')((A; V„;V„))@k,where E=co+i a and
E'=co'+ia. This expansion is equated to a simi-

lar expansion involving the propagators appearing
on the right-hand side of Eqs. (18) and (19), which
is obtained by applying Eq. (17) with A replaced by

[A,H+ WJ. Then Eqs. (18) and (19) follow from
the properties of Fourier integrals.

The initial or unperturbed state
~
0) is taken to

be the Hartree-Fock state, which we assume is
stable and nondegenerate. Throughout this paper
we shall employ a finite basis set of spin orbitals

[ u, (g)
~

s = 1, . . . , M I, and the corresponding
electron creation and annihilation operators will be
denoted by [a„a,~s=l, . . . , M j. Then the
operator A may be expressed as

g ( Akl k I +Alk al ak )
t t

—= g(A~„+A'„q„); v=—(kl) . (24)

Labels l and k are used here to indicate orbitals,

which are occupied and unoccupied in the
Hartree-Fock state, respectively. The reader is re-

ferred to Refs. 7 and 16 for the details concerning

orbital transformations; Ref. 7 provides proof that

the variables Akk and A„are redundant and may

be omitted in Eq. (24).
Most derivations of the time-dependent Hartree-

Fock equations have taken the Frenkel variation
principle' as the point of departure

Re 5/i H—WP—=0-.~ d
dt

{25)

Equation (25) determines the variables A„=A„(t}
when the initial conditions

lim A„(t)=0 (all v) (26)

are invoked. It was demonstrated recently, how-

ever, that Eqs. (21) and (25) are equivalent to
Ehrenfest's theorem for all one-particle operators,
i.e.,

r(0)= (g ~

0
~
g)+(g(0

~ g)
(27)

or, alternatively, from the set

[ a,a,
~
r,s= 1, . . . , M J,

where

a, =exp(iA)a„exp( —iA) . (28)

It is earier to identify the nonredundant equations
from (27), when the transformed field operators are

+i (g [ [O,H+ W] [ 1()=0,
where 0= g O„a„a,. There are M~ independent

one-particle operators but only N(M N} complex—
variables in Eq. (24) for an N-electron system so
that Eq. (27) leads to more equations than vari-
ables. Any one-particle operator can be written as
a linear combination of operators from the set

[a,a,
~
r,s=l, . . . , Mj
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used. These operators have particle-hole charac-
teristics with regard to the state

~ P) so that

akak lk&=0

and

a iai I 0& =
I S&&tt

(29)

Equation (30) can also be obtained through a
minimization of a positive semidefinite error func-
tional for time-dependent density operators. '

These features of the formalism guarantee the ex-

istence and uniqueness of the solution for specified
initial conditions. We shall see shortly that the set
of equations

I (akaI) =0 (31)

from which it follows that I (a kak) and I (a IaI)
vanish identically. Therefore Eq. (27) reduces to
N(M N) e—ssential, coinplex first orde-r differential
equations

I (a kaI)=0.

~=~(1)+A(2)+

A„=A„(1)+A„(2)+
(32)

into Eq. (31). Collecting terms of the same order,
as usual in perturbation theory, we find in zero or-
der the condition

([q„,a])=o (33)

for the perturbation expansion to exist. This is the
well-known Brillouin theorem. ' We are using the
notation ( . . )=(0~ . ~0) for the Hartree-
Fock expectation values. The first- and second-
order equations become

in each order of perturbation theory also deter-
mines the solution for Ak~ uniquely, and it follows
from the discussion above that any set of equations
of this type which determines the solution can be
used. Equation (31) is simplest to apply in prac-
tice.

In order to solve these equations we first intro-
duce a perturbation expansion (with regard to W)

i([q„,A(1)])—([[q.,H], A(1)]&=—i &[q. ~l &

t ([q„,A(2)]) —([[q„,H], A(2)] &
=

& [[q„,~],A(1)]&+—
& [[[q.,H], A(1)] A(1)l &

(34)

+ —,
'
([[q„,A(1)],A(1)])+—, ([[q„,A(1)],A(1)]) . (35)

The last two terms in Eq. (35) may be omitted in

the TDHF approximation since the expectation
value of any product of three particle-hole excita-
tion or deexcitation operators vanish identically.
In a more general scheme, e.g., multiconfiguration-

al time-dependent Hartree-Fock, such terms must

be included.
The solution of the first-order equation (34) is

equivalent to an ordinary linearized TDHF calcula-
tion. The results of such calculations are con-
veniently presented as a set of excitation and deex-
citation operators I QJ, Q~ ], which are related to
the set of particle-hole operators I q„,q„] through
a nonsingular transformation

Q, = g(qA.,+q.y'.,),

(37)

(38)

(39)

(40)

where the real and positive numbers co& are inter-
preted as excitation energies, E~ —Eo, of the sys-
tem. Transition moments are calculated as

(o~w ~J)=([w,g,"]) .

In order to derive the linear and quadratic response
functions in a reasonable compact form it is con-
venient to employ an alternative set of variables in
the definition of A. There is no loss of generality

by writing

j=1,2, . . . , N(M —N) . (36)

We refer the reader to previous work ' ' for de-
tails of TDHF calculations. The basic properties
of the excitation operators are given by the equa-
tions

d d
A= g(a Q +a'Q ):—ga ic

d =N(M N), —
and taking the coefficients [ aj ] to be the basic

(42)
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ai ——ai and si=Q& for j)0 (43}

variables to be determined from Eqs. (34) and (35).
We also introduce the definitions

Corresponding to the perturbation expansion for A

in Eq. (32) there will be first- and second-order
contributions to the variables aj or equivalently aj,
i.e.,

ai =ct
1 i I

and ici = (ci li I
«j ( aj ——aj(1)+a&(2)+ ' ' ' (47)

5ii =([s i,si ])sgn(j),

coi5ii ——([[s i,H], tci ])sgn(j},

provided that we let

(45)

with this notation Eqs. (37), (38), (39), and (40) be-

come and with this observation we are prepared to solve

Eqs. (34) and (35) which now may be written

i —coj—ai(1)= i s—gn(j)([s i, W]) (48)~ d
dt

ig = —CO.—J J (46) and

i —coi —ai(2)=sgn(j)([[s. i, W],A(l)])+ —sgn(j)([[[a J,H], A(1)],A(1)]) .
dh

(49)

(50)

The solution for ai(1) and hence A{1)which satisfies the initial condition given by Eq. {26) may be written
t

aj(1)=—exp( icojt) —ds exp(icois)([a i, W(s)))sgn{j),

and introducing Eq. (1) for the time-dependent perturbation in this expression we find

ai(1)=—i sgn(j) I dc(o[ sj, V„])
J

Inserting

A(1)= g ai(1)tc,.

{51)

(52)

into the right-hand side of Eq. (49) and carrying out a time integration similar to the one in Eq. (50), an ex-

pression for ai(2) is obtained,

Xi (co,co')exp[ i (co+c—o'+ 2ia) t ]
aJ(2)= i sgn(j)— dco dco'

{co+co +2la —co )

Here we have introduced the definition

([[a i, V„],a„])([a „,V„])sgn(n)
Xi(co,co }=

(co' —co„+ia }

([[[K J,H],K„],K ])([K „,V„])([s,V„])
2(co —co„+ia)(co' co +ia—)

(53)

(54)

where the summations are over n and n, m, respectively. Having these results we are able to deduce formu-
las for the linear and quadratic response functions from the expansion

(/ ~A
~
f)—(A) =i([A,A]) ——,([[A,A],A])+

=i g ([A,ai])[aj(1)+aj(2)]——, g ([[A,ici],ai ])aj(1)aj (1)+ (55)

This expansion should exhibit the same frequency dependence as Eq. (17). Therefore we can make the iden-

tifications

((A;V„)) =gsgn(j}([A,a, ])([K i, V ])(E—co } (56)
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sgn(jn)([A, «j])([[«j,V ],«„])([« „,V ~ ])
((A V V )) y I j —jt Ql

I
s —II cd

~n

sgn(j n ) ( [A,«j ] ) ( [[«j,V„],«„]) ( [« „,V„])
2(E+E'—co) )(E—a)„)

sgn(jj')((«j, A, «j ))([«j,V„])([«j,V„])—X 2(E— . )(E'—N ')

sg n(jn m)([A, «j])(( «„,[ «J,H],«))([«s V ])([« ~ V '])
2(E+E' pjj)(—E pj„)(—E' —pj )

(57)

where E=co+ia and E'=co'+ia. The notation
(. . . , . . . , . . .) is used for the symmetric double

commutator, i.e.,

(A,B,C}=, [[A,B]—,C]+ , [A, [B,—C]] (58)

for arbitrary operators A, B, and C. In all summa-

tions above the indices j, n and m run from —d to
d =N(M —N).

Thus we have achieved our goal of obtaining ex-

plicit expressions for linear and quadratic response
functions in the TDHF approximation. Some fun-

damental properties of these response functions
will be discussed in Sec. IV.

IV. TRANSITION AMPLITUDES

The properties of the residues and poles of the
TDHF linear response functions have been dis-

cussed in the literature several times, and only
some of the most important aspects are mentioned
here. First we employ Eqs. (43) and (56) to express
the spectral representation of the propagator
((A;A ))E in the TDHF approximation as

and

(O~A ij)=([A,Q, ]) (60)

((A;A)), = g i([A,g,']) ~'
E—NJ E+COJ.

(59)

A comparison with the formally exact spectral rep-
resentation in Eq. (14) lead us to interpret the posi-
tive, real numbers [ soj ] as excitation energies,
while the quantities ( [A,gj ] ) are identified as the
corresponding transition amplitudes between an ex-
cited state labeled j and the ground state. Thus we
write

(E.—Eo) =a) ~

but the reader should be aware that even if we use

this notation we do not claim that explicit expres-

sions for the excited states
i j) can be provided.

If the Hamiltonian

H = g h a, a, + —, g (rs
~

r's ')a„a;a, a, (61)

(62)

and a perturbation

V =(H Hp) = —, g—(rs
i
r's')a„a, a, a,

Urs&ras s

where as usual h +u =e,5, then it is well

known that the TDHF transition moments and en-

ergies for transitions from the ground state to an
excited state are correct through first order.
Therefore the TDHF method is said to be correct
through first order in "electronic correlation. "

Another observation to be made here is that

((Q, ;Qj ))E=6,1(E—st) ' (64

as may be seen from Eqs. (43), (44), and (56).
However, Eq. (64) is only consistent with the gen-
eral spectral representation (14) if '

(g,'—(g,') )
i
O) =

i j) (65)

(g, —(g, )) i»=O. (66)

These equations were used by Yeager et al. to
suggest the following expression for matrix ele-
ments of an arbitrary operator A between two ex-
cited states:

is expressed in terms of canonical Hartree-Fock or-
bitals as a zero-order part

Hp = g Esas as i

(m
i
A

i
n ) —= ((g —( g ) )A(g„"—(g„)) )

= ((Q,A, Q, ) ) + —,([Q,Q. ]A+A [Q Q. ] )

(67)

(68)
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where the last identity is a consequence of Eq. (66).
Formally, Eqs. (67) and (68) are equivalent, but the
latter has a computational advantage, since density
matrices of lower particle-hole rank are involved.

Equation (68) has been applied by Jamieson and

Watts, who calculated transition moments and os-
cillator strengths for a pair of excited states in

helium and its isoelectronic sequence. The re-

sults were quite satisfactory, but it must be pointed
out that the interpretation of the TDHF excitation
operators, which lead to Eq. (68) rests completely
on (66), which within the TDHF approximation is
violated in first order. This can be seen from

gj ~o&= X(q„z'„,+q„r'„J) Io

= gq'„~ o&r'„, (69)

since the coefficients Y„j are of first order in the
electron-electron interaction.

The TDHF excitation operators are themselves
in error in first order of perturbation theory be-

cause there are first-order contributions from dou-

ble excitations, q~~, to an electronic excitation
from the ground state. For a one-particle operator
A, terms like & [A,q~~] & vanish identically so that

the one-particle transition moments are correct
through first order. But the missing double excita-
tions give rise to an error of first order, when Eq.
(68) is used, since terms like &(q„,A, q~q~ ) & do
not vanish even for a one-particle operator, A.
Therefore the assertion by Jamieson and Watts that
(68) is correct through first order is seen to be in-

correct.
Currently we shall adopt the view that while

Eqs. (65) and (66) must be fulfilled in an exact
theory, there is no need to insist on these consisten-

cy requirements in approximate response function
calculations. The TDHF approximation and relat-
ed schemes are basically sound in the sense that
the ground-state representative is calculated from
the energy variation principle and the response
functions are determined by minimizing a positive
semidefinite functional which can vanish only for
an exact time evolution of the initial state. '

We proceed then to analyze the residues of the
quadratic response functions derived in Sec. III.
Equation (16) provides together with Eqs. (57) and
(60) the following result for a matrix element be-
tween two excited states:

&m ~A ~n& —6 „&O~A ~0&=&(Q,A, Q„')&+ g
J 5 Nl J

&[A QJ]&&(Q [QJ~»] Q. )&

(ron ~m +roj )
(70)

where as before the expectation values & & should be evaluated in the Hartree-Fock state. Equation (70)
is more complicated than (68), but still manageable in practical calculations and it has two distinctive advan-

tages: The hypervirial relation (E„E)& m
~
A

~
n—& = &m

~
[A,H]

~

n & is satisfied for arbitrary one-particle

operators and the matrix elements & m
~

A
~

n & given by (70) are correct through first order of perturbation

theory in the electron-electron interaction. These claims will now be proven.
It is well known that (E —Eo)&0

~

A
~

n &
= &0

~
[A,H]

~

n & within the TDHF approximation, ' i.e.,
r0„& [A,Q„]& = & [[A,H], Q„]&. Using this relation and some properties of one-particle operators, the hyper-

virial relation may be proven by direct substitution in (70). Alternatively, we may employ the fact that
Ehrenfest's theorem is fulfilled for one-particle operators in the present scheme. Then we know from the
discussion in Sec. II that the equations of motion (18) and (19) are valid as well and therefore

(E„E)&m ~A
~

n &=——2 lim [ lim (E—co„)(E'+co )(E„E)&& AQ„;Q~ &—& zs]E'~ —cg E~com n

= —2 lim [ lim (E co„)(E'+co )(E+—E') «A;Q„;Q »zz, ]
E ~—Q) E~Q)m n

= —2 lim [ lim (E co„)(E'+—co~)&&[A,H];Q„;Q~ &&EE']
E'~ —co E~com n

=&m
~

[A,H]
~

n & (n~m)

where we used Eqs. (16), (19), (39), and (41).

(71)
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(72)

where the ellipsis represents terms of second order in V. We have here made use of the Brillouin theorem

( Vq„) = ([H,q„]) =0, and the symmetric double commutator is introduced only in order to compare with
the right-hand side of Eq. (70). All averages ( ) are as before evaluated in the Hartree-Fock state. co„
denotes zero-order excitation energies, i.e., (E'k —E'I).

Consider for a moment Eq. (36). Both the coefficients Z„and Y have first-order contributions. The
zero-order part of Z„ is simply 5„. Owing to the properties of particle-hole excitation operators there is
no first-order contribution from the Y coefficients to the term ((Q,A, Q„)), and the two summations
denoted g above represent the first-order contributions from the Z coefficients. Symmetric double com-

mutators may be introduced by noting that

(q Aq." &
=

& (q,A, q„)&+& „(A ) . (73)

These remarks allow us to conclude that the first three terms of Eq. {72) can be written as ((Q,A, QJ) ) +
second-order terms. In the last two summations in Eq. (72) only the particle-hole part of A can contribute
so that we can introduce the replacement

A~ g (([A,qj ])qj —([A,qj])qj )

J
(74)

In order to prove the second claim above, we first observe that within perturbation theory the excited
states can be labeled by particle-hole indices kk' . . l'I, and only the subset of excited states, which can be
labeled by single-particle-hole excitation indices, can be described in a TDHF calculation. Let now q and

q„denote the particle-hole excitation operators which correspond to the excited states
i
m ) and

i
n ) in Eq.

(70). Rayleigh-Schrodinger perturbation theory then gives the following expression for the matrix element
of a one-particle operator between these states:

(m iA in) —5 „(OiA iO)= ((q,A, q„))+g'(q Aq„)(q„vq„)(co„—co„)
' (v+n)

+ g' &q Vq„&&q&q„&{co —co„} ' (vQm)

+-. Z&q AqA'&&q q. Vq.'&{ .''. —') —'

+-. X &q. Vq~'&&q. q~q.'&( '. '. —') —'+-

and we need to consider matrix elements of the type

which can be nonvanishing if and only if q„q„=+qjq . This can be achieved in four ways so that the
factor 4 is canceled. We are then able to rewrite Eq. (72) as

(m iA in) —5 „(A)= ((Q,A, Q„))+g([A, QJ])(q qjVq„)(co„—coj —co )

—g ([A,QJ])(q Vqj q„){co —coj —co„)

where the ellipsis represents second-order terms [also in Eqs. (77) and (78)]. Finally we use the Brillouin
theorem to rewrite the matrix elements

(75)

(76)

(q q Vq„) =(q [qJ, H. ]q„)+(q Hqjq„)

=&q lq, ,H]q.'&+gI. &[q,H])
= ((q, [qJ,H],q„))

= &(Q. ,[Q, ,H],Q.') &+

Similarly, we find that

&q Vq,'q.'&= —&(Q [Q, »] Q. )&+

(77)

(78)

This completes the proof that the matrix elements of one-particle operators between excited states derived
from the residues of the quadratic response functions are correct through first order in electron-electron in-
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teraction. At the same time we have obtained an interpretation of the last two summations in Eq. (70),

namely, that they represent "two-particles —two-holes" corrections to the TDHF excitation operators.
We close this section by pointing out a defect in the TDHF quadratic response functions: The pole struc-

ture of the propagator, given by Eq. (57), is not compatible with Eq (1.5). Consider as an example the fol-

lowing residue search:

—2 lim [ lim (E+N„)(E'+co ){{AJ,{?„;{?))sE ] .
E~—f0~ E ~—o)~

The exact propagator gives zero identically, but from Eq. (57) we obtain a generally nonvanishing result,

((Q,[~,,a],Q„)){(Q,A, Q„))—g {[A,s)])sgn(j)
(co„+co~+a)J. )

(79)

(so)

where s~, as before, is defined in Eq. (43}. A per-

turbation analysis shows that this expression is of
first order in electron-electron interaction. All

nonvanishing parts coming from {(Q~,A, Q„))
contain the coefficients Y or F and are there-

fore related to the violation of the reference-state

annihilation condition as given by Eqs. (66} and

(69), while the last term contains contributions

from Z Z~ as we11. Even in a fully self-

consistent random-phase-approximation calcula-

tion, ' such terms would appear in the quadratic

response function. A detailed analysis of the con-

ditions under which the quadratic response func-
tions exhibit a pole structure that is compatible
with the formally exact spectral representation
given by Eq. (15) will not be given here, but it is
clear that this defect in the TDHF procedure is
difficult to overcome as long as the exact Hamil-
tonian is used in connection with decoupling
schemes based on limited operator mainfolds.

In an analysis of this problem it must be borne
in mind that the most general solution to Eqs. (37),
(38), {39),(40), {65),and (66) is of the form6

Qz
——(j) 0++ m a „{n~+~0)ao{0~,

where we sum over all m, n~ and all states are
eigenstates of the Hamiltonian. In the exact limit
all spurious terms cancel, when contributions from
the last two terms in Eq. (35) are included, but this
is, of copse, only a check on the derivations.

V. DISCUSSION

A procedure for the calculation of quadratic
response properties of atoms and molecules in the
presence of external fields has been developed by
using the time-dependent Hartree-Fock approxima-
tion. Particular attention has been given to the

I

determination of matrix elements between excited
states by means of an analysis of the residues of
the quadratic response functions. The main result
is that these matrix elements for one-particle
operators are correct through first order in correla-
tion and that they satisfy the hyperviria1 relation.
On the negative side the quadratic response func-
tions turned out to have spurious poles, which had
no counterpart in an exact theory. The occurrence

of these poles was attributed to the use of incon-

sistent ground-state representatives in connection
with the use of a limited operator manifold in the
ansatz for a time-dependent reference state in Eqs.
(21) and (24). Such defects in the nonlinear TDHF
molecular properties do not appear explicitly in a
numerical solution of the TDHF equations or a
formulation which concentrates on the oscillating
time-dependent orbitals. '

Although the advances in large scale ab initio
quantum chemistry during the last few years may
draw the attention away from a simple-minded for-
malism such as the TDHF approximation there are
several incitements to seek a thorough understand-

ing of this method and its consequences. The
ground-state problem in TDHF theory has been ef-
fectively solved through the work of Linderberg
and Ohrn ' but there are still intricate questions
in genera1, nonlinear time-dependent Hartree-Fock.
If, e.g., we wish to follow the evolution of the elec-
tronic structure during an atomic collision within a
classical trajectory description of the nuclear
motion, we may let W in Eq. (25) include all
terms, which describes the time-dependent interac-
tion between the atoms. Equation (25) could then
be solved numerically. But there are unsolved
questions related to the interpretation of the time-
dependent density operator after the collision and
the calculation of cross sections for the various
electronic processes.

TDHF theory rests upon a variational calcula-
tion of a ground-state representative followed by a
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minimization of a positive semidefinite error func-
tional for the evolution of the density operator. '

At the same time Ehrenfest's theorem is valid for
one-particle operators and this property of the
equations make it possible to draw upon the
quantum-mechanical correspondence principle in

order to identify certain collective modes of
motion. This aspect has been explored in nuclear

physics.
Having the virtues of TDHF theory in mind, it

is interesting to ask the question: what type of ex-

tension of the method would preserve these
features? It follows from the preceding sections
and from previous work that such a theory should

be based upon a variational ground-state approxi-
mation and an operator manifold I b& J, which

form a Lie algebra. This operator manifold should
be used as in Eqs. (21) and (24) to construct a
time-dependent reference state or density operator
p=

~
|(0(g~. Ehrenfest's theorem and the varia-

tional determination of response functions' is
preserved if, furthermore, there is a nonsingular
transformation of the operator manifold

[ b~ I~I ql, q;,A„J such that

q&p=0, A&p=p(A&) .

Currently, the recently formulated multiconfigura-

~ go) =exp(iS )
~
0), S=S+, (83)

where the operator S contains cluster generators,
and then carry out the same transformation of the
operator manifold which is used in Eqs. (21) and
(24), i.e., we would employ the set

I a k ai ai ak 'l l = I, . . . , N; k=N+ I, . . . , M ],
where

a, =exp(iS)a„exp( iS) —.-t
(84)

This transformation would allow us to use the la-
bels of TDHF theory throughout, but it remains to
be seen if there is a cluster generator S, which will

provide a balanced description of ground-state and
excited-state correlation effects in such a frame-
work.

tional time-dependent Hartree-Fock (MCTDHF)
appears to be a useful and viable extension ' but in
this case the relevant operator manifold does not
form a Lie algebra and the associated response
functions do not seem to be derivable from a posi-
tive semidefinite error functional. An interesting
possibility would be to introduce correlation effects
into the ground-state representative by means of a
unitary transformation
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