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The relativistic motion of an electron is calculated in the combined fields of a transverse

helical wiggler field (axial wavelength is A,o
——2m/ko) and the constant-amplitude, circularly

polarized primary electromagnetic wave (5Bq,co, k) propagating in the z direction. For par-
ticle velocity near the beat-wave phase velocity co/(k+ko) of the primary wave, it is shown

that the presence of a second, moderate-amplitude longitudinal wave (5EI,co, k) or trans-

verse electromagnetic wave (5B2,co2, k2) can lead to stochastic particle instability in which

particles trapped near the separatrix of the primary wave undergo a systematic departure
from the potential well. The condition for onset of instability is calculated, and the impor-

tance of these results for free-electron-laser (FEL) application is discussed. For develop-

ment of long-pulse or steady-state free-electron lasers, the maintenance of beam integrity
for an extended period of time will be of considerable practical importance. The fact that
the presence of secondary, moderate-amplitude longitudinal or transverse electromagnetic
waves can destroy coherent motion for certain classes of beam particles moving with veloci-

ty near N/(k+kp) may lead to a degradation of beam quality and concomitant modifica-
tion of FEL emission properties.

I. INTRODUCTION

It is well known that stochastic instabilities can
develop in systems where the particle motion is
described by certain classes of nonlinear oscillator
equations. Indeed, during the past several years,
powerful analytic and numerical techniques have
been developed that describe important features of
stochastic instabilities' that occur under a wide

range of physical circumstances. Particularly
noteworthy is the development of systematic (secu-
lar) variations of particle action and/or energy for
classes of particles that in the absence of the ap-
propriate perturbation force undergo coherent (e.g.,
nonlinear periodic) motion. Moreover, the "nor-
mal" coherent particle motion can be drastically
modified by the stochastic instability and develop
several chaotic features.

In the present article, we consider the possible
development of stochastic instability in cir-
cumstances relevant to sustained free-electron-laser
(FEL) radiation generation by an electron beam in a
helical wiggler field. ' . In particular, we consider
a tenuous relativistic electron beam with negligibly
small equilibrium self-fields propagating in the z
direction through a steady, monochromatic radia-
tion field. The relativistic dynamics of a typical
beam electron is investigated for particle motion in

combined, constant-amplitude, electromagnetic
fields consisting of (a) an equilibrium transverse
helical wiggler field with axial wavelength
A.p=2tr/kp [Eq. (2)], (b) circularly polarized trans-
verse electromagnetic wave propagating in the z
direction [Eqs. (3) and (6)], and (c) longitudinal elec-
trostatic wave propagating in the z direction [Eq.
(7)]. Both the transverse and longitudinal waves are
assumed to have frequency co and wave number k
and could represent the nonlinear saturated state of
a FEL instability. For zero transverse canonical
momenta P„=O=Py the exact equation of motion
for the axial coordinate g=(k+ kp)z tot reduce—s
to Eq. (27), where U&

——co/(k +kp) is the (beat-wave)

phase velocity of the combined wiggler field and
transverse electromagnetic wave. For moderate
values of field amplitude and particle velocity dz/dt
in the neighborhood of vy ——to/(k+ kp) [Eq. (36)],
the dynamical equation (27) can be approximated to
leading order by [Eq. (45)]

kpN
X sin g — r

+ p kNT

where r=toTt, the small parameter er [Eq. (23)]
measures the strength of the transverse electromag-
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netic field, and 5L ——co L, /rp r [Eq. (34)] measures the
strength of the longitudinal field. Here, co& ——const
[Eq. (28)] is the bounce frequency of a particle near
the bottom of the beat-wave potential in the limit
where e~~O and 5L, ~0.

The assumptions and analysis leading to the ap-
proximate dynamical equation (45) are presented in
Secs. II and III. In Sec. IV, we investigate the sto-
chastic particle instability associated with the 5L

driving term in Eq. (45) assuming that 5L «1. In
the absence of longitudinal wave (5L ——0), it is clear
that the equation of motion is conservative with
(d/dr)(Hp + H, ) =0, where Hp ( , )(——dg—/dr)2
—cosg is the zeroth-order pendulum energy, and

Hj [rp/c(k——+kp)]e'r (dg/dr) is the (small) con-
servative energy modulation produced by the ez
driving term in Eq. (45). On the other hand, for
5L ~, the right-hand side of Eq. (45) appropriately
averaged over the zeroth-order pendulum motion
can lead to systematic {secular) changes in the ener-

gy H or action J for a selected range of system
parameters. The associated stochastic instability is
examined in detail in Sec. IV. Introducing the ac-
tion J [Eq. (59)] and bounce frequency d'or(J) [Eq.
(61)] associated with the zeroth-order pendulum
motion d g/dr + sing=0, it is shown for 5L ~&1
and kpco/kco~ && 1 that stochastic instability
develops for (low) values of bounce frequency satis-
fying [Eq. (81)]

cog(J) & (a)p)„

16~ «p
=ma)p ln

2{k +kp)coz-

That is, stochastic instability develops in a narrow

energy band (AH)„=(1—Hp)„near the separatrix,
and particles in this region undergo a systematic
departure from their "trapped" zeroth-order pendu-
lum motion.

For analytic simplicity, the parameter 5I is as-
sumed to be small (5L «1) in the analysis in Sec.
IV. Therefore, the energy range of particles ex-
periencing stochastic instability is correspondingly
small and located near the separatrix of the primary
beat wave. As 5L is increased to values approach-
ing unity, however, the instability range is expected
to increase significantly, and deeply trapped parti-
cles will also undergo a systematic departure from
the potential well. The dynamical equation (45) is
currently under investigation numerically in this
parameter range.

An analogous stochastic instability can also
develop in circumstances where the longitudinal

electric field is negligibly small, but a second,
moderate-amplitude electromagnetic wave is
present. The relevant assumptions and features of
the final dynamical equation are outlined in Sec. V
in circumstances where 5E, =O and two constant-
amplitude, circularly polarized electromagnetic
waves (5B&,~&,k]) and (5Bz, co2,k2) are present.
For particle velocity dz/dt near to the beat-wave
phase velocity col/(kp+ k]) of the primary wave,
the exact dynamical equation (85) can be approxi-
mated by [Eq. (89)]

d2
+singdr'

k]+kp k2+kp
52sin

k2+kp kl +kp Q~]

where g=(k~+kp)z —colt, r=cilr~t, 52=co z 2/co r],
[(kl + kp)ct)g —(k2 + kp ) N]]/(k] + kp), and

cur~ and Qr2 are the bounce frequencies [Eq. (88)]
in the troughs of the two beat waves. Apart from
the (conservative) ez term in Eq. (45), the dynami-
cal equation (89) is similar in form to Eq. (45), and
can also lead to stochastic instability for particles
near the separatrix of the primary beat wave.
Moreover, for 52 of order unity, deeply trapped par-
ticles in the primary wave can be "untrapped" by
the second electromagnetic wave.

In summary, we have considered electron motion
in the combined fields of a helical wiggler and
constant-amplitude, circularly polarized primary
electromagnetic wave. For particle velocity near
the beat-wave phase velocity of the primary wave, it
is shown that the presence of a second, moderate-
amplitude longitudinal wave or transverse elec-
tromagnetic wave can lead to stochastic particle in-

stability in which particles trapped near the separa-
trix of the primary wave undergo a systematic
departure from the potential well. The condition
for onset of instability has been calculated [Eq.
(80)]. The importance of these results for FEL ap-
plications is evident. For development of long-pulse
or steady-state free-electron lasers, the maintenance
of beam integrity over an extended period of time
wi11 be of considerable practical importance. The
fact that the presence of secondary, moderate-
amplitude longitudinal or transverse electromagnet-
ic waves can destroy coherent motion for certain
classes of beam particles moving with velocity near
co/(k +kp) may lead to a degradation of beam qual-

ity and concommitant modification of FEL emis-
sion properties.
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II. ELECTROMAGNETIC-FIELD
CONFIGURATION AND BASIC

ASSUMPTIONS

A. Electromagnetic-field configuration

Consider a tenuous relativistic electron beam with
negligibly small equilibrium self-fields propagating
in the z direction. In the present analysis, we exam-
ine the relativistic motion of a typical beam electron
in the presence of a helical equilibrium wiggler field
and a constant-amplitude circularly polarized trans-
verse electromagnetic wave propagating in the z
direction. All spatial variations of field quantities
are assumed to be in the z direction. The total mag-
netic field B(x, t) is expressed as

B(x,t) =Bp(x)+58T(x,t),
where the helical wiggler field Bp(x) is given by

Bp( x ) = B~(coskpz e„+sinkpz ey ),

EI ( x, t) = ez5EL sin(kz —a)t),

where 5EI ——const.
The electromagnetic wave fields described by

Eqs. (3), (6), and (7) correspond to a circularly po-
larized transverse electromagnetic wave propagating
in the z direction with 5B~——const, combined with a
constant-amplitude longitudinal wave with
5EL ——const, also propagating in the z direction.
Both waves are assumed to have frequency a) and
wave number k and could represent the nonlinear
saturated monochromatic wave state of a FEL in-

stability.

B. Transverse electron motion

For the electromagnetic-field configuration
described in Sec. IIA, the transverse canonical mo-
menta P„and Py are exact single-particle invariants
with

and the magnetic-field components of the transverse
electromagnetic wave are expressed as

P„=p„——Az(z, t) =const,
e

c
(8)

5Br( x, t) =58T[cos(kz cot)e„—
—sin(kz cot)e»—] . (3)

In Eqs. (2) and (3), the wiggler amplitude B~ and
the amplitude 5BT of the circularly polarized elec-
tromagnetic wave are assumed to be constant (in-

dependent of x and t). In this regard, we emphasize
that B =const is only a valid approximation,
strictly speaking, close to the magnetic axis where'

kp(x +y') «1 . (4)

+cos(kz cut)e»], (6)—

Throughout the present analysis, it is assumed that
Eq. (4) is satisfied.

With regard to the wave electric field 5E(x,t) we
allow for both transverse and longitudinal com-
ponents, i.e.,

5E(x,t) =5ET(x,t)+5EI (x, t) . (5)

The transverse electric field 5ET(x,t) consistent
with Eq. (3) and Maxwell's equation V X5ET
= —(1/c)(B/Bt)5BT is given by

a)
5Er( x, t) =——5BT[sin(kz —~t)e„

ck

P» =p» ——A»(z, t) =const .e
c

(9)

In +s. (8) and (9), the vector potential

A =Az ez + Ay ey satisfies V XA =Bp + 5BT,
where Bo(x) and 5BT(x,t) are defined in Eqs. (2)
and (3), i.e.,

A„(z,t) = —(B /kp)coskpz

+(5B~/k)cos(kz —a)t), (10)

where m is the electron rest mass and c is the speed
of light in vacua.

Throughout the present analysis, we assume that
the transverse electron motion is characterized by
the cold-beam constraints, ' P„=O=Py, so that
Eqs. (8) and (9) give for the transverse particle
momentum

Ay(z, t) = —(B„,/kp)sinkpz

—(5BT/k)sin(kz —a)t) .

Moreover, the mechanical momentum p and parti-
cle velocity v=dx/dt are related by p=ymv,
where the relativistic mass factor y is defined by

2 2 2 1/2

where 5BT——const. In addition, it is assumed that a
constant-amplitude longitudinal wave component
exists with

p„=ymv„= —(eB„/ckp )coskpz

+ (e5BT /ck)cos(kz —a)t), (13)
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p» =ymv» = —(eB /ckp)sinkpz

—(e5Br/ck)sin(kz tp—t) . (14)

In Sec. III, Eqs. (13) and (14) will be used to elim-

inate the transverse particle dynamics in the axial
equation of motion for dp, /dt. Substituting Eqs.
(13) and (14) into Eq. (12), the relativistic mass fac-
tor y can be expressed as

eB
y= 1+

mc'kp

e5BT
+

mc k

eB—2
mc kp

e5B+ ps
cos[(k +kp)z tot]—+

mc2k m c

1/2

(15)

In deriving Eqs. (13)—(15), no approximation has been made regarding the size of the dimensionless parame-

ters b =(eB /mc kp) and br ——(e5BT/mc k). In typical applications, however, bT «1 and b &1.
For future reference, Eq. (15) can be used to express y in terms of z and dz/dt. Defining g= (k +kp)z tot,—

and making use of d g/dt =(k +kp)dz/dt —to and p, =y»»t dz/dt, Eq. (15) readily gives

y= 1+
eB~

2

+
mc kp

2
e5BT

mc2k

eB~—2
mc kp

e5Br
cosg 1 — +to

mc k c (k+kp) dt

2 —1

(16)

III. AXIAL EQUATION OF MOTION

A. Exact equation of motion

The axial equation of motion for an electron moving in the electromagnetic-field configuration described in
Sec. IIA is given by

dp,
[U [Bp»(z)+5B»(z, t)] —U»[Bp (z)+5B (z, t)]]—e5E (z,t),

dt c
(17)

where Bp( x), 5B(x,t), and 5E,(z, t) are defined in Eqs. (2), (3), and (7). Making use of Eqs. (13) and (14) to
eliminate v„=p„/ym and v~ =p~/ym, and combining all magnetic-field terms in Eq. (17), the axial equation of
motion can be expressed as

dp, —mc (k +kp)
dt y

eB~

mc kp

e5BT
sin[(k +kp)z tot] e5EL si—n(kz —tot) . —

mc k
(18)

It is clear from Eq. (18) that the wiggler and transverse electromagnetic-field terms have combined to form a
beat wave with effective phase velocity vz ——co/(k +kp). In the special case where co=kc and the axial motion
is nearly resonant with the beat wave (dz/dt=v, =uz), we obtain the familiar consistency condition
k=kp/(1 —v, /c) for the upshifted wave number.

For present purposes, it is convenient to rewrite Eq. (18) in the frame of reference of the beat wave. We de-

fine the dimensionless axial coordinate

g=(k+kp)z tpt, —

ym dz

dt

Eq. (18) can be rewritten in the equivalent form

c (k+kp) eB
2+ +CO

dt y dt dt y mckp

where d g/dt = (k +k p)dz/dt tp Then, e—xpr. essing
T

dpi' d d dg
Ct dt

=(k +kp) — ym
dt dt

I.

e5BT
sing

mc k

(k +kp) ek5EI k kp

ky m k+kp k
(20)
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The expression for y in Eq. (16) is used to eliminate dyldt in favor of (g, dgldt, d g/dt ). After some
straightforward algebra that makes twofold use of Eq. (16), we find

1 dy 1 dg d2g sing+e +
y dt c(k+k ) dt dt y mckp

e6Br dg 1 dg1— +CO
mc k dt c (k+kp) dt

2 —1

Making use of Eq. (21) to eliminate (1/y){dy!dt)(dgldt + co) in Eq. (20) gives

(21)

—c'(k +k, )' eB„e5BT
y mc kp mc k

1 — +co sing
to dg

c (k +kp)

(k +kp) ek5EL

ky m
1— 1 dg

+CO
c (k+k )

k kp
sin g — cot

k+kp k
(22)

where y{g,dg/dt) is defined in Eq. (16).
Introducing the dimensionless parameter eT defined by

eB e5BT
1+

mc kp mc k

eB„
mc kp

e58T
+

mc k
(23)

the expression for y in Eq. (16) readily reduces to

2

1 — +co (1—2eTcosg) 1+
y~ c (k+ko) dt

e8

mc kp

—1
2

e5BT

mc k
(24)

The (small) dimensionless parameter eT defined in Eq. (23) is clearly a measure of the strength of the com-

bined transverse electromagnetic and wiggler fields in the equation of motion (22). It is also useful to intro-

duce the dimensionless parameter eL defined by

ek5E,
1+

mc2(k +kp)

e8

mc kp

e58T
+

mc k

~ 2
1/2

(2S)

which characterizes the strength of the longitudinal field contribution in Eq. (22). Introducing the normalized

frequency 0,

0—=
c(k+kp) '

the axial equation of motion (22) can be expressed as

(26)

1 —Q g+0
dt 'z (1—2ercosg) dt ' 1—,+Qdg

dt'

(1—2eTcosg)'i

(k +kp) k kp
sin g — Qt '

k+kp k
=O, (27)

where t '=c(k +kp)t g=(k +ko)z At ', and eT an—d et are defined in Eqs. (23) and (25).
Equation (27) is the exact dynamical equation for the axial motion assuming that the transverse electromag-

netic wave [Eqs. (3) and (6)] and the longitudinal electrostatic wave [Eq. (7)] have constant amplitudes

58T ——const and 5EL ——const. No assumption has been made in deriving Eq. (27) from Eq. (17) that eT and eL

are small parameters. Moreover, the factors in Eq. (27) proportional to powers of
[1 (dg/dt '+ co)2]'~2=(1 —U, /—c2)'~ are related to mass modifications associated with the relativistic axial
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motion. Here v, =dz/dt is the axial velocity. Equation (27) can be solved analytically (in an approximate
sense) or numerically for a broad range of system parameters of practical interest. In Secs. III B and IV, we
will solve Eq. (27) iteratively in circumstances where the axial velocity v, is close to resonance with the beat-
wave phase velocity v~ =tv/(k +kv), i.e., in circumstances where the normalized axial velocity dg/dt is small
with

~

Qdg!dt
~

&&(1—Q ) [Eq. (36)]. In this case, it is useful to rewrite Eq. (27) in terms of the effective
transverse and longitudinal bounce frequencies defined by

a)T=C (k+kp) (1—0 ) eT

eB~ e58T
=C (k +kp) 1 —

2 2(k +kp) mc kp

eB„
1+

mc kp

e58T

mc k

2
—1

(28)

and

coL =c (k+kp) (1—0 )
/ el

N1—
c (k+kv)'

ek5E eB
+

mc kp

—1/2

e5BT

mc k
(29)

Substituting Eqs. (28) and (29) in Eq. (27) gives the exact dynamical equation

. (k+k} k k,
2 +tvr(g, g)sing+tot. (g, g) sin g — tvt =0,

k k+kp k
{30)

where c0T(g,g) and tot (g,g) are defined by

w2

t0'r(g, g)—: 1 —Qez.
( 1 —2e'z.cos ) d7

1 —20eT —(1—0 )eT
)ndg 2 dg

dt dt

2

(31)

~2 '2 3/2

~t. (g, g) —=
~t. )n dg

1 —2Qer —(1—Q )er
(1—2ez cosg) '! dr d~

(32)

In Eqs. (31) and (32), Q =co/c(k +kp) eyis defined 'ln Eq. (23) and r =tv T t.
It is clear from Eq. (30) that the exact axial equation of motion has the form of a nonlinear equation for

coupled pendula with amplitude- and velocity-dependent frequencies tvT(g, g) and tot. (g, g).

B. Approximate equation of motion

For present purposes, we now impose the (weak) restriction that the amplitude Mr of the radiation field be
sufficiently weak that

(33)

where eT is defined in Eq. (23). %e further assume that the longitudinal electric field 5EJ is weak in compar-
ison with the transverse electromagnetic field in the sense that

p 2
COL

5L—=
2 1/2(1-n) .,

mc k

e58T
1/2

Substituting Eqs. (28) and (29) into Eq. (34) readily gives the requirement

ek5EL mc kp
5I ——

mc'(k +k, )'

(34)

x 1+
eB~

+
mc kp

e5BT

mc k

' —1/2

1—
c (k +kp)

{35)
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Finally, for present purposes, we also assume that the axial electron velocity v, =dz/dt is relatively close to the
beat-wave phase velocity vz

——co/(k +ko). Specifically, in Eq. (27) [or Eq. (30)] it is assumed that

0 «(1 0 )dt' (36)

where t '=c(k+ko)t. Equivalently, defining

~—:coz.t=c(k+kp)(1 —0 )eT t,
Eq. (36) can be expressed as

e' 0 ((1 (37)

where 0=co/c(k+kp).
The exact dynamical equation (30) is now simplified within the context of Eqs. (33), (34), and (37). To lead-

ing order, we approximate col (g,g)=cor =5LcoT and coT( g, g)=co T(l 3Qer—dgldr) in Eqs. (31) and (32).
Equation (30) then reduces to

m2 ~ mi i/idg . i ("+"o) . k "o
, +co rsing=3IIco reT sing —5L oi r- sin g— cot

dt2 + p

Introducing the dimensionless time variable

W= COTt,

Eq. (38) can be expressed as

(k+kp) k ko
+sing =30er sing —5L „sin

(38)

(39)

(40)

where Q=co/c(k+kp), and eT «1 and 5L «1 have been assumed. Since ~=coTt, we note that time is mea-

sured in the basic unit v.T ——coT, which corresponds to the bounce time of an electron near the bottom of the
beat-wave potential well in Eq. (40).

Since ez «1 and 5L «1 are assumed in Eq. (40), the lowest-order axial motion is determined from the
pendulum equation d g/di + sing=0. In an iterative sense, replacing sing on the right-hand side of Eq. (40)

by dig/dr i—
, the equation of motion (40) can be approximated by

d g . i/idg d g (k+ko) . k ko co+sing = 3Qer ——5i „sin
d d k k+ko k

(41)

Defining an effective energy H by

H =Hp+Hi
2 '3

1 dg —cosg+ Qer/1/2

2 d7 d7
(42)

and multiplying Eq. (41) by dg/dr, we obtain

dH (k+ko) dg= —5g
d~ k dr

kp co
csin

k+kp k
(43)

In Eq. (42), Ho=—(—,)(dg/dr) —cosg is the zeroth-

I

order pendulum energy, and H
&

represents the small
conservative energy modulation proportional to

1/2E'T

In the absence of longitudinal wave (5L ——0), it!s
clear from Eqs. (41)—(43) that the equation of
motion (41) is conservative with dH/d~=0. On the
other hand, for 5L+0, the right-hand side of Eq.
(43), appropriately averaged over the zeroth-order
motion, can lead to systematic (secular) changes in
the energy H for a selected range of system parame-
ters. This property and the associated stochastic
particle motion are discussed in Sec. IV. For future
reference, it is useful to simplify the notation in
Eqs. (41)—(43). Defining k' =k +ko, and introduc-
ing the dimensionless phase velocity V~,
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kp N
P

F(rt, tr) = dq'
P (1—K sin g')'~2 (52)

the equation of motion (41) becomes

d g .
~

Cp ~r2dg d
2 ck' dt dt2

E(rt, tr) =f drt'(I —tr sin q')'~2 . (53)

k'. k—5t —sin —,(g—V~r) (45)

and the time rate of change of energy can be ex-
pressed as

We now solve Eq. (50), distinguishing two cases:
(1) trapped-particle orbits (K g 1) and (2) untrapped
orbits (tr' & 1).

(I) Trapped particle orbits (tr & I). Introducing
the coordinate g defined by

dH k'dg . k
dt k dt k'

= —5t — sin —,(g —V r)

where

H =Hp+Hi

(46)
tt sinrt =sin~,

2
'

Eq. (50) can be expressed as
'2

d'g =(1—K sin g),dt

(54)

(55)

'2
1 dg 1/2—cos(+, ET
2 dt ck' dt

'3

{47) which has the solution for g(t)

F(7(I,K) =Fp+T, {56)
For co kc, note from Eq. (44) that

Vp kpc/AT g& 1.

IV. STOCHASTIC INSTABILITY

A. Zeroth-order pendulum equation

In this section, we briefly summarize properties
of the solutions to the approximate dynamical
equation (45) in the limit ET~0 and 5L ~0, which
gives the pendulum equation" '

d2$ +sin(=0,
dt

(48)

where r=cort and toT is defined in Eq. (28). The
energy-conservation relation associated with Eq.
(48) is given by

2
1 d
2 dt (49)—cos(=Hp,

where

where Hp const [Eq. (4——6)]. Equation (49) can
also be expressed as

2

=K —sin (50)
4 dt 2'

where g =sin '[(I/tr)sing/2], Fp =—F(rt(r =0),tr),
and F(g,K) is the elliptic integral of the first kind
defined in Eq. (52). Several properties of the
(periodic) trapped particle motion can be deter-
mined directly from Eqs. (50), (54), and {56). For
example, it is readily shown that the normalized
velocity in the beat-wave frame is given by

=2K cn(Fp+ t),dt (57)

F sin —sin
~ ] 1

K 2

For subsequent discussion of the stochastic par-
ticle instability in Sec. IV. B, it is useful to express
properties of the trapped particle motion in terms
of action-angle variables (J,O). Defining, in the
usual manner,

J=J(Hp)= f dg,

8(g,J)= S(g,J),=a
(58)

where cn(Fp+r) = [1—sn (Fp+T)]', and sn(Fp+ r)
=sing—:(I/a)sing/2 is the inverse function to the
elliptic integral

1K:—
2 (1+Hp) . (51) S(g,J)= f dg,

The solution to Eq. (50) can be expressed in terms
of the elliptic integrals F(g,K) and E(g,K) where we find
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J(Hp) = E qK —( 1 —K )F ~K
8 m

2' 2'

dJ d0=0, =~,(J)/&, ,d7 d7
(60)

where coT is defined in Eq. (28), and the frequency
coT(J) is determined from coT(J)/QT ——BHp(J)/BJ,

where K =(1/2)(1 + Hp), and F(7I,K) and E(7I,K)

are defined in Eqs. (52) and (53). The unperturbed
equation of motion (48) in new variables (J,H) is

given by
(65)

where 1/n & 1. Solving Eq. (65) gives for
g(r) =2rt(r)

for small ddsc «1.
(2) Untrapped particle motion (n & 1). Although

the emphasis in Sec. IVB will be on the trapped
particle motion, for completeness we summarize
here properties of the solution to Eq. (50) when the
orbits are untrapped (tc & 1). Defining r) =g/2,
Eq. (50) can be expressed as

2 r

dn =2 1 2
1 ——sin qd7

i.e., F(g/2, 1/tc) =F0+ter, (66)

A

2F(~/2, K)
(61)

Near the bottom of the potential well, Hp~ —1,
K ~0, F(n./2, K)~n./2, and therefore coT(J)~Q q,
as expected from Eq. (48). On the other hand,
near the top of the potential well, Hp~+1, K ~1,
F(~/2, K)~ 00, and the period 2m. /coT(J) of the
trapped particle motion becomes infinitely long.

For future reference, neglecting initial conditions
in Eq. (57), the normalized velocity in the beat-
wave frame can be expressed as

d =2K cn(7)
d7

ce n —1/2
=8 g i, cos[(2n —l)curt],

T n=i 1+a

where FO=R((r=O)/2, 1/tc). The solutions (56)
and (66) clearly match exactly at the separatrix
where K =1.

B. Stochastic instability

In Sec. IVA, we considered properties of the

equation of motion in circumstances where the
right-hand side of Eq. (45) is negligibly small

(ez ~0 and 5L ~0) and the lowest-order motion is
described by the pendulum equation (48). In this
section, leading-order corrections to the particle
motion are retained on the right-hand side of Eq.
(45) in an iterative sense. For consideration of the
stochastic particle instability that develops near the
separatrix, it is particularly convenient to examine
the particle motion in action-angle variables.
Correct to order eT and 5L, , we find

where Fp ——0 is assumed, 7=coTt, and coT ——mT(J)
is defined in Eq. (61). Moreover, the quantity a in

Eq. (62) is defined by

dJ dJ dHp coT dHp

d7 dHp d7 coT d7

where coT ——coT(J), and

(67)

a =exp( —~F'/F),

F'=F[ir/2, (1—tc )'r ], F=F(n/2, tc) .
(63) dHO co i(2 d dg

d7 ck' d7 d7, E'T

'3

F
2

'

cor -irco r [ln(32/~ )]

a =exp( —7TN z-/N z.),

(64)

Near the top of the potential well (i.e., near the
separatrix) where Hp~1, we will find in Sec. IVA
that the particle motion becomes stochastic in the
presence of the perturbation force in Eq. (45). De-
fining Hp = 1 —~ where ~&& 1 near the
separatrix, we find K ~1, coT(J)~0, and

F=—, ln(32/LH ),

—5t — sin —,(g —Vr r)
k'dg . k

k d7
(68)

(69)

in parameter regimes of practical interest. The
ez contribution to dHO/dr in Eq. (68) is ex-

pressed as a complete time derivative. Hence,
correct to order eT, we find from Eqs. (67) and

follows directly from Eqs. (46) and (47). Here,
k'=k+kp and V& is the dimensionless phase velo-

city Vz ——kpco/kcoT. For co=kc, note that

kpa) kpc
Vp

—— — )&1,
kcoT coT
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(6S) that the eT contributions to dJ/dr and
dHp/dr are conservative and do not lead to a sys-
tematic (secular) change in action or energy when
averaged over a cycle of the zeroth-order pendulum
motion. Therefore, for purposes of investigating
the stochastic particle motion associated with sys-
tematic changes in the action J, only the longitudi-
nal wave contribution to dHp/dr is retained, and

Eq. (67) is approximated by

dJ ~r k'dg . k= —5L — sin —,(g—Vzr) . (70)
dr coT k dr k'

For present purposes, we consider particle orbits
which are trapped and periodic (~ & 1) in the ab-
sence of the longitudinal perturbation in Eq. (70).
It is well known that near the separatrix (Ho~ 1

and s ~1) Eq. (70} can lead to a stochastic insta-
bility that is manifest by a secular change in the
action J and a systematic departure of the particle
from the potential well. Near the separatrix with

Hp~1 it follows from Eqs. (49) and (62) that the
particle is moving with an approximately constant
normalized velocity dg/dr=2 for a short time of
order rT ——coT . Moreover, this feature of the par-
ticle motion recurs with frequency coT(J) «coT,
and can lead to a significant change in the action J
in Eq. (70).

We now examine the implications of Eq. (70)
near the separatrix, keeping in mind that V&»1
and that the sine term on the right-hand side gen-
erally represents a high-frequency modulation.
Making use of the zeroth-order expression for the
normalized velocity dg/dr in Eq. (62), it follows
directly that dJ/dr can be expressed as

dJ ~ a" k T k . k T k
dr

= —45L g sin —g+ (2n —1) ——V r —sin —
g — (2n —1) +—V T'

a COT COT

(71)

where k'=k+kp, coT ——coT(J), and a is defined in

Eq. (63). Near the separatrix dg/dr=2 « Vz in

Eq. (71). Therefore, the first term on the right-
hand side of Eq. (71) acts as a nearly constant
driving term for some high harmonic numbers

s(»1) satisfying the resonance condition

where hcoT(J, ) «coT(J, ) is assumed. The condi-
tion for appearance of stochastic instability' is
bror(J, ) »5„or equivalently,

~,(J) k
2s —,Vp,

COT

dNT(Js)'
ru, »2 co2T(J, ).

dJs kcoT Vp

(74)

or equivalently,

COT k 1 COkp~,(J)= —v =—
2s k' ~ 2s k+kp

(72}

Here, J, is the action corresponding to the reso-
nance condition for resonance number s. From
Eq. (72), it follows that the distance between the
adjacent resonances s and s +1 is given by

To estimate the size of l&„we express coT(J) as

d'or(J, )+boor(J, ) and integrate Eq. (71) over a time
interval of order rT ——coT (Ar=1) in the vicinity
of the sth resonance defined by Eq. (72). In an
order-of-magnitude sense, this gives for the charac-
teristic magnitude of hJ,

as —/2 dcoT( Js )
~Js 25L, coT 2s &

s b'Js2s —1

T k
5s=coT(Js) —coT( s+))= 2 k, p

2$

(k +kp)
7 (Js) 2 T(Js) ~

k pro

(73)

Solving for M, and eliminating s by means of Eq.
(72) gives

as —1/2/(1+a2s ]) (J )
1/2

i
dcur(J, )/dJ,

i kV~/k'

On the other hand, for a (small) change in the ac-
tion M„ the characteristic frequency width of the
sth resonance can be expressed as

(75)

Substituting Eq. (75) into Eq. (74) then gives as the
condition for stochastic instability,
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dCOT(J, )
5L

s

a s —1/2

1+g2s —1

CoT(J, ) k +kp

coco T kp
(76)

in(166/5c ) »n koco/2(k +ko)cor

Eq. (81) gives ncoTI(coT)„=in(166/5c ). From ln

[32/(1 H—o)]=ncoTlcoT, the condition for onset of
stochastic instability can then be expressed as

where use has been made of k'=k+kp and

V& ——kpCo/k Co T.
We now estimate that various factors in Eq. (76)

near the separatrix where Hp~1 and CoT(J, ) &&CoT.

From Eqs. (64) and (72), it follows that
a'=exp( —7TscoT/coT) and

s m kp co

2 k+k (77)

gHp/lj} J T d T(J)
1 —Hp coT(J) dJ

Making use of dHoldJ=coT(J)hor, we obtain

O'T

cor(J) dJ
1

exp[mcoT/cor(J)] .

(78)

Substituting Eqs. (77) and (78) into Eq. (76) gives
T

coT5L k pco Kkpco
exp m

32m (k+ko)cor cor 2(k+ko)coT

(79)

as the condition for stochastic instability. Equa-
tion (79) can also be expressed in the equivalent
form

16m ~koco
coT &&mOT ln +

2(k+ kp)Co T
' —1

77k pco—ln
2(k+ kp)CoT

where as &&1 and as —1/'2/(1+ &2s —1)=as —1/'2

Also from Eq. (64), in[32/(1 Ho)]=—ncoThoT gives

~& (1—Ho)„=251./2, (82)

where XV=1—Hp. On the other hand, in a re-

gime where

ln(16m /5L, ) «nkoco'/2(k+ko)coT

Eq. (81) gives moT/(COT )«-~kpCO/2(k+kp)COT, and
the condition for onset of stochastic instability can
be expressed as

7Tk pco
ddt & (1—Hp)«=32 exp

2(k+ kp)co T
(83)

Unlike Eq. (82), the energy band for instability in
Eq. (83) is exponentially small.

V. STOCHASTIC INSTABILITY
FOR TWO MODERATE-AMPLITUDE

ELECTROMAGNETIC WAVES

An analogous stochastic instability can also
develop in circumstances where the longitudinal
electric field 5E, is negligibly small but a second,
moderate-amplitude electromagnetic wave is
present. In this section, we briefly outline the as-
sumptions and relevant features of the final
dynamical equation. We consider circumstances
where 5E,=0 and two, constant-amplitude, cir-
cularly polarized electromagnetic waves (SB&,co&,k&)
and (5B2,co2,k2) are present with polarization simi-
lar to Eqs. (5) and (6). The second electromagnetic
wave (582,co2,k2) may also be a consequence of the
FEL amplification process, with frequency and
wave number (co2,k2) nearby to (coi,k1). Defining:—(coT)« . (80)

In Eq. (80), (cor )„is the critical bounce frequency
for onset of stochastic instability when coT &(coT)«.
Since a » lna for a » 1, Eq. (80) gives

b

b2—=

eB

mc kp

e582

mc k2

b1
e5B1

mc k]
(84)

coT 16+ m.koco
ln +

(coT )cr 5L 2(k +kp)coT

to good accuracy. In a regime where

(81) after some straightforward algebra, it can be shown
that the axial equation of motion can be expressed
as
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dz 1 dz

dt
b b( c {k)+kp)—co~

—sin[(k~+kp)z co—~t]
dt

dz
~b b2 c (kg+ko) —co2

d
sin[(kg+kp)z coztl

dz
b,—b2 c (k2 —k~) —(co2 —co&)—sin[(k2 —ki)z —(co2—co&)tl

dt
(85)

where

1 1 dz
1——

c2 dt

2

( I+b~+b )+by

—2b~b~cos[(k, +kp)z —co,t]—2b2b~cos[(kq+kp)z co2t]—

+2b ~

buncos[(k2

—k ~ )z (coz co)t—]]— (86)

The form of Eq. (86} is somewhat analogous to Eq. (27). If we neglect the b &bz terms in comparison with

bib and b2b, and examine particle motion with axial velocity dz/dt in the vicinity of the beat-wave phase

velocity co~I(k~+ko) of the primary wave, then for
~

co& dzldt —co,l{k,+kp}
~

&&c (k~+kp) —co„Eq. (85)

can be approximated by

z k)+kp
(k~ +kp) z +cor ~sin[(k & +kp)z —co~t]+ corbin[(k2+k p }z co2f ]=0,—

dt2 k2+kp

where

w2NT)= 1— co] [c~(k(+ko)z —co)]

c'(k, +k, )' (1+b')
2

c~(k) +kp)~

[c'(k2+kp) co2col(k2+ ko }l(k] + ko}]
b„b2,(1+b')

(88)

and only leading-order terms proportional to b~b ~ and b~b2 are retained in Eq. (87). Introducing

g=(k, +ko)z co~t, Eq.—(87) can be expressed as

k) ~ kz

dt2 k2 ki
+cor~sing+, cor2sin, g scot =0, — (89)

ere ki=k]+kp k2=k2+kp an

hco =(k (co2 —k2co()/k').
Analogous to Eq. (41), if 5=co»/co» is treated

as a small parameter, the dynamical equation (89)
can lead to stochastic instability for particles near
the separatrix. For Leo/coT

& p~1, the general
features of the instability are similar to those dis-
cussed in Sec. IV. For hco/coT& c 1, using tech-
niques similar to Zaslavskii and Filonenko, ' it can
be shown that the energy band ddE corresponding
to instability can be much wider than in the case
b co/cop- ~) 1.

VI. CONCLUSIONS

In summary, we have considered electron motion
in the combined fields of a helical wiggler and
constant-amplitude, circularly polarized primary
electromagnetic wave (5BT,co, k). For particle velo-

city near the beat-wave phase velocity co/(k+kp)
of the primary wave, it was shown that the pres-
ence of a second, moderate-amplitude longitudinal
wave (5EL,co,k) or transverse electromagnetic wave

(5B2,co2,k2) can lead to stochastic particle instabili-

ty in which particles trapped near the separatrix of
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the primary wave undergo a systematic departure
from the potential well. The condition for onset of
instability has been calculated [Eq. (80)]. The itn-

portance of these results for FEL applications is
evident. For development of long-pulse or steady-
state free-electron lasers, the maintenance of beam

integrity of an extended period of time will be of
considerable practical importance. The fact that
the presence of secondary, moderate-amplitude
longitudinal or transverse electromagnetic waves

can destroy coherent motion for certain classes of
beam particles moving with velocity near

co/(k+ko) may lead to a degradation of beam

quality and concommitant modification of FEL
emission properties.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the benefit of
useful discussions with George Johnston and
Robert Estes. This research was supported in part
by the Office of Naval Research and in part by the
Air Force Aeronautical Systems Division.

iG. M. Zaslavskii and N. N. Filonenko, Zh. Eksp. Teor
Fiz. 54, 1590 (1968) [Sov. Phys. —JETP 25, 851
(1968)].

G. M. Zaslavskii and B. V. Chirikov, Usp. Fiz. Nauk

105, 3 (1971) [Sov. Phys. —Usp. 14, 549 (1972)].
38. V. Chirikov, Phys. Rep. 52, 263 (1979).
4M. N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor, and G.

M. Zaslavskii, Nucl. Fusion 6, 297 (1966).
~G. R. Smith and N. R. Pereira, Phys. Fluids 21, 2253

(1978).
6N. M. Kroll, P. L. Morton, and M. N. Rosenbluth,

IEEE J. Quantum Electron. OE-17, 1436 (1981).
7Ronald C. Davidson and Han S. Uhm, Phys. Fluids 23,

2076 (1980).

N. M. Kroll and W. A. McMullin, Phys. Rev. A 17,
300 (1978)~

P. Sprangle and R. A. Smith, Phys. Rev. A 21, 293
(1980).
D. A. G. Deacon, L. R. Elias, J. M. J. Madey, H. A.
Schwettman, and T. I. Smith, Phys. Rev. Lett. 38, 892
(1977).

'W. H. Louisell, J. F. Lam, D. A. Copeland, and W. B.
Colson, Phys. Rev. A 19, 288 (1979).

'2W. B. Colson, in Physics of Quantum Electronics
(Addison-Wesley, Reading, Mass. , 1977), Vol. 5, Chap.
4

' P. Diament, Phys. Rev. A 23, 2537 (1981).


