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Bifurcation gap in a hybrid optically bistable system
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The truncation of a period-doubling sequence in a hybrid optically bistable device with delayed

feedback is observed as a function of the noise present in the system. Increasing the noise level

decreases the number of period doublings observed.

Many dynamical systems have been studied that
follow a period-doubling route to chaos. ' ' Using a
hybrid optical bistable device with delayed feedback,
we investigate experimentally the effect of varying
levels of intensity-dependent noise on the period-
doubling sequence that lies on the lower branch of
our device. " We find the period-doubling sequence
is truncated, but in a way different from that predict-
ed by the addition of intensity-independent Gaussian
noise. 5 "

Many nonlinear systems make a transition to chaos
as some parameter, which we denote by p, , is in-

creased monotonically. We denote a periodic output
waveform by P~ where pt~ is the period of the
waveform and t~ is some characteristic time of the

system (in our case the delay time of the feedback).
For period doubling, Feigenbaum has shown that the
domain of p, in which any particular waveform is ob-
served becomes geometrically smaller as the period
increases. The period of the waveform thus becomes
infinite at some finite value, JM,

=
JM, . If p, is in-

creased beyond p, , the waveforms become chaotic.
These waveforms appear as superpositions of periodic
waveforms with chaotic ones. " We denote these
waveforms as N~, where p indicates the period of the
periodic part. Lorenz has shown that, as p, is in-

creased, the period of the waveform decreases in
steps of one-half. " He called this a "reverse bifurca-
tion" sequence. The total bifurcation sequence in
the case of period doubling is'

P2 P4 Ps P N N8 N4 N2 C

where C —= N~ denotes a "fully developed" chaos
with no periodic part.

By studying a forced anharmonic oscillator and
Feigenbaum's quadratic map, ' Crutchfield and
Huberman predicted that the addition of Gaussian
noise to a system would cause the number of period
doublings to be finite. ' They called this a "bifurca-
tion gap" since, instead of period doubling ad infini

turn, some waveform of finite period bifurcates to the
chaotic waveform of the same periodicity, leaving a

gap in the sequence of observed waveforms. In a
previous experiment we observed such a gap after
two period doublings. Others have also observed a

gap in the period-doubling sequence.
In contrast, it was found in a hydrodynamic experi-

ment that noise has no significant effect on the tran-
sition to chaos. " Moreover, noise is not the only
potential cause of a bifurcation gap. Chow'6 has
predicted that a gap should be observed in our sys-
tem in the absence of noise, if the ratio of the
response time 7 to the delay time t~ is small enough.
With the timescales of our present system we would
not expect to see this type of truncation. We demon-
strate that noise is the cause of the bifurcation gap by
varying its amplitude. We observe that the location
of the truncation in the bifurcation sequence moves
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FIG. 1. Experimental layout: He-Ne laser; Glans prisms
(GP); KDP, crystal; mirrors (M); photomultiplier (PMT).

I

monatonically toward fewer period doublings with in-

creasing noise. If the truncation was deterministic,
we would expect the bifurcation sequence to be in-

dependent of the noise level.
Figure 1 shows our experimental setup. A helium-

neon laser beam passes through a Gian prism polariz-
er, then through a potassium dihydrogen phosphate
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(KDP) crystal four times before coming back through
the polarizer. It then passes through another polariz-
er and is coupled into a 1.1-km optical fiber. The
light emerging from the fiber is detected with a pho-
tomultiplier, whose output is amplified and impressed
on the KDP crystal.

The major source of noise in the experiment is the
shot noise from the photomultiplier. We increase the
noise level in our system in the following manner:
First we attenuate the light reaching the photomulti-
plier tube using the polarizer placed in front of the
fiber; then we increase the voltage on the dynodes of
the tube to return the signal to its previous level.
Note that the spectral width of the noise at the pho-
tomultiplier tube is much larger than the bandwidth
of the rest of the device. Other noise sources (the
amplifiers, dark current, etc.) contribute about half of
the noise signal at the lowest noise levels used in the
experiment. We investigate noise levels from 0.3%
to 10% rms (measured with the modulator at max-
imum transmission).

Our device is described by the equations

T = , {I—icos—[X(r—tg) +Xsl }

rX(t) +X(t) =2m p, T+r)(T)

where X= n V/Vs, Vis the voltage on the modula-

tor, VI, is the half-wave voltage of the modulator,
Xb = rr Vb/Va is a variable bias, and q( T) is the
noise. The transmission function T is proportional to
the transmitted intensity. The ability of the system
to achieve extinction is measured by g =0.96 +0.01,
and IM, is proportional to the product of the input laser
intensity and the amplifier gain. The fiber delay tg

was 6 p,s. For all of the data presented, Xb= —m and
v =1 p,s, but the results are qualitatively the same for

n& Xs & ——n/4 and 0.25 & r & 1 p,s. Although for
some values of Xb the upper branches of the device
are accessible, we confine our observations to the
lowest branch.

To determine the bifurcation points in the presence
of noise the power spectra of the waveforms were ob-
served in real time on a spectrum analyzer. The
spectrum of the P2 waveform is seen as a set of
instrumentally narrow peaks at f= k/2t~, k
=1,3, 5, . . . , where f is the frequency. When the
system bifurcates to P4 the period-2 peaks remain
and peaks at f= I/4trt and its harmonics appear.
Likewise, peaks at f= I/8' and its harmonics rise
when the system bifurcates to Ps. It has been
shown, both formally' ' and numerically ' that, for
p, & p, , chaos appears as a continuous spectral back-
ground. We measure the spectral power of the back-
ground to locate the bifurcation to chaos.

Our experimental spectra are summarized in Fig. 2

which is a plot of the power of the P2, P4, and P8
frequency peaks and the chaotic background as a
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FIG. 2. The log of the power density (on an arbitrary
scale of power/Hz) of the most powerful spectral com-
ponents of P2(f =I/2'), P4(f =I/4rrt), Ps(f =3/8rrt),
and chaos (f=15/32trt) as a function of p, . The bifurcation
to chaos is between period 8 and period-8 chaos. This case
has a noise level of 0.3%. Due to the drift in the system
(denoted by the horizontal error bar) and the rapid rise of
the spectral peaks, no rigorous comparison of the shape of
the different curves is significant. The height of the peaks
was measured at increments of 0.01 of p, during the rise,
and increments of 0.05 before and after it.

function of p, , at a noise level of 0.3%. The power
of the largest peak in a waveform's spectrum was
measured. Specifically, the peaks measured are

f =I/2t~ for P2, f= 1l4rR for P4, and f =3/8trt for
Ps. (This choice of the Ps peak also eliminates po-
tential problems with low-frequency filtering within
the spectrum analyzer. ) The rise of the chaotic back-
ground was measured at a frequency of f =15/32rrt
This choice of frequency avoids possible complica-
tions from any nascent Pts peak at f =7/16rrt Note.
that the bifurcations within the periodic sequence are
nonequilibrium second-order phase transitions and
the spectral components do not have a discontinuous
jump. Critical slowing down produces the rounding
off of the rise of the peak, and the rapid rise in the
center locates the bifurcation point. Note also in Fig.
2 that the onset of chaos also behaves just like a
nonequilibrium second-order phase transition, a
result consistent with the work of Huberman and

,isoo
In Fig. 2 the rise of the chaotic background occurs

after the period 8 peak is fully developed. This 1o-

cates the bifurcation to chaos between period 8 and
period-8 chaos. Figure 2 describes a bifurcation
structure P2 P4 Ps Ns N4 N2. '" (If the
chaotic background had risen with the period-8 peak
the bifurcation structure would have been
P2 P4 Ns N4 N2 as it is for 1% noise. )

The decay of the period-4 peak is also shown in

Fig. 2. The peak decays rapidly when the power in
the chaotic part of the waveform approximately
equals the power in the spectral components that are
associated with P4. The decays of period-2 and
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period-8 peaks are analogous and, with the decay of
the period-4 peak, they experimentally define the bi-
furcation structure of the reverse sequence.

In Fig. 3 the solid curves show the bifurcation
points as a function of noise. The numbers indicate
the waveform present in a domain. (For clarity, only
the period of the waveform is shown on the graph.
A starred number indicates a chaotic waveform. )
Figure 3 shows that more noise is needed to elim-
inate a chaotic waveform than is needed to eliminate
the corresponding periodic waveform. The bifurca-
tion gap presented by Crutchfield and Huberman
showed the elimination of a waveform and the corre-
sponding chaotic waveform at the same noise level.
One possible explanation for the elimination of the
chaotic waveforms at different noise levels in the two
systems is the differing characteristics of the noise.
The noise in our system is intensity dependent, but
Crutchfield and Huberman used intensity-indepen-
dent Gaussian noise. Another possible explanation
lies in the difference of the systems. Our device is a
differential delay system while the systems that they
studied involve mappings or nonlinear differential
equations.

In conclusion, we have demonstrated that noise
causes the termination of a period-doubling sequence
in our device, although the way that it causes the ter-
mination is qualitatively different from that predicted
using intensity-independent noise.
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FIG. 3. A diagram of the domains of the waveforms as a
function of noise. The lines are the bifurcation points
between waveforms. The numbers denote the period of the
waveform in units of t~. The starred numbers denote
chaotic waveforms. The noise was increased in increments
of 0.3% between noise levels of 0.3% and 2%, and incre-
ments of 1% between noise levels of 2% and 6%.
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