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The long-time properties of biased diffusion in media with randomly distributed traps is dis-
cussed. For any bias the asymptotic decay is exponential, contrary to the unbiased case. We
find a sharp transition between a small-bias behavior, for which particles are effectively local-
ized, and a large-bias behavior, for which the particles drift with the bias.

The problem of diffusion in a medium with ran-
domly distributed traps serves as a model for pro-
cesses occurring in a number of contexts. While it is
by now a classical model! for diffusion-controlled
chemical reactions, it appeared only relatively recently
in solid-state physics.?

Denote by p.( T,¢) the density of particles of type
C which diffuse in a medium with a particular realiza-
tion of a random distribution of particles of type S
(sinks). Particles C are trapped on particles S. One
is interested in n.(T,t) = (p.( T,t) )¢ which is the
number of particles not yet trapped, at time ¢ >> 0,
averaged over all trap distributions. Naively, one
could expect that n.(¢) decays exponentially at long
times. It was only very recently that this was found
to be false.>* In fact, we have shown* that at long
times the decay is described by the following
behavior:

n.(t) ~exp(—constr#/4+?) | 1)

where d is the spatial dimensionality. The physical
reason for this behavior is that at long times the sur-
viving particles are in large trap-free regions. These
regions are rare; their probability of occurrence goes
like exp(—n; V') where ny is the average trap concen-
tration and ¥ the volume of the region. However,
the survival probability is so strongly enhanced that
regions with diameter / ~ (Dt/n;)/4*2 contribute
dominantly to the particle number n.(¢), leading to
Eq. (1).

In the present Brief Report we discuss the modifi-
cation of this behavior when a drift term is added to
the diffusion equation. We were intrigued by some
statements™>? in the literature, concerning the
behavior in one-dimension (1D) [where an
exp(—:1?) behavior has been known for a whilel,
that a constant drift term restores an exponential de-
cay, if the drift velocity exceeds a threshold value. The
above explanation of Eq. (2) suggests that this would
be wrong. Any nonzero constant drift should lead to
exponential decay, as we argue below. However, we
have found an interesting transition in the average
drift velocity as a function of the bias field, and we
wish to report this observation here.

We first argue that the decay is exponential for any
value of the bias field. The physics is as follows: A
particle which happens to be in a trap-free region of
diameter / has two essential pathways for survival.
Either it resists the drift motion and stays in its re-
gion or it lets go with the drift. Both pathways lead
to exponential decay, but with different decay con-
stants. If the particle stays in the trap-free region, its
decay would be governed by the solution of a
Fokker-Planck equation

l—g—t—pvuvﬁ p(T,t)=0, 0))

with effective boundary conditions p. =0 on the
boundary of the trap-free region. Here V is the drift
velocity in a trap-free medium. The asymptotic decay
is governed by the lowest eigenvalue €o(V) of the
correspondent eigenvalue problem [—DV2+ V- v
—€(V)1p.=0, which can be written as

= v
[ [ 2D
From this, one sees immediately that the ¢,’s are

shifted up as
en=€,(V=0)+v¥/4D . )

2

2
+2 — (V)

D p.=0 . 3)

The contribution to n.(r,t) at long times comes
from large trap-free regions. Since €x(V=0)—0 in
large regions, n.( T',t) would decay as

n.(7,t) ~n.(v=0,t) exp(—v%/4D) . )

On the other hand, if the particles roam out of the
trap-free region, we expect the decay to be governed
by the mean-field behavior. In a three-dimensional
continuum model with perfect spherical traps, this is
Smoluchowski theory corrected for the drift. The ef-
fect of one single trap is described by Eq. (2) with
boundary condition

0, for|T|=a

pe(T) = pc(o0), for [T — o . 6)

By expanding p. into spherical harmonics, one ob-
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tains for the flux into the trap

J=4‘n'pc(oo)Daf[—;-%] , @)
with
T o1\ Li1pp(x)
f(x) o 1_20( 1) (21+1)K,+1/2(x)
1+x—x%3+ -+, x<<1
=lx/2, x>>1 . (€]

(I, and K, are spherical Bessel functions.) Assum-
ing that this calculation is not invalidated by the ex-
istence of other traps, this leads to an asymptotic de-
cay

n(t)~e™ , (©)
‘=~ 4wnaD +2wna*v— - -+, v<<D/a
" \#na*v, v>>D/a . (10)

In d dimensions and/or with other (e.g., lattice)
specific models, we generally expect the mean-field
behavior to be-

X nsa?™2D, v<<D/a
o
nyd® v, v>>D/a . an

Thus both pathways lead necessarily to exponential
decay without threshold. However, another kind of
transition becomes now apparent: At small velocities
¥, the decay (5) is slower and therefore advanta-
geous for ‘‘survival strategy.”” For large V the
behavior, respectively, (10) and (11), is advanta-
geous. As behavior (5) is associated with roaming
within the trap-free cavities, we expect that the mean
velocity V,, of a cluster of particles would be zero. If
the velocity V is large, such that the second behavior
is dominating, the cluster velocity V,, should be of
the order of V. We should stress that here V,, is not
the average velocity of individual particles in this
cluster, but the mean rate of change of its center of
gravity. The difference between these two arises due
to the higher absorption rate of the faster moving
particles. A critical velocity v, is determined by the
conditions k = v%/4D or

vg ~ D (ngad2)12 (12)

At asymptotically large times, a sharp transition in
mean behavior is expected then at v,,.

At large but finite times, this transition is, of
course, smoothed out. It is also shifted towards a
somewhat smaller value of v, since for finite time ¢
the decay for v < v, is governed by Eq. (4), with

o [
V= -2 —= 13
€(V=0) < Dn,l c:D[Dt] , (13)

where [ is the typical diameter of trap-free regions
contributing at time ¢.

We found this predicted behavior sufficiently in-
teresting to look for it in Monte Carlo simulations.
The two-dimensional model used was the same as in
Ref. 4. A drift motion along the diagonal was gen-
erated by choosing the probabilities for steps in the
positive x and y directions to be (1+p)/4, and those
for steps in the negative directions to be (1-p)/4.

Figure 1 shows the results of runs with several
values of p = v+/2, each consisting of ~ 102—103
walks of 800 steps. The exponential decay was ap-
proximately compensated by adding a first-order birth
process with a suitable rate. In Fig. 1(a) we show the
observed effective decay constant k, averaged over
400 < ¢ < 800 as a function of v. The continuous
curve is the parabola v¥/4D + €)(v=0), with €,
chosen such as to fit the data at small v. The parabo-
la cuts the linear function (10) at v=2. At the same
point we observe a dramatic change in the function
v, shown in Fig. 1(b). This is the transition indicat-
ed in the above discussion.

Four final comments are in order: (i) The asymp-
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FIG. 1. Transition in observed behavior. (a) Observed
decay rate as a function of the bias. The quadratic curve is
the theoretical prediction for small v. The points, resulting
from Monte Carlo simulation, show the transition to a dif-
ferent behavior at higher-bias value. (b) Observed transi-
tion in the average cluster velocity as a function of the bias.
The points come from the same Monte Carlo simulation.
Note that the transition occurs at the same value of the bias
in panel a.
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totic behavior can be found exactly in one-dimen-
sion, assuming perfectly absorbing pointlike traps.
Using the method of Ref. 4 we find indeed

n.(t) ~n.(t;v=0) exp[— (v¥/4D)¢]

for all velocities (there is no analog to the mean-field
behavior in this model). (ii) The phenomena dis-
cussed in this report is reminiscent of the breakdown
of Anderson localization® in a strong applied electric
field. (iii) In an ac electric field, the particle number
should decay according to Eq. (2) for sufficiently

large ¢, when the drift length is smaller than the di-
ameter / of the dominating trap-free regions. (iv)
Our discussion deals with the very long-time tail of
n.(#). It is thus not directly related to measurements
of mean trapping times of carriers in electric fields.’
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