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Transition to chaos in the Duffing oscillator
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It is observed in the 13uffing oscillator that a bifurcation from a solution composed of only

odd harmonics to one composed of both even and odd harmonics precedes the period-doubling

bifurcations. Keeping all parameters fixed except for the amplitude of the driving force F, we

determine the value of F at which the bifurcation occurs. Results are compared with experi-
ment. A mechanism for the period-doubling bifurcations is suggested.

It has been found that in some nonlinear systems
the transition to chaos can occur via consecutive
period doublings. ' We, among other investigators,
have observed period doubling in an anharmonic os-
cillator with a cubic restoring force, a harmonic driv-

ing force, and nonzero damping. 7 " Our experi-
ments were performed on an analog circuit' which
simulates Duffing's equation'

x +ax +co'Ox+px'=FcosQt; n) 0, p) 0 . (1)

The input voltage is V;„=(F/Oi02) cosQt and the out-
put voltage is the solution V,„,=x(t). (In what fol-
lows we will express F in units of volts. ) Our critical
parameter here is the amplitude I of the driving
force. All other parameters are kept fixed. The solu-
tion x(t) is analyzed by determining its spectral den-

sity.
For small nonlinearity, x may be approximated by

x =eicos(Qt +@i),where A i and $i are given by

pg 2 pF2/[( 2+ 3
pg 2 Q2)2+ 2Q2]

tan/i =—uQ/(coo+ 4 pAi —Q )

This is Duffing's approximation. ' " In order to
determine the first-order correction to x, we let

x eicos(Qt +ljli) +A3cos(3Qt +$3) . (3)

Neglecting terms involving higher-order harmonics
and keeping only those terms linear in A3, we deter-
mine the amplitude A 3 and phase $3 to be

doubling was observed to occur only for small damp-
ing. (Here 2( = u/coo=0. 1.) In the experiment F
was continuously increased starting from I' =0. For
small E the output voltage agrees with the solution
x(t) given by Eq. (3) with A i, Qi, and A3, $3 being
defined by Eqs. (2) and (4), respectively. However,
when I" exceeds some value FE, even harmonics of
0 are observed in the output voltage. As I is fur-
ther increased, period doubling bifurcations occur as
evidenced by the consecutive appearance of

2
and

4
1 1

subharmonics (see Fig. I). Generally chaotic
behavior was observed soon after the appearance of
the —subharmonic.

The observed period doubling -bifurcations are always

found to be preceded by a bifurcation from a solution

containing only odd harmonics to one containing both
odd and even harmonics. This suggests that the solu-
tions containing both odd and even harmonics are, in
this system at least, precursors for the period-doubled
solutions. In what follows we analyze the onset of
the even harmonics, and on the basis of these results
we suggest a mechanism for the period-doubling bi-
furcations.

We start with the solution x (t) given by Eq. (3)
and perturb it by q, where &~ && x. Neglecting terms
of order 7t3, we obtain from Eq. (1) the following
equation for q.

1

ij+ a~+ y2 1+, cos(2Q t + x)7'

PA3 = —,6P 2 i/[(0)0+ 2 PA i —9Q ) +9Q n ]

tan(3$, —$3) =3o'Q/(Oi20+
2

pA32 —9Q2) (4) +, cos(4Q t + @3+4'~3) 2i = 0 . (5)6

All the odd harmonics contributing to x may be gen-
erated by perturbation theory. '

For large damping, we observed only odd harmon-
ics in the output voltage. On the other hand, period

In the coefficient of q a term containing 60 has also
been neglected since its contribution to Eq. (5) is
small.

y is a renormalized frequency defined by
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FIG. 1. Log-log plots of spectral density vs frequency. primary response labeled Ol is at driving frequency 0 =144 Hz;
coo =109 Hz. parameters 21;= a/coo and 8 = p/coo are fixed at 0.1 and 0.5/V2, respectively. Spectra indicate that bifurcation at

y =2Q from solution composed of (a) only odd harmonics to solution composed of (b) both odd and even harmonics preceded
period-doubling bifurcations, (c) and (d).

y'=cuit+ —,pAt'+ —,pA3. H, G, and X are functions
3 2 3

of At, Qt, and A3, P3 being defined by

H=[9PA A + —(PA )

+9p AtA3cos($3 —3yt)]' ',
G =3pA tA3

3PA tA3sin(d3 —Pt) +
2 PA t sin2&t

tank. =
3PA tA 3cos($3 —$t) + —,PA t' cos2@t

Notice that rt = 0 is a solution to Eq. (5). Howev-

er, we will show that for certain parameter regimes
this solution is unstable. There exist even harmonic
solutions to Eq. (5) that grow exponentially in time.
Of course Eq. (5) is only valid for small ri. Thus,
when F )FE and the solution to the linear equation
diverges, it is necessary to include the nonlinear term

prl' in Eq. (5) in order to determine the stable even
harmonic solution in that regime. Nevertheless, the
linear analysis is sufficient to determine the value FE
at which the solution q =0 first becomes unstable.
We proceed now with the linear analysis.

First, it is convenient to transform Eq. (5) into the
form of Hill's equation. This is accomplished by us-
ing the transformation ri(t) = p, (t) &~»&& to eliminate
the damping term nq. The transformation also re-
sults in a frequency shift, y'= y' —

4 o.'. When ei-

ther 0= 0 or 6 = 0, the equation reduces to
Mathieu's equation. Reference 13 gives a concise ex-
planation of parametric resonance as described by
Mathieu's equation. Here we generalize their results.

A system parametrically driven at frequency v ex-
hibits resonance whenever v = 2y'/k, where k is an
integer. In Eq. (5) two driving frequencies occur,
v~=40 and v2=20. When y'=20 resonance oc-
curs, the order of the resonance being kI = 1 and
k2=2 for driving frequencies v~=40 and v2=20,
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respectively. For y' =20, p, is of the form

r

p, =An(t)+A2(t) cos 20t+ It+A It+A
2

+A2 (t) sin 20t+
2

+ 0 ~ ~

where the ellipsis represents higher-order even harmonics and A a(r), A 2(t), A 2 (t) —e~. Notice that, although
the resonance occurs at y' =20, the zero frequency mode is coupled to lowest order to the 20 mode through
the term (H/y') cos(20 1 + h. ) in Eq. (5).

Since resonance occurs for y' in the neighborhood of 20, it is convenient to define a = (40 —y2)/40 to be
the difference between these two frequencies. Then from Eqs. (5) and (7) one obtains the following equations
for A 0 A 2, and A 2.

1 I

H It+43, . It+43Ao= —,A2cos +A 2 Sin2v', 2, ,
2

(8a)

H—40p+ „sin(2h. —Pt —$3)
4 t2

G 8—40a+ ——,
2

[I+cos(2X—Qt —$3)]
2 4~ 2

6 0-40.———,[1—cos(2) —yt —@,)]
2 4y' A2

A+ =0 .
40p+, 2

sin(2A. —@t—Q3)
4 r2

(gb)

Ao(t), A2(t), and A2 (t) are assumed to be slowly
varying functions of time. Thus, second derivatives
of these quantities with respect to time have been
neglected. In order for nontrivial solutions of Eq. (8)
to exist, it is necessary that the determinant of the
matrix multiplying (A 2,A 2 ) vanish. It therefore fol-
lows that

(40p)'= —(—40 a)' — +
~12 4

GH
,, cos(2A. —Qt —P3) . (9)

4 r2

Since I
- ePt it follows that ~- e(P--l2it For real

p, g will be unstable if p ~ a/2. We are interested in
determining F&, the value of F at which the instabili-
ty first sets in. Therefore, we set p = o./2 in Eq. (9).
Fq is defined to be the smallest F that satisfied Eq.
(9) with p=a/2.

In Table I, we compare our predictions for F~ with
experiment. Here tea=109 Hz, 2)=n/sun=0. l and
8 =P/ta2a= 1.0/V'. For odd solutions the output vol-
tage has zero mean. However, when F exceeds F~,
the solution acquires a zero-frequency component A 0,
and the output voltage has a dc offset. We use a
voltmeter to determine when the offset first deviates
from zero. As can be seen in Table I, the experi-
mental values of F~ are in good agreement with our
theoretical predictions over the range 90—300 Hz.

The bifurcation to solutions containing both odd
and even harmonics occurs as a result of a parametric
excitation of an even harmonic. In the simplest case
which is treated here (Fig. I) the excitation is at
y' =20. From Figs. 1(c) and 1(d) the period-
doubled solutions appear to arise from parametric ex-
citations of the 2—, and 2 4 subharmonics, respective-

TABLE I. F~ is the minimum value of the input voltage
at which even harmonics first occur. Theoretical predictions
of FE are compared with experimental values. The damping
parameter 2f = a/run=0. l, the nonlinearity parameter
8 =P/coo= 1/V, and p)p=109 Hz.

n (Hz)
Experiment

FE (v)
Theory

90
120
150
180
210
240
270
300

1.4-1.5
3.52
6.28

11.03
17.5
25.5
36.5
47.7

1.50
3.39
6.48

11.1
17.5
25.9
36.8
50.4

I

ly. Generalizing this result, we shall assume that the
kth period-doubling bifurcation occurs as a result of
a parametric excitation of the (2+1/2") subharmonic at
Fk. Notice also from Fig. 1 that the response of the
system at (1/2") 0 is comparable to that at (2+1/2") 0.
This suggests that the two modes are coupled to lowest
order as was previously the case for the zero-frequency
and 20 modes. Based on these observations we
suggest a mechanism for the period-doubling
bifurcations.

Let gk be that component of x (t) composed of odd
1/2" subharmonics; To lowest order we assume that
gk contains a 1/2" subharmonic and a (2+1/2k) sub-
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harmonic and that jk satisfies

gk t, contained in the last term in Eq. (10), is deter-
mined by solving the appropriate nonlinear equation
for gk t including the cubic term. The above equa-
tion, linear in gk, determines Fk. $0 is defined to be

(c=Atcos(Qt+Pt) +A3cos(3Qt+P3)

and, in general, the stable solution gk is of the form

fk = Ck cos 2—„Qt + Sk +Dk cos —
k Q t + era . (11)1 1

The damping term is removed from Eq. (10) by the
transformation used earlier in our discussion of the
even harmonics. Hand A. are defined by Eq. (6) and

t

y' =coo — +—P 2A +A +A +A
t

+ x(C~'+DJ')
J

(12)

For F (FE, y' reduces to the y' defined earlier. For
F & Fk, the upper limit on the summation is k —1,
since modes whith j & k —1 have not yet appeared.

There are four combination frequencies formed

gk+y'2 1+,2
cos(2Qt+X)y'

+, A2cos(2Qt+p2) (k=0 . (10)
6P4 t-

from the parametric driving term

(6Pg„,/y') A, cos(2Q r +y, )

in Eq. (10). Of these four, we single out vt
= (4+1/2" ') Q because for y' = (2+1/2") Q, vt
results in a first-order resonance that triggers the
(2+1/2") Q mode. The (1/2") Q mode is also trig-
gered because it is coupled to the (2+1/2") Q mode
via the term H/y'cos(2Qt+X) in Eq. (10).

Note from Eq. (12) that if A2 =0, the driving term
for a parametric excitation of the (2+1/2") Q mode
is zero, and no period doubling bifurcations can oc-
cur. This agrees with our observation that the bifur-
cation to a solution containing even harmonics must
precede the period-doubling bifurcations. Note also
that the occurrence of the (k —1)st bifurcation is a
necessary condition for the kth bifurcation since gk t

is included in the parametric driving term for gk.
Thus, this mechanism explains the observed se-
quence of bifurcations:

T /T = 2 ~ 2. 22 23 2»

where T' is the period of x(t) and T is the period of
F(r).
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