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A new method presented here for calculating the equation of state for classical systems

is very fast, employs the same algorithm for all solid and fluid densities and tempera-

tures, and is of accuracy comparable with that of the computer simulations. The method

consists of fitting the pair potential by a linear combination of potentials belonging to a
basis set (for which the inverse power potentials are a good choice) and of employing a

property of additivity of equations of state when these are considered in terms of the den-

sity and excess entropy as the independent variables. The new method accomodates the

static lattice sum, or any physical quantity that is expected to be additive in pair-potential

contributions, as naturally as the pair potential itself, and should be very useful in the

study of equations of state for real materials. There are indications for the validity of the

new method in two dimensions as well.

I. INTRODUCTION

A theory for the thermodynamic properties of
classical systems of particles, with given pair-
interaction potentials, that is accurate, fast in cal-
culations, and that employs the same algorithm
over the full range of solid and fluid densities, is a
basic and important tool is studying equations of
state for real materials. Computer simulations are
accurate but not fast enough to provide the needed
flexibility when adjusting the classical potential to
the experimental data. That needei flexibility is
obtained by reducing the accuracy: cell theory, lat-
tice dynamics in the harmonic approximation, or
their Gruneisen-type simpiifications, are the
"standard" theories for classical solids, ' while per-
turbation theories, with the hard spheres as the vir-

tually unanimous choice for the reference system,
serve an equally important role for fluids. These
(first-order) theories are usually accurate to no
better than 5% in the excess free energy near the
solid-fluid transition. There have been attempts '

recently to modify these theories such thay they
employ the zero-temperature isotherm (i.e., the
static lattice sum of the classical effective pair po-
tential) directly, instead of the pair potential itself.

Here we present a new method for calculating
the equation of state (EOS) for classical systeins,
with given spherically symmetric pair interactions,
which is very fast in calculations, employs the
same algorithm for all densities and temperatures,

and with accuracy comparable with that obtained

by standard computer simulations (overall accuracy
better than 2%). This new method accomodates
the static lattice sum or any physical quantity that
is expected to be additive in pair interactions, as
naturally as the pair potential itself. If the solid is
treated in the harmonic approximation, the new
method is equivalent to an improved version of the
Gruneisen theory.

The paper is organized as follows: In Sec. II we
introduce a "variational fitting procedure" for fit-
ting EOS data, and show that the computer-simu-
lation results for a wide variety of potentials that
are relatively soft (i.e., do not contain a hard core)
can be thus fitted by a universal set of fitting func-
tions. In Sec. III a useful statement that follows
from the above universality is derived. If a given
potential is a linear combination of other potentials
and if we choose the density and excess entropy as
the independent thermodynamic variables, then the
EOS for the given potential is expressed in terms
of those for the other potentials in a simple addi-
tive manner. The inverse power potentials are con-
sidered as a "basis set" for EOS calculations. A
benchmark test of the accuracy of the new method,
via the EOS for the Lennard-Jones fluid, is given
in Sec. IV. Simple classical solids and improve-
ments upon the standard Gruneisen theory are dis-
cussed in Sec. V, while additive melting equations
that describe the fluid-solid transition are derived
in Sec. VI. Finally, Sec. VII contains a brief sum-

mary and the main conclusions.
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II. VARIATIONAL FITTING PROCEDURE
AND UNIVERSALITY

OF THE FITTING FUNCTIONS

Consider a classical system of particles interact-
ing through a spherically symmetric (and possibly
density-dependent) pair potential, P(r;p), for which
the EOS is known: S /Nkz s~(p——, T),U/N
=u~(p, T), where S and U are, respectively, the
excess entropy and potential energy of the system
as functions of the density p and temperature T.
Let So ~(p,p } and go ~(s;p,p) be one parameter
(i.e., p) functions by which the given EOS is fitted
according to the following "variational fitting pro-
cedure" (VFP):

sy(p, T) =so,y(p, p), (1

Uy(p T)—Uo y(p p) =
& p I go y(r;p, p)P(r;p)dr

(2)

numerous applications of first-order perturbation
theories (in their variational mode) to a wide
variety of systems and, as a matter of fact, it is the
reason underlying their success.

A. Fluid

The hard-sphere (HS) approach to perturbation
theory for fluids, based on the Gibbs-Bogoliubov
inequality with the hard spheres as the reference
system, proved successful for many types of poten-
tials. Most of the variational HS calculations
were performed with the Carnahan-Starling (CS)
expression for the HS excess entropy and the
Percus-Yevick (PY) result for the radial distribu-
tion function, amounting to the following universal
fitting functions in the VFP.

(5a)

a
[—Tsoy(p p)+ Uo y(p~p)l I p, T=o

RIM
(3) go(r p p) gpY(r/d I) (5b)

Equation, 3), by which p is determined as function
of p and T, is a requirement of thermodynamic
consistency. It results from imposing the usual

thermodynamic relation, s = (df/BT)~, —on the
approximate (fitting) excess free energy per parti-
cle,

so,~(p,p) =so(p,p),
go, y(p p) =go(p p)

(4a)

(4b)

with possibly different universal functions s0, g0,
for the fluid and solid phase. The possibility of
such one-parameter scaling of the configurational
phase space for simple systems is deduced from

fo,y(p p T)= —Tso, y(p p) +Uo, y(p p)

and the excess entropy per particle, s, ~(p,p). If
the fitting function so ~(p,p) is the excess entropy
of some (reference) system, and go ~(r;p, p) is the
corresponding radial distribution function, then
VFP becomes identical to the variational form of
first-order perturbation theory based on the Gibbs-

Bogoliubov inequality.
The new approach to EOS calculations that is

introduced in the present work is based on the
premise that it is possible to obtain VFP fits for
the EOS of quite disparate potentials with accura-

cy of the order of, or slightly worse than, the accu-
racy of the Monte Carlo (MC) results by the same
(universal) fitting functions, independent of the
pair potential,

where d is the HS diameter, and q =(ir/6)pd is
the HS packing fraction. It has been observed9'o
that an ad hoc correction to scs(i) ), namely,

so(rl) =scs(i})+i),while keePing (Sb), leads to a
general improvement of the prediction of the
theory for a wide range of potentials (e.g., 2%
agreement with simulations for the r, r, r
exp-6, and screened Coulomb potentials). Ross has
recently suggested" a "bootstrap" approach in
which: (a) the known EOS for some reference po-
tential is fitted as accurately as possible by the
VFP using (5b) but with an ad hoc correction to
(5a}, so(YI ) =Sos(i) )+5$o(iI ): and (b) the same fi-
ttin functions are employed in the VFP to obtain
the EOS for another potential. By applying that
bootstrap approach, Ross found that the function

so(9)=sos(0)+

chosen to reproduce the MC EOS for the r ' po-
tential, gives results for the r, r, Lennard-
Jones (12-6), and exp-6 potentials to an accuracy of
about 2% or less. Furthermore, the choice

i.e., the PY virial hard-sphere EOS, reproduces by
the VFP the analytic form suggested by De Witt'
for the asymptotic (strong-coupling) fluid EOS for
the inverse power potentials. ' Although a particu-
lar choice for 5so(rl) =5so"(rl ) that fits particular-
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ly well the simulation data for one type of poten-
tials (say, relatively hard} may be somewhat worse
than another choice, 5$0(rl) =5$0 (Yl) when fitting
another type (say, relatively soft), all these results
indicate that a universal function 5$0(i}}can be
found that will produce 2%%uo accurate VFP fits for
any kind of potential) in the dense-fluid regime,
provided it does not have a hard core. In view of
the yet untried additional freedom to change
go(r/d;rl), we expect the premise of universality of
the fitting functions to have the accuracy of the
present-day simulation studies for dense simple
classical fluids.

B. Solid

The variational approach with the spherically
averaged harmonic cell model as the reference sys-
tem gives good results for the EOS of simple
solids, i.e., with accuracy comparable with that of
the HS theory for dense liquids. The first-order
choice for a universal VFP fitting functions [the
"solid" counterparts of (Sa) and (Sb)] will be

so(p, A) =—lnp ——,lnA+C,
2

' 1/2
1 ~I ~a& 1

go(r, p,A)= —g
p & ai 4irai 4m'(r/ai)

(6a)

)(exp
2

when used in the VFP with (6a), leads to the
Griineisen EOS with the usual "free-volume"

(6b)

where C is a universal constant, nI and aI are the
number and position of the Ith nearest neighbors of
a given particle on the lattice, ai ——(yap)

' where

yo depends on the lattice structure (ro ——1/V 2 for
fcc), and A is the force constant related to the
Lindeman parameter 5 by A =3/5i. The VFP
with (6a) and (6b) leads to a Griineisen-type
description of the simple solid EOS. In particular,
a simplified form of (6b), namely,

' 1/2
1 ~i A 1

4 4ir(/ )

2
r

Xexp ————1
4 aI

I

Griineisen parameter (see Sec. V A). Ad hoc modi-
fications of (6a) and/or (6b) have not been tried,
but it is expected that the configurational phase
space of simple solids will obey one-parameter
scaling at least as accurately as that for simple
dense fluids (see Sec. VC).

III. ADDITIVE EQUATIONS OF STATE
AND THE INVERSE PO%'ER POTENTIALS

AS THE BASIS SET

Universality of the VFP fitting functions means
that equations of state for different potentials may
have many common features provided we choose
the density, p, and excess entropy, s, as the in-
dependent variables. In particular, a property of
additivity, to be described below, has important
practical implications.

Suppose that a given potential can be expressed
as a linear combination of other potentials (with
possibly density-dependent coefficients},

P(r;p)=g~;(p)Pi(r;p) .

To the extent that the VFP fitting functions are
universal and accurate, i.e., that the approximate
equalities (1), (2), (4a), and (4b) are true equalities
for any potential of the set IP, IP; I ], then p be-
comes [via Eq. (1)] a universal function of the ex-
cess entropy s, leading [via Eq. (2)] to additivity of
equations of state:

Up'(p, s)=g ag(p)Up'(p, s),

where U~'(p, s } is the function describing the po-

tential energy per particle for the potential Pi, as
function of p and s. Thus knowing the EOS for
the potentials P; and choosing p and s as the in-
dependent variables, we can construct the EOS for
any linear combination of these potentials.

Given accurate equation of state (from simula-
tions or from modified HNC calculations' ) for a
set of potentials (the "basis set"), one may fit
another potential by a linear combination of poten-
tials belonging to the basis set and use Eq. (9) to
construct the EOS for that potential. In the gen-
eral mode of application the basis set could, in
principle, be a set of materials for which the EOS
is known experimentally and the linear combina-
tion can be composed of any physical quantity that
is expected to be additive in potentials (the zero-
temperature isotherm or static-lattice sum are such
quantities).
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The set of inverse power potentials, P„(r)
=e(o Ir )", is a particularly useful basis set for the
following main reasons: (i) A linear combination
of inverse powers can fit well nearly any physically
conceivable effective pair potential; and (ii) due to
their homogeneity, the inverse power potentials
have the scaling property that a single isotherm or
isochore describes the complete EOS, i.e., the ex-
cess thermodynamics depends only on the reduced
temperature-density variable y„=p

n /T'3~", where
pn=po and Tn=k&T/e; (iii) accurate
computer-simulation data ' ' exist for
n = II,4,6,9,12,00 to permit, by interpolation pro-
cedures, the construction of U„"(p,s) for every
power n.

The computer-simulation data is given in the
form PPlp 1=Z„'"—(y„) or

P~U„(y„)=—Z„'"(y„),
n

where l3=(ksT} '. The excess entropy is obtained

by

'"( )
s = =—Z„'"(y„)—J dx,

/kg n o x

and this relation can be inverted to yield y„(s). Fi-
nally,

n/3

U„"(p',s) =—Z„'"(y„)
n

" " y„(s)

—= U„'(.)p""" .

The melting transition is characterized by the
values sL"', ss"' on the liquid (L) and solid (S) side
of the transition. The liquid and solid densities are
given by (see Table I)

e(n) (n) e 3/n
pL ——y„(sL, )T„

e(n) (n) e 3/n
ps =yn (ss }Tn

and the melting curve is

whe~e P*=Po /e is the reduced pressure and the
index M denotes "melting. " Given the combina-

tion

P(r;p) =eg a„(p)(o Ir)", (10)

the additive EOS [Eq. (9)] yields

U"(p,s) =e Q a„(p)U„(s)p*"~' .

are given, is the following.
From the thermodynamic identity,

T=[BU"(p,s)/Bs]&, we obtain
' n/3

T =pa„(p)
y„(s)

(12)

Choose a particular isotherm Tn and solve Eq. (12)
for p"' for any given s". Define
I'n'=p"'IT' ". I.et 0 stand for either UITn or
F'"/Xks T (the excess free energy) and let O„be
the corresponding quantity for the inverse nth
power potential. From Eqs. (11) and (12) we get

i) n/3

0(p"', T') = g a„O„(y„") (,.) ~ (13)

Relation (13) also holds for 0 =13P/p 1 if the-
coefficients u„are density independent. The melt-
ing characteristics for a given isotherm T, i.e., pl,
pq, Sl, sq are obtained by imposing thermal

Ps
&n

y„(ss)

n/3

= ga„
y„(sq )

' n/3

Equation (11}together with standard thermo-
dynamic relations provide a complete EOS for the
potential ()}. A routine that is useful for construct-
ing the EOS in table form once the tables

Iy„(s")=y„"',i =1,2, ...,qI

pn( ) [I+Zex( ( n)))] (
n )T l nn+

= [I+Z,'"(y, (s'"') )]y„(s'"')T„"'+' ", mechanical

(14a)

g a„[1+Z„'"(y„(sl.))]y„(sr, )

1+n/3
= g an [1+Z„'"(y„(ss))]yn{ss)

y„(ss)

' 1+n/3
(14b)

and chemical equilibrium
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TABLE I. Data for inverse power potentials. For the meaning of the various quantities, see the text.

Cn D„ (n)—Sg
(I)

y (s (1l))/i/2 y (s (II))/i/2 ~(n)CEinstein CLD
(n)

CMC

4

9
12

7.9811
3.6135
2.2084
1.5165

18.2109
32.0045
51.7646
66.3243

4.00
3.68
3.64
3.85

4.79
4.42
4.45
4.71

3.92
1.54
0.943
0.814

3.94
1.56
0.971
0.844

—1.789 0.513
—2.635 0.437
—3.356 0.374
—3.738 0.340

—1.276
—2.198
—2.982
—3.398

—1.354
—2.283
—3.024
—3.651

' n/3

g a„sl +—Z„'"(y„(sL ))+lny„(sL )+In3 pL. pl.
n yn sl,

= g a„ss+—Z„'"(y„(ss))+lny„(ss)+ln
n

between the liquid (L) and solid (S) phases.

T

ps
y„(ss)

ps
y„(ss)

' n/3

(14c)

IV. FLUID: THE LENNARD-JONES SYSTEM
AS A BENCHMARK EXAMPLE

m —1

Z„'"(y„)= g B "'y„'+mc„y„

6 (m2+m —1)/(m+1)
yn

where the B "'s are the exact first m —1 virial
coefficients, C„y„ is the fcc static-lattice energy,
and G is the only free parameter of the fit. We
obtain

(15)

The equations of state for the state (n & 12) in-
verse power fluids reveal various universal charac-
teristics that enable accurate interpolations between
existing computers-simulation data. In particular
we mention the scaling via the Einstein frequen-

cy, ' the universal form of the EOS in strong cou-
pling, ' ' and the facts that the entropy change
across the melting transition, as well as the excess
entropy on the liquid side of the transition, are
nearly the same for all n. ' Modified HNC calcu-
lations' aimed at extending the existing MC data
for other powers n are underway.

During the course of fitting MC data we found
a very simple and highly accurate fit for those
cases for which n f3=m=integer:

Z i 2(y) =2.5664y +3.7908y'+ 3.5282y 3

—3.1508y +6.0660y4,

—z = 1.9248y +0.9477y +0.2940y

—0.041 55y ',
(18a)

(18b)
for n=12.

A benchmark test for the accuracy of the addi-
tive EOS [Eq. (9}]is provided by the Lennard-

Jones (LJ) potential
12 ' 6

0 0'
/LE(r) =4@ (19)

Using the procedure outlined in Sec. III together
with the EOS for the inverse 6 and 12 power po-
tentials given by Eqs. (16) and (18) above, we ob-
tain the results summarized in Figs. 1 —3 and in
Tables II—IV. Except for the region defined

roughly by temperatures below the critical tem-
perature (Tc Li-1.36) and densities below the criti-
cal density (pc i&=0.36), the additive EOS agrees
with the MC data ' for the LJ system to within
their statistical error. '

—s =1.8906y+0.7126y —0.06973y ', (17b)

for n =9, and

Z6"(y) =3.7124y —0.9944y / +7.2270y

—s =1.8562y —0.09944y /

for n=6,

Z',"(y)=2.8359y+4.2756y

—2.2999y ' +6.6252y

(16a}

(16b)

(17a)

V. SOLID

A.. The standard Griineisen theory

The Gruneisen EOS for solids is given by

P(p, T)=Pa(p)+P, „(p,T), (20)
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FIG. 1. Excess entropy as function of reduced densi-

ty and reduced temperature for the Lennard-Jones fluid.

The curves are the results of the present method and the

points represent the Monte Carlo (Ref. 18) data. The
diamond symbols represent the fluid side of the fluid-

solid transition.
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FIG. 3. Excess energy U/Nk&T as function of
reduced density and reduced temperature for the
Lennard-Jones fluid. See caption to Fig. 1.

"free volume" (m =2) can be summarized by2'

P,h(p, T)=yg(p)pE, h(p, T), (21) yg(p) =—,yg(p)+ —, , (22)

where Po(p) =p (8/Bp) Uo(p} is the pressure at
zero temperature ( the "cold" pressure), P,h and

E,h are, respectively, the thermal pressure and en-

ergy including the ideal-gas contribution plus that
of lattice vibrations. The most commonly used ex-
pressions for the Gruneisen parameter yg, namely,
the Slater (m =0), Dugdale-McDonald (m =1), and

with

yg(p) = a

ln p2m/3 [Po(p)p
—2m/3]8

Bp
(23)

20

20 T* = 100'

For a classical harmonic solid E,h ——3T, so that the
excess energy (without the ideal-gas contribution) is

E =Uo(p}+ 2T ~

15
and the excess pressure is given by

P =Pp(p)+ , ygpT . — (25)

10 Integrating Eqs. (25) and inserting in Eq. (24) we

obtain

s'
=S

Nkg

9'

o o /
'' 0

Q
I

0.5
I

1.0 1.5

p* p3
V

I

2.0
I

2. 5

=
2 InT —

2 J yg(p}d lnp+g,

U (p,s)= UG(p)

+ —, exp —,(s —C)

(26)

FIG. 2. Compressibility factor PV/Nk&T as function
of reduced density and reduced temperature for the
Lennard-Jones Quid. See caption to Fig. 1.

+ f yg(p)dlnp, (27)

where the integral over yg is indefinite and all in-
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TABLE II. Compressibility factor Z =PV/Nk&T, excess internal energy u = U/Nk&T,
and excess entropy s = —S /Nk&, on the isotherms T*=0.75 and 1.15 for the Lennard-
Jones fluid. Columns 2—4'. exact Monte Carlo computations (Ref. 18). Columns 5 —7:
"additivity" approximation.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.84

0.23
—0.29
—0.78
—1.20
—1.69
—2.05
—1.71
—0.53
+ 0.37

—1.53
—2.53
—3.44
—4.28
—4.97
—5.81
—6.76
—7.71
—8.05

T*=0.75
0.73
1.05
1.34
1.60
1.75
2.08
2.59
3.24
3.52

0.53
—0.10
—0.84
—1.61
—2.24
—2.51
—2.15
—0.81
+ 0.10

—0.64
—1.39
—2.26
—3.25
—4.32
—5.45
—6.56
—7.58
—7.95

0.20
0.44
0.74
1.08
1.50
2.00
2.59
3.27
3.57

0.1

0.2
0.3
0.4
0.5
0.6
0.65
0.75
0.85
0.92

0.61
0.35
0.12

—0.09
—0.13

0.07
0.31
1.17
2.86
4.72

—0.75
—1.35
—1.95
—2.48
—3.02
—3.60
—3.87
—4.46
—4.93
—5.18

T*=1.15

0.37
0.62
0.90
1.14
1.43
1.82
2.03
2.57
3.15
3.62

0.77
0.46
0.11

—0.20
—0.37
—0.25
—0.02
—0.91

2.67
4.53

—0.41
—0.88
—1.43
—2.05
—2.71
—3.39
—3.73
—4.35
—4.87
—5.13

0.19
0.42
0.69
1.01
1.38
1.81
2.05
2.59
3.19
3.65

'See Tables VI and VII in Verlet and Weis, Phys. Rev. A 5, 939 (1972).

tegration constants are absorbed in the universal
constant C. With the standard expressions (23) we
now get

UG'(p, s}=Uo(p}

+ 3 2m/3 [P (p)
—2m/3

P

B. Generalized Gruneisen EOS

Using the idea of additivity of equations of state
[Eq. (9)] and the inverse power potentials as a basis
set, we may generalize the Griineisen EOS by treat-
ing the inverse power soHds in the harmonic ap-
proximation. A general expression for an harmon-
ic inverse power solid is

&(exp[ —,(s —C)] . (2g) s= n
lny +C()

g (29)

Note that this expression is additive, i.e., if

Uo(p}= g aI Uo;(p)

where the constants C'"' depend on the specific
mode of approximation (see below). If the zero
isotherm is represented as a linear combination of
inverse power-lattice sums,

then

UG'(p, s)= g a; UG I(p,s),
U (p)= ga„(C„p" '}

and the standard Gruneisen theory obeys Eq. (9).
then Eqs. (9) and (29) yield a generalized
Gruneisen form
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TABLE III. Compressibility factor Z =I'V/Nk&T, excess internal energy u = U/Nk&T,
and excess entropy s =—s /Nk&, on the isotherms T~=1.35 and 2.74 for the Lennard-Jones
fluid. Columns 2—4: exact Monte Carlo computations (Ref. 18). Columns 5 —7: additivi-

ty approximation.

Sg

0.1
0.2
0.3
0.4
0.5
0.55
0.70
0.80
0.90
0.95

0.72
0.50
0.35
0.27
0.30
0.41
1.17
2.42
4.58
6.32

—0.58
—1.12
—1.55
—2.04
—2.50
—2.74
—3.47
—3.89
—4.19
—4.23

T~=1.35
0.29
0.56
0.75
1.04
1.34
1.52
2.18
2.70
3.28
3.56

0.83
0.61
0.37
0.18
0.12
0.19
0.98
2.25
4.38
5.82

—0.35
—0.75
—1.21
—1.72
—2.27
—2.55
—3.35
—3.81
—4.15
—4.25

0.19
0.41
0.68
0.98
1.34
1.53
2.21
2.74
3.33
3.66

0.1
0.2
0.3
0.4
0.55
0.70
0.80
0.90
1.00
1.08

0.97
0.99
1.04
1.20
1.65
2.64
3.60
5.14
7.39
9.58

—0.22
—0.44
—0.65
—0.86
—1.17
—1.42
—1.56
—1.61
—1.53
—1.39

T*=2.74

0.19
0.39
0.60
0.85
1.23
1.79
2.21
2.65
3.11
3.55

1.02
1.04
1.08
1.20
1.60
2.52
3.57
5.10
7.22
9.48

—0.16
—0.34
—0.54
—0.76
—1.09
—1.38
—1.S1
—1.57
—1.52
—1.38

0.17
0.37
0.59
0.85
1.30
1.82
2.22
2.67
3.15
3.57

'See Table VIII and IX in Verlet and leis, Phys. Rev. A 5, 939 (1972).

s = —, lnT ——, ln g u„p"~ exp( ——,C'"')
n

U(s)(~ &) g & (C ~n/3)

(30)

does not affect y~ =(8 inT/8 lnp)„and Eqs. (30)
and (31) remain the same provided we change s to
s+C.

Other possiblities to determine the constants C'"'
are considered below and the general validity of
the additive EOS is demonstrated.

Xexp( —,s) . (31)

The accuracy of these equations of state depends
on the constants C'"'. The standard expressions
(23) employ

C( ) ln C2 "3 3 3

m =0, 1,2. (32)

Note that adding the same constant C to each C'"'

C. Lattice dynamics, Einstein approximation,
and Debye-type models

The lattice dynamics (LD) calculations, in the
harmonic approximation, consist of truncating a
Taylor expansion of the lattice potential energy
after the quadratic terms in the particle displace-
ments. By changing to normal-mode coordinates
the quasiharmonic Hamiltonian can be written as a
sum of 3N —3 independent harmonic oscillator
Hamiltonians. Denote by v; the frequency of the
normal mode i (co; =2nv;), M is the ma.ss of the
particle, and let

3)V —3

(f(v))= g f(v;)
i=1
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TABLE IV. Compressibility factor Z =PV/Nk~T, excess internal energy u = U/Nk&T,
and excess entropy S=—S /Nk&, on the isotherms T~=5, 20, and 100 for the Lennard-

Jones fluid. Columns 2—4: "exact" ' Monte Carlo computations (Ref. 18). Columns 5—7:
additivity approximation.

Z Zg S,

0.2
0.5
0.666
1

1.279

1.169
1.867
2.628
6.336

13.44

—0.202
—0.474
—0.584
—0.456

0.435

T~=5
0.318
0.962
1.418
2.570
3.796

1.198
1.855
2.670
6.402

13.31

—0.157
—0.424
—0.535
—0.415

0.420

0.333
0.987
1.442
2.586
3.800

0.2
0.4
0.666
1

1.333
1.765

1.270
1.667
2.508
4.458
7.999

16.68

—0.005
+ 0.009

0.083
0.348
0.942
2.65

T*=20

0.255
0.531
0.982
1.656
2.499
3.822

1.278
1.682
2.527
4.471
8.039

16.62

0.005
0.025
0.100
0.362
0.968
2.64

0.250
0.539
0.987
1.676
2.509
3.829

0.2
0.5
1

1.4
2
2.222
2.38
2.5

1.221
1.675
2.95
4.76
9.50

12.10
14.46
16.29

0.036
0.115
0.361
0.734
1.767
2.346
2.887
3.304

T~= 100
0.173
0.468
1.029
1.580
2.590
3.036
3.336
3.620

1.225
1.685
2.97
4.75
9.51

12.17
14.47
16.45

0.038
1.121
0.369
0.736
1.775
2.375
2.896
3.348

0.173
0.462
1.039
1.594
2.599
3.028
3.352
3.611

'See Table IV in Hansen's paper (Ref. 18).

for any function of the frequencies. In particular,
define the Einstein frequency vE by

distribution,

(f(v') )E;..g...=f(vz) (37)
vs ——(v'& . (33)

where

sE
=SLD SEjnstejn+~ ~

kB LD

2m~E
Einstein 2 T 2 2/3p'"

(34)

(35)

with C = —, ln2~+ —,, is the result of the Einstein

approximation, and the "correction" is

6=3 ln
ru~

)
(36)

In the Einstein approximation for the frequency

The excess entropy per particle in the LD harmon-
ic approximations is'*'

for any function f.
For the inverse power potentials,

2

p'" , n (n ——1)C„+~"~=—2y()~ D„p"

where D„ is the force constant. Lattice dynamics
calculations' provide the "corrections" 5„. The
constants C'"' from the LD and Einstein approxi-
mation are given by

CLD=CE;„'„„„+6„,and numerical values for fcc
solids are presented in Table I.

Consider the case when the pair potential is a
linear combination of inverse powers,
P(r) =e g„a„(crlr )". For every normal mode i
we have v; = g„a„vI"' and in particular
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v@——g„a„vE W. ithin LD in the harmonic ap-

proximation, the additive EOS, i.e., Eqs. (30) and

(31},is equivalent to the additional requirement

(38)

The equality (38) is, of course, satisfied by the Ein-
stein approximation and we expect it to be accurate
in general. For the LJ system near the triple-
point-density, namely, 1/p~=0. 972, 0.997, 1.032,
exact LD calculations' give yg

——3.10, 3.18, 3.30,
respectively, while from Eqs. (30) and (31), with

Cqz we obtain 3.08, 3.15, and 3.26 as a demonstra-

tion of the accuracy of the additive EOS within

LD. Just for comparison, the corresponding re-

sults with CEInsteln are 3.17, 3.26, and 3.39.
Consider normalized frequency distribution of

the type
T

g(v) + & +max
G(v) = F(vmax)

&& &max

V

where F(v)= g(v)dv, lim, 0[f(v)lnv]=0, and
0v,„ is a characteristic Debye-type frequency obey-

ing v,„=g„a„v'",'„. Equation (38), i.e., additivi-

ty of EOS within LD, is exact provided

max
F(v) =const .F(v,„) V

That is the case for g (v) =v (q )0) where
"const" =1/(1+q) and in particular for the Debye
model q=2.

A study of the frequency distribution, for dif-
ferent potentials in order to identify those particu-
lar features that lead to the general validity of Eq.
(38), is currently underway. In general, the scaled
spectrum G(v/v), where V is some characteristic
Debye-type frequency, plays a role similar to that
of the pair function for fiuids. Just as the univer-

sality of the pair functions, g(rp'~;s), the univer-

sality of the scaled spectrum, G(v/v), will lead to
additivity [i.e., Eq. (38)].

D. Computer simulations: the LJ system
as a benchmark example

The computer-simulation data for the inverse
power potentials (n & 12) are well satisfied by an
expression of the form of Eq. (29) and in order to
minimize the relative errors in the total pressure
and excess entropy we determine the constants

AiT ——exp[ —,(C' ' —C" ')] . (40)

Numerically, we get ALJ ——1.399, 1.559, 1.847,
2.072, 2.211, and 2.493 for m=0, 1,2, [Eq. (23)],
the Einstein approximation, LD, and MC values

for C'"', respectively. The MC data for the LJ sys-
tem' feature only 10% deviations from harmonici-

ty near the melting transition for T~ & 3, i.e., for
low solid densities: UtI, -1.35 T vs 1.5 T for an
harmonic solid. Defining yg ——Pti, /pUf, and

using the representation (39) to obtain ALi from
the MC data, we find that, to within about 2%,
A Li ——2.35 for all densities for which MC data is
available. This value for ALJ falls midway between
the results (40} with Ci",D and CMC. Considering
the above 10% deviations from harmonicity, our
predictions for the pressure should be compared
via A -=2.35(1.5/1.35)=2.61, which is much closer
to the result (40) with CMC than that with CLD.
Thus the additive EOS with the CMC predicts the
MC results for the total pressure of LJ solid to
better than 1%. The 10%%uo error in the harmonic
prediction for U,q decreases with increasing densi-

ty, and anyway is equivalent to about 1% error for
the total excess energy. Finally, the accuracy of
the additive EOS is also exhibited when consider-
ing the excess entropies; e.g., for T~=1.35 and
p*=1.05 (near melting) the MC result is
s = —4.913 and from Eq. (30) with CMC we get
s =—4.892. The overall accuracy of Eqs. (30) and
(31) with CMC is about 1% for the LJ solid, within
the statistical error of the MC data.

VI. MELTING TRANSITION: ADDITIVITY
OF MELTING CURVES

The accurate EOS obtained from Eq. (11) for
both the fluid and solid phases, especially near the
melting transition, ensures good predictions for the

CMc from the Monte Carlo data at the melting
density: CMC —ss+n/21ny„(ss) .From Table I
we find that the difference C~~ —CMc remains
practically the same (-0.08) for n & 9 and only for
steeper potentials it becomes larger (i.e., -0.20 for
n= 12). This difference will manifest itself in the
calculated yz for the LJ system. For the LJ sys-
tem, the generalized Griineisen EOS [Eqs. (30) and
(31)] as obtained from "additivity" yields

ra=4+ 2

ALJp —1
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melting characteristics through Eqs. (14). Instead
of an exact numerical solution for the LJ system,
we find it more instructive to analyze the predic-
tions of Eq. (11) in order to find an approximate
solution that is both accurate and general.

First observe that the MC results (Table I) for
the melting characteristics of the relatively soft
(n & 12) inverse power potentials reveal that sL"'

and sq"' are nearly n independent, and that

TM (p ) g +' ~M (ps ) (41)

Psr(Ps ) g rsvp(Ps ) (42)

Psr'(ps) describes the melting temperature and
pressure as functions of the melting density. Addi-
tivity of melting curves predicts that the melting
temperature and pressure, Tsr(ps), PM(ps), for the
potential P are given by

1( () 4 104 .
y»(sr'» )

Note that any separate "component" n in Eqs. (14)
satisfies these equations provided we take the par-
ticular sL,

"' and sq"' and maintain

p, y„(ss )
(n)

(n)
PL y» (SL )

Let no be the largest n appearing in Eqs. (14), i.e.,
no 12 fo——r the LJ system. The exact large-T» lim-
it solution for Eqs. (14) is given by ps/PL =c5„

(np) (np)
and sL, ——sL, ', sz ——sq

' while c is to be determined
from Eq. (12). However, in view of the above two
features of the inverse power-melting transition,
this asymptotic large-T solution will satisfy Eqs.
(14) for each n separately to about 2%, and the
closer n is to no the better is the "no solution" for
the particular component n. Detailed inspection of
the no solution reveals that it is an excellent first-
order solution of Eqs. (14) and (12) for any value
of T*: Near the melting transition for any inverse
power potential the relative error in the value of y„
is related to the error in s by 5y„/y„2/n5s -De-.
viations among the sz"'s and ss"'s are in order of
0.1 making the relative shift 5y„/y„of order (or
less than) 5%, but the resultant changes are similar
on both sides of Eqs. (14) and cancel.

An approximate description of the melting tem-
perature and pressure, along the fluid and solid
sides of the transition of accuracy comparable with
the no solution described above, is obtained by tak-
ing for each component n on the right- (left-) hand
side of Eqs. (14), the value sL (or ss) corresponding
to the value appropriate for the transition for that
particular inverse nth power potential, i.e.,
sL ——sL"'(ss ——ss"'). This approximate solution,
which would have been the exact solution of Eqs.
(14}if sz and ss were universal constants, describes
"additivity of melting curves, " since the liquidus
(L) and solidus (g are features as lines of constant
excess entropies. Let P(r)= g,. a;P;(r) be a linear
combination of potentials P; for which TM'(ps),

0.844' 2
ps

1.56~2

along the melting line which is expected to be also
a line nearly constant s (i.e., ss). Thus we expect

8 lnT~
}G= =4+

B lnps QP2 —1

with

A = ' =2.398 .1.56

2X0.844'

This value for A is consistent with that obtained
from the MC data.

The apparent validity of additivity of melting
curves also in two dimensions (2D), indicates that
the additive EOS [i.e., Eq. (9)] holds in two dimen-
sions (2D). Extension of the computer-simulation
data25 for the 2D LJ and soft-sphere (r ' poten-
tial} system and the generation of similar data for
the r potential, could provide a benchmark test
of Eq. (9) in two dimensions.

and two similar equations hold also for PL, . A
measure of the accuracy of this description is pro-
vided by the discrepancy between the functions
PM(TM) as obtained from the pL and ps melting
equations. The triple point is characterized by
~M =0

The concept of additivity of melting curves has
been derived ' some years ago by approaches
closely related to the one employed here and its ac-
curacy as demonstrated by many examples pro-
vides an additional check on the validity of the ad-
ditive EOS. As a matter of fact, the concept of
additivity of melting curves proved to be more ac-
curate than could have been expected on the basis
of these earlier deviations, while its accuracy is
compatible with our analysis based on the additive
EOS.

A consistency check for the LJ system can be
constructed as follows. Additivity of melting
curves yields

4
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VII. SUMMARY AND CONCLUSIONS

Using the variational fitting procedure, we gave
a new interpretation to a large number of pub-
lished variational perturbation calculations, to find
the universality of the fitting functions. It is ex-

pected that a single soft-core potential may pro-
vide, by a first-order variational calculation via the
Gibbs-Bogoliubov inequality, the EOS for any oth-
er soft-core potential to an accuracy comparable
with that of the simulations [the crucial step is to
make the jump in fitting function space from
5So(rl)=0 for hard spheres, to 5So(i))=some
universal function for soft spheres and other soft-
core potentials]. The assumption of universality of
the VFP fitting functions leads to additivity of
equations of state when these are expressed in
terms of the density and excess entropy as the in-

dependent variables. This offers a powerful tool in
EOS calculations (similar to variational quantum-
mechanical calculations): Knowing the EOS for a
"basis set" of potentials and expanding (fitting) a
given pair potential as a linear combination of
functions (potentials) belonging to the basis set, a
highly accurate EOS for the given potential can be
obtained very easily. In fact, all the results
presented in this work were obtained with a simple
desk calculator. Two equally good fits of a given
potential by different basis potentials should pro-
duce equally accurate equations of state, the
discrepancies between which should give an idea
about the quality of each. The first (fitting) stage
of the calculation can be performed with any (ex-
perimental) data for the given potential (material)

which is expected to be additive in (effective) pair-
potential contributions and in particular the zero-
temperature isotherm. A benchmark test of the
accuracy of the statistical mechanical stage of the
calculation is provided by the computer-simulation

data for the r ', r, and LJ potentials, with very
encouraging results. Analysis of the EOS of sim-

ple classical solids in the harmonic approximation
shows in a simple analytical manner how the ap-
proximation of additivity of equations of state im-

proves upon standard theories. Finally, it was
shown how the known melting characteristics for
the inverse power potentials, together with an ap-
proximate solution of the solid-fluid equilibrium

equations for the additivity model, give rise to a
simple and accurate description of the melting
characteristics for soft-core potentials in terms of
those for inverse power potentials. There are
favorable indications for the validity of the above

new methods in two dimensions as well.

Pending further analysis and tests, we may
nevertheless conclude from the results of the
present work that the method based on additivity
of equations of state gives a new and powerful ap-

proach to equation-of-state calculations.
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