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An equation of state for D-dimensional v-component classical plasmas that interpolates
very effectively between the “Debye-Huckle” and “ion-sphere” limits is derived. Exten-
sive analysis for three-dimensional (D =3) two-component (v=2) plasmas is presented.

I. INTRODUCTION

Very effective exact lower bounds for the corre-
lation (internal) energy of classical D-dimensional
one-component plasmas have been obtained recent-
ly! by combining the Ewald hybrid expression for
the correlation energy (with optimized auxiliary
functions) with Mermin’s inequality for the struc-
ture factor. The optimized Ewald auxiliary func-
tions describe the interaction energy between two
uniformly charged D-dimensional spheres at dis-
tance r, and play a key role for strongly coupled
plasmas. Here we use a similar approach to derive
a new approximate equation of state for plasma
mixtures which is adequate for arbitrary values of
the plasma coupling parameter, and should be use-
ful for applications.

The classical multicomponent plasma is a D-
dimensional v-component system of charges Q;e,
concentrations x; =N; /N, total ion number density
n =N/V, at a given temperature B=(kzT)~!, im-
bedded in a uniform neutralizing background of
charge density —p, = —ne{Q) (the notation used
is (Q°)=3,x;Q/) and interacting via the D-
dimensional Coulomb potentials

u,-j(r)=Q,~Qjez¢D(r) ’

where ¢ (r) is the solution of the D-dimensional
Poisson equation.>~* Define the plasma coupling
parameter yp =[3e 2a%5P, where aws is the D-
dimensional ion-sphere (Wigner-Seitz) radius, and
denote the one-component plasma (OCP) correla-
tion energy per ion (in temperature units) by
(BU/Nocp) =u3le(¥p)-

Exact lower bounds for the correlation energy of
the mixture are given by the results of the Debye-
Huckle’ (DH) and ion-sphere®’ (IS) approxima-
tions:

BU
N

(D) _

mix —

(D) (D)
2> U mix, DH> ¥ mix,IS - (1

mix

26

The DH result is effective for weak coupling

(vp << 1) while the IS result is effective for strong
coupling (yp >>1). For D=3 and with the usual
notation y3=I" we have

(3) ‘/3

umix,DH:_—z_(F<q2>3/2

and
Ui 15 = -%F<Q>I/S<Qm> .

The weak- and strong-coupling limits are thus
represented by a “one-fluid” equation of state
(EOS):

ugrll)i));, one fluid =u(Olzj)P(7/DQ§ff) ’ (2)
with
Q% pu=(Q?%) foryp>>1
Qs =(Q)1=2P(Q*2/P) for yp>>1”

A one-fluid EOS for strong coupling, with Q. 15,
was derived by assuming a scaled form for the
Ornstein-Zernike direct correlation functions.?

Numerical data in 3D, from the solution of the
hypernetted chain (HNC) equations and from
Monte Carlo (MC) simulations, have shown that
the excess free energy of mixing at constant charge
density (i.e., constant I'=T"(Q)!/? in 3D) is very
small for strongly coupled plasmas. By assuming
that it is zero one obtains an EOS which is better
than the one-fluid EOS for strong coupling. The
result, termed the “linear law,” reads’

U3y tinear = 3, Xi 60 (T Q)1 2Q77) 3)
i

2
Q=

In this paper we derive an EOS for plasma mix-
tures which is nearly as accurate as (3) for strong
coupling (i.e., much better than the one-fluid EOS),
gives the IS and DH results in the appropriate lim-
its, and, in general, interpolates very well between
these limits.
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In Sec. II we display the main features of the analysis of the EOS for 3D-plasma mixtures is
“Ewald hybrid” approach for the plasma correla- presented in Sec. V where, in particular, results for
tion energy, while the best available exact lower the two-component plasma are reviewed and used
bounds are derived in Sec. III. The new approxi- to further test the validity of the new approximate
mate EOS is derived in Sec. IV and is tested EOS. Some concluding remarks are contained in
against MC and HNC data in 3D. Detailed Sec. IV.

II. EWALD HYBRID EXPRESSIONS FOR THE CORRELATION ENERGY

A useful approach for understanding the equation of state for plasmas is based on scaling arguments ap-
plied in the context of the Ewald hybrid expression for the correlation (internal) energy.” L8 et 6, j(r) be ar-
bitrary functions for which the Fourier transforms 6; ;j(k) exist, then the correlation energy can be written in
the following form:

u=B[0]+W,[g,0]+W,[S,0] , 4
where

B[0]=—3n3 x;x; [ [65(r)+Be?QiQ;dp(N)dT+52m) 23 x; [ B;(k)dk 5)

ij i
Wilg,01=5n3 xix; [ 8;(r[6;(r)+Be’Qi0;¢,(r1dT ©)
ij

and

W,l8,01=5(2m) P (x;x)'2 [ 5;(K)[ —8;(k)]dK (7)

ij

while S;; (k) denotes the structure factors related to the pair functions 4;;(1)=g;(T)—1 by
Sij(E)"—‘aij +n(xixj)1/2Ej(E) . (8)

A good description of the equation of state in the strong-coupling regime will be given by u~B[6], provid-
ed 6;;(r)= c,,(r) where c;;(r) denotes the direct correlatlon functions. The result obtained with 6,;(r)=c;;(r)
and by assuming W;[g,c]=0, namely: ugmusa =B[c] +% 5 » has been termed the “generalized mean-spherical

approximation” (GMSA).!® Choosing the functions 6,;(r) such that W[g,6]>0 and W,[S,6]>0 we obtain
an exact lower bound BU/N > B[0]. The best such bound’ is the IS result obtained by the choice

O(IS)(I' BlpED)(r) 9)

where 1/1”) ) is the electrostatic interaction energy between two uniformly charged D-dimensional balls of total
charge Q;e and radii d; [the balls are denoted b (d;)]:

U= [0y d% [y, @V i1 Z Doy Y =F p( | 3=, (10
where
pi if 0 <d;
pil@)= g if o>d; (1D

while p; =Q;e (volume of the /> ball), and all distances are scaled by aws. The most important features of
(9), from the standpoint of the equation of state for the mixture, are! (i) the separation of the components

B[— Br/f]-—n)apzx. D=2\ 9)gar+2% Q2d2 -P (12)

where ap is the IS “Madelung constant” (e.g., a3=1%), and (ii) the scaling property
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WP(r)=0Ped? PyiRp(r /d;)

(13)

where d2~Py{2%(r /d) is the function [Eq. (10)] for identical balls of radius d and until total charge.

III. EXACT LOWER BOUNDS FOR THE CORRELATION ENERGY

Using Mermin’s inequality® for the structure factor of the OCP,
S(K) > Sppa(k)=[1+np(k)]",
one obtains the following exact lower bound:
uoep > B[ —BYoce]+ Wil Srea, — Blole] = BWz OCP -
The scaling property of ¢ leads to the following result:

BW(z’D())CP(’)/D,d)= —%¥p |ap D2 d2+d2—DFD(M)

where A=(kpgaws)="V Dyp and

wk (xy)
Fpx)=5(2m)~2x® [ —D/z),,—ifyTtlfg’c)p(y)dy,

while

Kp/—1(Ar)= }LD” 1f0 k2+A2JD/2(kr)dk

and Jp »(x) is the Bessel function.

The “best” bound is obtained by maximizing BWP) with respect to d,

3BW5oce (vp,d)
od

d=dy; ocp

or

dD+‘za_D<%”—T>[FD N2=D)+ADIFG (A1 d=dyey 0, =0

to get dpest ocp(A), and finally

(14)

(15)

(16)

(17)

(18)

TABLE 1. Lower bounds for the correlation (internal) energy for the three-dimensional

one-component plasma, compared with Monte Carlo data.

Exact bounds

MC data Totsuji
r Ref. 14 DH IS Eq. (17) (Ref. 11)
0.1 —0.0258 —0.0274 —0.02692 —0.02693
0.5 —0.2383 —0.3062 —0.2655 —0.2669
1 —0.573 —0.8660 —0.6503 —0.6572
2 —1.320 —1.80 —1.4918 —1.518
4 —2.927 —3.60 —3.2451 —3.322
10 —7.992 —9.00 —8.6004 —8.854
15 —12.309 —13.50 —13.0853 —13.49
20 —16.668 —18.00 —17.5758 —18.14
100 —87.500 —90.00 —89.538 1 —92.55
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o ocp(Yp)=BWcp 7D dvest,ocp(M)] .

uf,es)t,ocp(yp) is an exact lower bound that interpolates between the DH bound (to which it equals for
vp << 1) and the IS bound (to which it equals for yp >> 1), which is effective for arbitrary values of yp.
Denoting G =(2d)~!, the 3D result is

3 .., 6 Vv3r
BW),0cp(T,G)=T | -G 2——5—6? < || (19)
where
f(x):1—1—2+3—2—1—259+3—(;e_"+1—240—e_"+—12?—e_". (20)
x x x x x
The results obtained by maximizing this lower bound are summarized in Table I.
Mermin’s inequality for plasma mixtures takes the form!!
— k2
> (xix)'%0:0;8;(k) >(Q*) —5———, (21)
ij i I k2 + A
where Ay =(Dyp{Q?))!/2 It is possible to use this inequality to obtain a rigorous bound like (16) by tak-
ing Q;;(r)= —-Q,-Qje2d 2=DyD)(r /d) (i.e., using essentially a single auxiliary function):
D -2
ugh>—vp |ap D ()Y d*+(QH)d* PFp(Apixd) | - (22)
The best such bound is determined by
1/D 1D
{0) d +—D—[(2—D)FD()» ix@) + (Amixd Fp(Apixd)]1=0
(Qz) 2aD(D—2) 'mix 1X ‘mix ’
and by comparison with (18) the solution is
172 1/D
drenmin= | AL i o0p [ |22
,mix — t, ’
st, mi (Q>2 S mix <Q>2
so that the best bound from (22) has the form
(0)2 2y1+42/D
e =~ 23 2% oce y% 23)

Note that the relation (23) between the bounds for the OCP and the mixture will be obtained for any auxili-
ary function with a scaled form d*>~26(r /d). Totsuji*!"!? tried various Ewald auxiliary functions that do
have that form but did not recognize the significance of both the functions ¢;; and the scaling property.

The bound (23) improves upon the bounds given by Totsuji!! and especially it does give the IS Madelung
constant for yp >> 1, but it fails to be effective in strong coupling due to the inadequate charge averaging,
ie, Q% =(Q)>~*P (Q*)*P. As discussed by Totsuji,'' the bound (23) gives the correct DH behavior for
vp << 1 and improves upon the DH and IS bounds in the region of weak and intermediate coupling.

IV. APPROXIMATE EQUATION OF STATE FOR PLASMA MIXTURES

The exact bound (23) suggests an approximate EOS for the mixture of the form

) _ Q) ) (g*)t+/p
mix (QZ) oce |VYp (Q)‘VD

The main deficiency of this OES is its failure to feature the IS charge averaging. A parametric representa-

(24)
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tion of the correlation energy via the Ewald hybrid expression will be able to interpolate between the DH
and IS limits, provided we retain the separation of components as featured by B[ —B¢] in Eq. (12). This
approach calls for a v-parameter fit (e.g., the v radii of the “balls”, for the case of a v-component plasma,
but scaling considerations and the separation of components lead to simplified results. At this stage we no
longer seek exact bounds but rather hints for an EOS for the mixture.

Consider the following parametric representation (i.e., approximation) for the correlation energy:

BW i =B[ —By]+ W,[Srea, —BY] , (25)
which, with the structure factors in the DH [i.e., random-phase-approximation (RPA)] limit,
2
_ Qi Q_] XixXs )1/2 )Vmix
1
( Q 2 ) ’ 2 + )‘Iznix

provides the analog of (15) for mixtures (without being an exact bound). After some algebra we get

SRPA,ij(k)'__Bt] 5 (26)

BWSD=—7p |ap Exz 2 (0)Qid?+ 3, QFd}PFp(Amind;)

1 27)~P 212 kxznix 1 - 2.7
3 inijinfm‘;[p,-(k)—pj(k)]dk. @7
ij mix

Note that if p;(k)=p;(k) for all i,j (that is all d;’s are equal) we retrieve the result (22). Thus, the “mixed”
term in (27) has a relatively small effect for weak and intermediate coupling. From the results for the OCP
(Table I) we see that, for strong coupling, the term W,[Sgpa,—Bv¥] produces only small changes on the re-
sults with B[ —f9] alone. In view of these observations we ignore the mixed term in (22) and remain with

a parameter representation in which the contribution of each component (i.e., parameter) is separate from
the others:

_ 2 -
Tyix = ~7D2 Xi ad (Q)Qid! +Qld}PFp(Aind;) (28)
The problem of maximizing this expression
By
’ j = l, MRS 29
0="%q, ' ' v (29)
reduces to that for a single component, and we obtain
1/D 1/D
d. _ Qi d }bm Ql
i,best ( Q ) best, OCP ix ( Q >

Note that d; =aws(Q; /{Q))!/? is the result of the “ion-sphere” model for the radius of the (charge neutral)
ion sphere around an ion of type i. Finally, the solution of (28) and (29) gives

2/D
umlxbest Zxx Ql(Q)“LIe)s)tOCP ?’D(Q>1/D(Q()QQ> ) (30)
r
where u{,le)s)t,ocp is the solution of (16) and (18). (0) (02)Q¥P
Note that as an approximate EOS for plasma mix- ol 2 2:4{Q D lyp{ QP = Y]
tures, Eq. (30) interpolates between the DH and IS (0% (@)
rigorous bounds. 31)
Denoting the excess free energy per ion by

(BF*/N)=f, then Eq. (30) suggest the following Computer simulation data and HNC results are
approximate relation between the EOS of the mix- available (in the literature) for binary ionic mix-

ture and that for the OCP: tures (two-component plasma) in 3D. For D =3
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TABLE II. Comparison of the HNC free and internal energies (Ref. 13) with the values
obtained by the linear law (2), and the new equations (28) and (29) for Q; =1, and various
values of Q,, T, and x,.

3627

0, r X ~func —flinear  —fnew  —UHNC  —MUiinear  —Unew
2 5 0.5 8.693 8.710 8.731 9.638 9.644 9.669
2 40 0.75 54911 54.933 55.049 57.438 57.441 57.514
301 075 15708 15956  1.599 18741  1.8854  1.904
3 10 0.75 20.854 20.9034 21.036 22.289 22.3005 22.406
3 10 0.5 37.111 37.1623 37.280 39.090 39.1005 39.191
3 10 0.25 55.280 55.3133 55.381 57.804 57.8091 57.859
8 16758 09 61025 62060 6317  6.6683  6.6964  6.825
8 4 0.95 8.5372 8.6191 8.833 9.2649 9.2812 9.469
8 4 0.9 15.573 15.701 15.960 16.546 16.573 16.791
8 10 0.95 22.750 22.848 23.282 24.019 24.040 24.338
Eq. (31) yields with
3 04Q) palehel”? W A;=—0.902165, B;=—0.599750,
mix=2xt (Q2> OoCP F(Q) (Q) ’
y A4,=0.295087, B,=0.847639,
32
42 A3=—0.050775, B;=1.003474 ,
2/3
(3) Q‘(Q) (3) 1732 % "=t (Q )Q
U mnix —Z X; uoce |T(Q) Q) for HNC,!* while for MC we use!*!’
(33) u3%p mc(T)=—0.89791T +0.952 77 !/*

The results of this approximate EOS for various
binary ionic mixtures in the strong-coupling re-
gime, for both MC and HNC, compared with
direct MC or HBC calculations (respectively), are
presented in Tables II and III. For the OCP EOS
we take the following fits:

4, + A,
(B,+I'? * B,+T

A3
( B3 + r)3/2

F3/2

3) _
uoce,unc(l)=

+ , (34)

—0.81765+0.18902I" 174 (35)

in the range I' > 1. We find that Eqs. (32) and (33)
are, in general, much more accurate than the one-
fluid EOS, and are neraly as accurate as the linear
law. Additional tests are provided in Sec. V.

V. DETAILED ANALYSIS FOR D =3

In this section we put on quantitative basis the
qualitative statement that the accuracy of the equa-

TABLE III. Comparison of Monte Carlo and HNC internal energies (Ref. 15) with the
values obtained by the linear law (2) and the new equation (29) for @, =1 and various values

of Q,, T, and x;.

Note that in all cases considered in this table the one-fluid equation of

state gives the same values for the internal energy, namely, u = —16.4985 for HNC and
—16.6273 for Monte Carlo.

HNC MC
Q2 r X1 —UHNC — Ulinear —Unew —Umc — Ulinear —Unew
2 12.0 0.75 16.5507 16.5564 16.5975 16.8813 16.6667 16.7115
2 8.3511 0.5 16.5503 16.5566 16.5900 16.6872 16.6659 16.7019
2 6.2936  0.25 16.5298 16.5344 16.5516 16.6706 16.6481 16.6664
10 1.0905 0.25 16.9232 16.9713 17.0924 17.0321 17.0613 17.1912
10 0.4768 0.5 16.7816 16.8205 16.8705 16.9033 16.9224 16.9821
10 0.2876  0.75 16.6376 16.6593 16.6765 16.7743 16.7766 16.7936
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tion of state for a (v+ 1)-component plasma is further test the accuracy of our new EOS, should
similar to the accuracy claimed for the screening prove useful for a proper interpretation of comput-
factors for nuclear reaction rates in v-component er simulation data.

plasmas. The analysis presented here in order to
A. General relations

The excess free energy per ion for a v-component plasma depends on v-independent variables, which in
view of the accuracy of the linear law are chosen to be I'=T(Q)! and {x;, i =1,..., v—1}:

BF“(V)

n =f(v)(r\”x1a---’xv—l)

(=f4) in short notations). The correlation energy

BU(V) _
N

af(v)

r or’

=u)(Tx1,. . %y 1)

Xppe e Xy

(=u(, in short notations). The OCP results are thus denoted by focp=/(1), #ocp=u*(1)- Various approxi-
mations like the one-fluid, linear (24), or (31) are written in a form which is symmetric in all concentations
x;, i =1,...,v, that is , the extra variable x, is included explicitly despite the fact that it depends on the

v—1

other via x,=1— " x;. Thus define the symmetric form

BFCX(V)

N =f?v)(rv’xi,' . "xv) ’

and note that

af fv)
ox,

af(v)
axi

af fv)
ax,‘

I, x5

(36)

I",xl-;éxj_ I",xj;éxv )
We shall use the notation 9f,,/3x; for

af(v)
axi

I",xj;é.x‘. )
The screening factor H,-(j"’(O)=lim,_,0[g,-j(r)e P (r)] can be also defined thermodynamically by the follow-
ing free-energy difference!.16:

HP0)=Nf{,)(T x4, . 0x,)

X*1 )
N1 N

—(N=Uf s | T+

L U, /S RN
N-1 N—-1"""I T N1 N1 TN

x,-+

where Q.1 =0Q;+Q; and x, . =1/(N —1). This relation can be written as
i"' af(sv+1) " af<sv+1>+ af(sv+1)_ af?(;v+1)
! ax,- ax,- ax]- axv+1

i=1
S
af(v+1)

axv+1

HPO0)=f3,) + lim [ -

37
= ox; ox; X,41—0

Q0,1 1=0;+0Q;

v 3f, afs, aff
=f<sv>—[2x,- af;.’ ]+ So Yoy
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Defining
v fhen | e
.U'(Qv,)—f(v) + lim lz Xi - av+ (38)
Xy417> i=1 X X1
|
we obtain a convenient and symmetric result for and
the symmetric forms for the EOS:
) W), ) Q
HiP0) =g+ 1)~k v, 9 1) =But” — By —F ) 755 » 43)
The chemical potential for an ion of type i in
the v—component plasma is given by where the total chemical potential is
B“(V) Nf(v) ) v
Brn= ExiB.UE'V) =fwm+ %”w) . (44)
i=1
afs 1 [ e '
= T30 7oy + o
! From (39) and (43) we finally obtain the following
Thus we have expression for the screening factors: .
af v (v
ax, B _B.u' (v) BI»L(V)"'B.U(V) ) lim . [B#v‘:}—-*-ll)] .
v+17>
Qi QV+1 =Ql' +Qf
“(ﬁﬂ(w—f(v))_-(Q) ) (41) @)
af ) — (Bl 0 _ g, The HNC energy equation of state is highly ac-
ax, Hy curate (see, e.g., Table II), and the chemical poten-
Q tials B/.L,V) (via the “energy” EOS) can be calculat-
{ v ed, in HNC, directly in terms of the structure
o —Brw) Q) (o) |’ “2) functions:
|
(V) zxj f h,J(r)[h,](r) c,](r ]err__3f lcu(r)_i_ QtQJ }r dr] , (46)

where r is in units of awg ( and thus n =3/4m).
Note, however, that HNC theory is thermodynami-
cally inconsistent and the result obtained from (45)
and (46) (which should be a very good approxima-
tion to the exact results) does not agree with the
direct structural definition of HNC theory,

[H{(0)]sne=—1—[c;;(0) Janc - (47)

The modified HNC (MHNC) theory, with the
hard-sphere (HS) bridge functions,®!"!3 does bring
the structural definition

[Hy(0)]manc= —1—[c;(0)Imnnc
—[Bi™(0)Imunc (48)

into agreement with the thermodynamic expression
(45), but small discrepancies should remain. As

discussed, however, in Ref. 17 the thermodynamic
definition (45) when evaluated with the EOS of the

f
MHNC theory is within the noise of the best avail-
able Monte Carlo calculations.

B. Binary ionic mixtures (v=2)

Let [',=T"Q/”* and I',=T"Q3"?, then the free
energy of the two-component plasma in the linear
approximation is

f(2),linear=xif(1)(rl)
+(1—x1)fm(l‘2) ’ (49)

and the small deviations from the linear law, Af,),
may be defined

Afay=f2)—f2),lincar - (50)

In the limits x; —0 or x,—0, the free energy of
the binary mixture is determined by the slopes at
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infinitely small dilutions p and p,:

fo(Tx)=Ff1)(T)+p1x,+0(x3)

) (51)
Ffo(Tx)=f1(T3)—pyx,+0(x7) ,
where
f2 Q
= — 1 1“ R ,
Pi le-rilo %, =p: |14 0,
(52)
af> Q
= i —_— | = r ,—
pr=limy o ox, P2 |12 0,

For Q, > Q, the slopes p; and p, are both positive,
and in the linear approximations are given by

—fi(Tp) .
(53)

(P 1 )linear = (Pz )linear =D Ef( 1 )( FZ )

Extensive HNC calculations!® yield always
Af2)>0, Apy=p;—p; >0, Ap;=p;—p,>0. The
high accuracy of the linear law is measured by

Ap,
— | <<l
P

and
Ap,
—|<<l1.
P2

The simplest Padé approximant for Af(,) with the
correct limiting behavior (51), namely,

Af (2),padé
2
X2 —X2
=(A,
P [(8p1—8p2) /Ao ),
is in remarkable agreement with the HNC results
for binary mixtures.”® For T'; > 1 we find from the

(54)

AHVY=H"(r =0;T))—H{jor (r =0;T) = — ’Pz

L

Fi;Q_=2

HNC data that Ap, =(Q,/Q,)Ap;, so that roughly

Xz—x% <A
1+0(Q,/01) —1]x, ~7P1

Af2)=(Apy)

Thus in HNC, the deviations from the linear law
for T'; > 1, have essentially the magnitude of Ap,
and a form with asymmetry characterized by
(Q,/Q;)—1. The maximum of Af(,) occurs at
about

_ (Q,/Q)V2—
=700,/00-1

with the value of

[(Qz/Q1)1/2 1°+1
[(Q,/Q1)—17?

which turns out to be roughly independent of
Q,/Q, for the same T';.

Of special significance in this context are the re-
sults for p; when Q,/Q; =2 [denoted p,(T;,
Q,/0Q1=2)]. In that case we have

(Af(2))max=(Apy)

’

FnQ —2]—f(1)

P 0,

—HY(r=0;T)), (55)

where H(r =0;T) is the screening factor for a
one-component plasma for '=T,. Recall that in
the linear approximation

Hiipear(r =0;T1)=2f;)(T)
—fy(25°1r)), (56)

and the correction to (56) is given by

2

rz;—Qi=2

=_—A (57)
D1 0,

—Ppi

Qi

Comparison with Eq. (54) and the discussion following it shows how the values of H''(r =0;T') and £ ;,(T")
practically determine the EOS of the two-component plasma [i.e., f(5)(T",x)].

The statement that

(Af(2) Monte carlo=(Af 2) Junc

(58)

is within the accuracy of the best computer simulation data available at present. Since the corrections Ap,
Af(y) are relatively small in strong couphng, results leaning on the linear law will be strongly affected in all
cases when one of the arguments, I'; =I'Q}/* > > 'y, where I'yy=170 is the value of the solid-fluid transition
for the OCP.



26 EQUATION OF STATE FOR MULTICOMPONENT CLASSICAL ... 3631

TABLE IV. (a) Slopes p; and p, (see text) of the free energy vs concentration curves in
the HNC approximation, at constant I, as function of I';=I"Q3”* and I',=1"Q3"*, for ion-
ic charge ratios Q,/Q=2. The HNC results are compared with the corresponding results
via the linear law (p;) and via the new equation of state (p1 newsP2new)- (b) Same as (a) for

0,/0,=8.
r, —P1 —P1,new —P1 I, —P2 —P2,new ' 4
(a)
0,/Q1=2
0.05 0.024 68 0.0247 0.02796 1 0.3563 0.3519 0.3455
0.2 0.1750 0.1774 0.1910 2 0.8391 0.8270 0.8206
1 1.3711 1.4137 1.4246 5 2.4390 2.4044 2.4078
2 3.0822 3.1822 3.1542 10 5.2589 5.1935 5.2176
5 8.5131 8.7665 8.6095 20 11.072 10.960 11.021
10 17.8398 18.2910 17.9551 40 22.925 22.745 22.863
20 36.795 37.532 36.930 60 34.897 34.668 34.830
40 75.107 76.234 75.258 80 46.931 46.660 46.860
60 113.634 115.049 113.792 120 71.102 70.764 71.024
100 190.966 192.829 191.140 160 95.353 94.962 95.273
(b)
0,/Q,1=2
0.05 0.5300 0.5456 0.7925 5 3.2215 3.1771 3.1573
0.2 3.4046 3.7077 42018 10 7.0755 6.9828 6.9711
0.4 8.0176 9.0053 9.1761 20 15.114 14.942 14.960
1 23.169 26.706 24.792 40 31.631 31.340 31.421
2 49.574 57.308 51.500 80 65.250 64.793 64.984
5 130.666 148.671 132.956 120 99.184 98.603 98.886

10 267.442 298.014 270.040 160  133.278 132.596 132.957

After this discussion we should be able to see the picture based on the new EOS [Eq. (32)], by considering
its predictions for p; and p,, namely,

2/3

—(Pz)new=‘g‘;‘f(1) | ) %l —f(l)(rz)-i'—g_;‘ %—ll[fm(rz)—um(rz)], (59)
2/3

i =g | T —gfj] l—fm<r1>+Q—f[%—1][fm<rn—um<m1. (60)

These, together with the results of the linear law and direct HNC calculations, are presented in Table IV.
Equation (32) is exact in the DH limit, is better than the linear law in the weak- and intermediate-coupling
regimes (I'; <1), and is of nearly the same accuracy of the linear law in the strong-coupling regime.

VI. CONCLUSIONS

From a purely formal point of view our results can be summarized as follows. Suppose that a very accu-
rate fit of the OCP internal energies can be obtained variationally by a one-parameter function:

uoce(vp,d)=—yp[Ad*+d*~PF ,(v/Dypd)],

ouoce(vp,d) _
Tocr¥p.2) =0, uoce,(¥p)=uocel?p,d(yp)],
od d=d

where the constant 4 and the functional form & p(x) serve as the fitting parameters. The accuracy of Eq.
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(32) suggests that the internal energies for the mixtures can be nearly equally well fitted by
Umix(Vp:{ di )= ~vp 2 % { A(Q)Qidl +Q/d} P F p[(DYp(Q*))/di1}

du mix

W d,-=‘71=0 » umix,ﬁtzumix(YDa{‘-{i}) ’

with the same constant 4 and the same functional form % p(x) as used for the OCP. We expect that ap-
propriately modified “fitting” functionals, obtained perhaps from the Ewals hybrid scheme, should prove
useful for studying electronic screening corrections for the OCP and, in particular, for plasma mixtures.
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