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Equation of state for multicomponent classical plasmas
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An equation of state for D-dimensional v-component classical plasmas that interpolates

very effectively between the "Debye-Huckle" and "ion-sphere" limits is derived. Exten-

sive analysis for three-dimensional (D =3) two-component (v=2) plasmas is presented.

I. INTRODUCTION

(D) PU
mix

mix

(D) (D)+ ~mix, DHs ~ mix, IS

Very effective exact lower bounds for the corre-
lation (internal) energy of classical D-dimensional
one-component plasmas have been obtained recent-
ly' by combining the Ewald hybrid expression for
the correlation energy (with optimized auxiliary
functions) with Mermin's inequality for the struc-
ture factor. The optimized Ewald auxiliary func-
tions describe the interaction energy between two
uniformly charged D-dimensional spheres at dis-
tance r, and play a key role for strongly coupled
plasmas. Here we use a similar approach to derive
a new approximate equation of state for plasma
mixtures which is adequate for arbitrary values of
the plasma coupling parameter, and should be use-
ful for applications.

The classical multicomponent plasma is a B-
dimensional v-component system of charges Q;e,
concentrations x; =Ã~lX, total ion number density
n =NlV, at a given temperature p=(kiiT) ', im-

bedded in a uniform neutralizing background of
charge density —

pb
—— ne (Q )—(the notation used

is (Q') =$,x;Q ) and interacting via the D
dimensional Coulomb potentials

u,,(r) =g; g, e'yD(r),

where pD(r) is the solution of the D-dimensional

Poisson equation. Define the plasma coupling
Parameter yD

——Pe aws, where aws is the D-
dimensional ion-sphere (Wigner-Seitz) radius, and

denote the one-component plasma (OCP) correla-
tion energy per ion (in temperature units) by

(PUl~o.p) =~o'c'p(yD)
Exact lower bounds for the correlation energy of

the mixture are given by the results of the Debye-
Huckle (DH) and ion-sphere ' (IS) approxima-
tions:

The DH result is effective for weak coupling

(yD && 1) while the IS result is effective for strong
coupling (yD » 1). For D= 3 and with the usual

notation y3 ——I we have

(3) 9 I (Q)1/3(gS/3)

The weak- and strong-coupling limits are thus
represented by a "one-fluid" equation of state
(EOS):

with

(
umix, one f)nid OCP(YDQeff) ~

Qeff, DH (Q ) for yD )) 1
2 2

.Qeff, ls=(Q)' (Q'+ ) for yD &) 1

& one-fluid EOS for strong coupling, with Q,ff ls,
was derived by assuming a scaled form for the
Ornstein-Zernike direct correlation functions.

Numerical data in 3D, from the solution of the
hypernetted chain (HNC) equations and from
Monte Carlo (MC) simulations, have shown that
the excess free energy of mixing at constant charge
density (i.e., constant I"=I (Q)'/ in 3D) is very
small for strongly coupled plasmas. By assuming
that it is zero one obtains an EQS which is better
than the one-fluid EOS for strong coupling. The
result, termed the "linear law, " reads

(3) (3) 1/3 5/3
mix, linear g i Xii O(~cp( Q ) Qi (3)

In this paper we derive an EOS for plasma mix-

tures which is nearly as accurate as (3) for strong
coupling (i.e., much better than the one-fluid EOS),
gives the IS and DH results in the appropriate lim-

its, and, in general, interpolates very well between
these limits.
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In Sec. II we display the main features of the
"Ewald hybrid" approach for the plasma correla-
tion energy, while the best available exact lower
bounds are derived in Sec. III. The new approxi-
mate EOS is derived in Sec. IV and is tested
against MC and HNC data in 3D. Detailed

analysis of the EOS for 3D-plasma mixtures is
presented in Sec. V where, in particular, results for
the two-component plasma are reviewed and used
to further test the validity of the new approximate
EOS. Some concluding remarks are contained in
Sec. IV.

II. EWALD HYBRID EXPRESSIONS FOR THE CORRELATION ENERGY

A useful approach for understanding the equation of state for plasmas is based on scaling arguments ap-
plied in the context of the Ewald hybrid expression for the correlation (internal) energy. ' Let 8J(r) be ar-
bitrary functions for which the Fourier transforms 8,J(k) exist, then the correlation energy can be written in
the following form:

u =B[81+Wi[g 8]+W2[S 8]

where

B[8]=——,ngx;xj f [8J(r)+pe Q;Q&QD(r)]dr+ —,(2m) gx; f 8;;(k)dk,
lJ l

Wi[g, 8]= , ng—x;xjfg,j(r)[8,J(r)+pe Q Qzpn(r)]dr,

(4)

W3[S,8]=—,(2m) g( xtxi)'~ fS~(k)[ 8(q(k)—]dk,

while SJ (k) denotes the structure factors related to the pair functions h J(r) =g J(r) —1 by

SJ.(k)=5;J.+n(x;xj)' h,j(k) .

A good description of the equation of state in the strong-coupling regime will be given by u =B[8],provid-
ed 8J(r) =cj(r), where—cd(r) denotes the direct correlation functions. The result obtained with 8J(r)=cJ(r)
and by assuming W;[g,c]=0, namely: uoMsA B[c]+—,, ha——s been termed the "generalized mean-spherical
approximation" (GMSA). ' Choosing the functions 8J(r) such that Wi[g, 8] & 0 and W3[S,8])0 we obtain
an exact lower bound pU/N &B[8]. The best such bound' is the IS result obtained by the choice

(9)

(10)

where

8( ~( ) P(tj(

where g,'J
' is the electrostatic interaction energy between two uniformly charged D-dimensional balls of total

charge Q;e and radii d; [the balls are denoted b (d; }]:

g'~ '(r)= f „dxf dyp(
~

x
~ )pj( ~ y —r

~
}go(

~

x —y),

pt if co(d(
P( )='0 if )d,.

(12)

where ao is the IS "Madelung constant" (e.g., a3= (0 ) and (ii) the scaling property

while p; =Q;e (volume of the "i"ball), and all distances are scaled by aws. The most important features of
(9), from the standpoint of the equation of state for the mixture, are' (i) the separation of the components

T

B[-W]=-~ .Z; (Q }Q;d; +—Q, d;—D —2 2 2 2 2 —D

l
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y(D)( ) g2 2d2 —Dy(a) ( /d )

where d Pocp(rid) is the function [Eq. (10)] for identical balls of radius d and until total charge.

III. EXACT LOWER BOUNDS FOR THE CORRELATION ENERGY

Using Mermin's inequality for the structure factor of the OCP,

S(k))SRpA(k) = [1+n(()a(k)1

one obtains the following exact lower bound:

QOCP )8[ W'OCP]+ W2[SRPA~ PQOCP) =BW2,OCP

The scaling property of f leads to the following result:

~~2,ocp( YD&d ) }D &D d +d Fa(Ad)
I

where A, =(kDHaws }=/Dya and

"ka/2 —i(&y)F( )—,(2),P (y)y,
P (&y)D/2 —i

while

k D/2

+D/2 ((~r ) —D/2 i 2 2 JD/2(kr)dk

and Ja/2(x) is the Bessel function.
The "best" bound is obtained by maximizing BS'2 ' with respect to d,

or

=0,
dbest, OCp

d + [FD(kd)(2 —D)+(AD)Fd(Ad)]
i d g, =O

to get d~, ocp(A, ), and finally

TABLE I. Lower bounds for the correlation (internal) energy for the three-dimensional
one-component plasma, compared with Monte Carlo data.

MC data
Ref. 14 DH

Exact bounds

Eq. (17)
Totsuji

(Ref. 11)

0.1

0.5
1

2
4

10
15

20
100

—0.0258
—0.2383
—0.573
—1.320
—2.927
—7.992

—12.309
—16.668
—87.500

—0.0274
—0.3062
—0.8660

—1.80
—3.60
—9.00

—13.50

—18.00
—90.00

—0.026 92
—0.265 5
—0.650 3
—1.491 8
—3.245 1

—8.6004
—13.085 3

—17.575 8
—89.538 1

—0.02693
—0.266 9
—0.6572
—1.518
—3.322
—8.854

—13.49

—18.14
—92.55
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t, ocp(YD) ~~2,ocp(1D dbest, ocp(~)] .(&) (D)

Q best ocp(l D ) is an exact lower bound that interpolates between the DH bound (to which it equals for
yD « 1) and the IS bound (to which it equals for yD » 1), which is effective for arbitrary values of yD.
Denoting 6=(2d) ', the 3D result is

where

10 30 120 30 „ 120 „ 120Xx=1— + — + e "+ e "+ e
X2 X3 Xs X3 X4 X5

The results obtained by maximizing this lower bound are summarized in Table I.
Mermin's inequality for plasma mixtures takes the form"

kg(x;xf)'i Q;QJSi(k)&(Q )

(20)

(21)

where A, ;„=(DyD(Q ) )'~ . It is possible to use this inequality to obtain a rigorous bound like (16) by tak-
ing QJ(r)= —Q;Qje d gocP(rid) (i.e., using essentially a single auxiliary function):

j D +D &Q &'d'+ (Q'&d' +D(~m;.d) (22)

The best such bound is determined by

d + [(2—D)FD(A, ;„d)+(A, ;„d)ED(A, ;„d)]=0,

and by comparison with (18) the solution is

best, mix ~ ~ 2 best, OCP mix

so that the best bound from (22) has the form
e

„iDi & Q &' iDi & Q') '+'
ubest, mix —

& Q2 &

ubest, OCP l D
&

)4~D (23)

Note that the relation (23) between the bounds for the OCP and the mixture will be obtained for any auxili-

ary function with a scaled form d 8(rid). Totsuji""' tried various Ewald auxiliary functions that do
have that form but did not recognize the significance of both the functions g;J and the scaling property.

The bound (23) improves upon the bounds given by Totsuji" and especially it does give the IS Madelung
constant for yD » 1, but it fails to be effective in strong coupling due to the inadequate charge averaging,
i.e., Q,rr=(Q)2 ~ (Q ) ~ . As discussed by Totsuji, " the bound (23) gives the correct DH behavior for

y~ && 1 and improves upon the DH and IS bounds in the region of weak and intermediate coupling.

IV. APPROXIMATE EQUATION OF STATE FOR PLASMA MIXTURES

The exact bound (23) suggests an approximate EOS for the mixture of the form

(Q)2 (Q2)1+2/D
umix

&Q2&
uOCP VD (Q)4' (24)

The main deficiency of this OES is its failure to feature the IS charge averaging. A parametric representa-



3626 YAAKOV ROSENFELD 26

tion of the correlation energy via the Ewald hybrid expression mill be able to interpolate between the DH
and IS limits, provided we retain the separation of components as featured by 8[—Pg] in Eq. (12). This
approach calls for a v-parameter fit (e.g., the v radii of the "balls", for the. case of a v-component plasma,
but scaling considerations and the separation of components lead to simplified results. At this stage we no
longer seek exact bounds but rather hints for an EOS for the mixture.

Consider the following parametric representation (i.e., approximation) for the correlation energy:

&~'Z, ' .=&[ W—+ ~2[~RPi W]—

which, with the structure factors in the DH [i.e., random-phase-approximation (RPA)] limit,

2.
Qi QJ i y2 ~mixS;(k)=5J —

2 (; . )
Q k +A, ;„

provides the analog of (15) for mixtures (without being an exact bound). After some algebra we get

(25)

(26)

8$'Z ';„———yD aDQX; (Q)Q;d;+QQ;d; FD(A, ;A)
1

2

gx;x~QiQJ f 2 2
—,[Pg(k) —Pq(k)] dk . (27)

Note that if p;(k) =pz(k) for all i,j (that is all d s are equal) we retrieve the result (22). Thus, the "mixed"
term in (27) has a relatively small effect for weak and intermediate coupling. From the results for the 0$P
(Table I) we see that, for strong coupling, the term W2[SRPA, —p1(] produces only small changes on the re-
sults with 8 [—PP] alone. In view of these observations we ignore the mixed term in (22) and remain with
a parameter representation in which the contribution of each component (i.e., parameter) is separate from
the others:

tT;„=—yDQX; ad (Q)Q d; +Q;d; FD(A;A),
D

(28)

The problem of maximizing this expression

—(D)~~ mix
0 y l 1y ~ ~ ~ &V (29)

reduces to that for a single component, and we obtain
' 1/B

Q Q
1./B

i,best
( Q )

best, OCP mix

Note that d;=tiws(Q;/(Q))'~ is the result of the "ion-sphere" model for the radius of the (charge neutral)
ion sphere around an ion of type i Finally, the .solution of (28) and (29) gives

Q&Q& ... ( Q
2 )Qi2

jD

~mix, best +xi ~ 2~ ~best, OCp XD&Q& /~W
(Q )

(30)

where u b 't ocp is the solution of (16) and (18).
Note that as an approximate EOS for plasma mix-
tures, Eq. (30) interpolates between the DH and IS
rIgofous bounds.

Denoting the excess free energy per ion by
(PF'"/N) =f, then Eq. (30) suggest the following
approximate relation between the EOS of the mix-
ture and that for the OCP:

Q;&Q&, ,„,&Q'&Q;"
mix=~xi

(Q2) OCP 1D (Q)

Computer simulation data and HNC results are
available (in the literature) for binary ionic mix-
tures (two-component plasma) in 3D. For D =3
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TABLE II. Comparison of the HNC free and internal energies (Ref. 13) with the values
obtained by the linear law (2), and the new equations (28) and (29) for Qi ——1, and various
values of Q2, I', and xi.
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—fHNc fiinear fnew ~ HNC ~ linear ~ new

5
40

1

10
10
10
1.6758
4
4

10

0.5
0.75
0.75
0.75
0.5
0.25
0.9
0.95
0.9
0.95

8.693
54.911

1.5708
20.854
37.111
55.280
6.1025
8.5372

15.573
22.750

8.710
54.933

1.5956
20.9034
37.1623
55.3133
6.2069
8.6191

15.701
22.848

8.731
55.049
1.599

21.036
37.280
55.381
6.317
8.833

15.960
23.282

9.638
57.438

1.8741
22.289
39.090
57.804
6.6683
9.2649

16.546
24.019

9.644
57.441

1.8854
22.3005
39.1005
57.8091
6.6964
9.2812

16.573
24.040

9.669
57.514

1.904
22.406
39.191
57.859
6.825
9.469

16.791
24.338

Eq. (31) yields

( 2) 2/3
f(3) y Qi(Q) f(3) ln(g)]/3 Q Qi

mix xi
( Q2) OCP (g)

r

) i/3
timix =~xi

( 2) tiocp I (g)
(33)

with

A i =—0.902 165 Bi = —0.599 750

A2 ——0.295087, B2——0.847639,

A 3 ——0.050 775, B3——1.003 474

for HNC, ' while for MC we use' '
ii ocp Mc(F) = —0.897 91I'+0.952 77I'/

The results of this approximate EOS for various
binary ionic mixtures in the strong-coupling re-

gime, for both MC and HNC, compared with
direct MC or HBC calculations (respectively), are
presented in Tables II and III. For the OCP EOS
we take the following fits:

u"' (r)=r3/2 +Ai A2
OCP HNC (g ln)i/2

—0.81765+0.18902I' ' (35)

in the range I & 1. We find that Eqs. (32) and (33)
are, in general, much more accurate than the one-
fiuid EOS, and are neraly as accurate as the linear
law. Additional tests are provided in Sec. V.

V. DETAILED ANALYSIS FOR D =3

A3

(g +I )3/2
(34)

In this section we put on quantitative basis the
qualitative statement that the accuracy of the equa-

TABLE III. Comparison of Monte Carlo and HNC internal energies (Ref. 15) with the
values obtained by the linear law (2) and the new equation (29) for Qi ——1 and various values
of Q2, I', and xi. Note that in all cases considered in this table the one-fluid equation of
state gives the same values for the internal energy, namely, u =—16.4985 for HNC and
—16.6273 for Monte Carlo.

~ HNC

HNC
~linear ~MC

MC
~ linear ~new

2
2
2

10
10
10

12.0 0.75
8.3511 0.5
6.2936 0.25
1.0905 0.25
0.4768 0.5
0.2876 0.75

16.5507
16.5503
16.5298
16.9232
16.7816
16.6376

16.5S64
16.5566
16.5344
16.9713
16.8205
16.6593

16.5975
16.5900
16.5516
17.0924
16.8705
16.6765

16.8813
16.6872
16.6706
17.0321
16.9033
16.7743

16.6667
16.6659
16.64S1
17.0613
16.9224
16.7766

16.7115
16.7019
16.6664
17.1912
16.9S21
16.7936
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tion of state for a (v+ 1)-component plasma is
similar to the accuracy claimed for the screening
factors for nuclear reaction rates in v-component
plasmas. The analysis presented here in order to

further test the accuracy of our new EOS, should
prove useful for a proper interpretation of comput-
er simulation data.

A. General relations

The excess free energy per ion for a v-component plasma depends on v-independent variables, which in
view of the accuracy of the linear. law are chosen to be I"= I"(Q )'/ and I x;, i = 1,. . ., v—1 J:

PF'"(v)
f(v)(~ ~x l»xv —1)

Pl

( =f(„) in short notations). The correlation energy

pU(, ) Bf(„)=1' ~t
(i(v)(L tx le' ' 'txv 1)—

(=u(„) in short notations). The OCP results are thus denoted by focp ——f((), Qocp=u()). Various approxi-
mations like the one-fluid, linear (24), or (31) are written in a form which is symmetric in all concentations
x;, i = l, . . .,v, that is, the extra variable x, is included explicitly despite the fact that it depends on the
other via x„=1 —g,". Ix;. Thus define the symmetric form

pF'"(v ) =f(„)(l",x;,. . .,x„),

and note that

@"(.)
S

r,~,.~~~

Saf(„)
~xv r,xj~

We shall use the notation af(„)/{)x; for

Bx; r,~j~,.
'

The screening factor HJ (0)=lim„o[g&(r)e '
1 can be also defined thermodynamicai]y by the foliow-.

(~) . puj(r)

ing free-energy difference' ':
Hi'"'(0) =Nf („)(I",x„.. .,x„)

x) x2
(N —1)f(v~)) I—",x)+,x2+

xl 1 xj
1 E 1''' J E 1

1 x~
X—1' ' "

1V —1'

where Q„+(——Q;+Qz and x„+(——1/(N —1). This relation can be written as

H,q" (0)=f(„)+ lim — g x;s . ~f(v+1)

x„~o;=) Bxi

S ~ f(v) f(v)

l'=1 Xl' Xl
L

SBf,„
Bx~+ )

lim
x~) 0

Q„+)=Q;+QJ

S S Saf(„+)) af(„+)) Bf(„+))+ +Bx. ' Bxj Bx~+ &

~f(v)

a
(37)
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Defining

S S
( ) s . " ()f( +i) f( +i)

pQ,
——f(„)+ lim — gx; +

x +)~0 '
1 BXI BXI

we obtain a convenient and symmetric result for
the symmetric forms for the EOS:

(39)

I

and

pQ) ppi (pp(v) f(v) )

(38)

The chemical potential for an ion of type i in
the v-component plasma is given by where the total chemical potential is

Pp'"'=
~~ (&f(.)) (v)

Pp(v)= gxil pi =f(v)+ 3 ~(v) ' (44)
S )'

()f(v) 1 Qi+ Q(~) + 1 e

ax, 3 '"'
&Q&

Thus we have

Sf(v)

BXI.
=Pp —Pp( )

—(Pp(.)
—f( ))

&

(p (v) p (v))
BXI.

Q.
+(f( )

—Pp(.))
&Q &

—
&Q &

(41)

From (39) and (43) we finally obtain the following
expression for the screening factors:

&,"'(0)=Pp;'"'+Ppj" »m —[Pp'++i ] .
x~, O

Q,+ ) =Q;+QJ.

(45)
The HNC energy equation of state is highly ac-

curate (see, e.g., Table II), and the chemical poten-
tials pp,'

' (via the "energy" EOS) can be calculat-
ed, in HNC, directly in terms of the structure
functions:

PP; = gxj —, hj(r)[hJ(r) cz(r)]r dr —3cj(r)+— r dr
j=1 r

(46)

[~ij'(0)]HNc —1 —[cij(0)]HNC ~ (47)

The modified HNC (MHNC) theory, with the
hard-sphere (HS) bridge functions, ' ' does bring
the structural definition

where r is in units of aws ( and thus n =3/4)r ).
Note, however, that HNC theory is thermodynami-

cally inconsistent and the result obtained from (45)
and (46) (which should be a very good approxima-
tion to the exact results) does not agree with the
direct structural definition of HNC theory,

l

MHNC theory is within the noise of the best avail-
able Monte Carlo calculations.

B. Binary ionic mixtures (v=2)

Let I i
——I"'Q ' and I 2

——I"Q2 ', then the free
energy of the two-component plasma in the linear
approximation is

f(2), iinear =Xif(i)(l ) )

[+ij (0)]MHNC [cij (0) ]MHNC

—[4j (0)]MHNc
HS (48)

+(I—"i»())(I 2» (49)

and the small deviations from the linear law, j))f(2),
may be defined

into agreement with the thermodynamic expression
(45), but small discrepancies should remain. As
discussed, however, in Ref. 17 the thermodynamic
definition (45) when evaluated with the EOS of the

~f(2) =f(2) f(2), iinear (50)

In the limits xi —v0 or x2 —+0, the free energy of
the binary mixture is determined by the slopes at
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infinitely small dilutions pl and p2.

f(2)(~ xi ) f(1)(~1)+plx2+O(X2)

f(2)(~ xi ) f)(l 2) p2x2+0(x 1 )
(51)

HNC data that bp2—- (Q(/Q2)hp), so that roughly

2
X2 —X2

f(2)= p)
1 [(g g ) 1]

+ pl ~

where

~f2
P1 =—11m

x2~0 BX2

Q2
P1 ~1~

Qi
(52)

Thus in HNC, the deviations from the linear law
for I 1& 1, have essentially the magnitude of hp1
and a form with asymmetry characterized by
(Q2/gl ) —l. The maximum of bf(2) occurs at
about

~f2
P2 =11m~ ~0

BX2

Q2
=p2 I2

Qi

For Q2 & Ql the slopes pl and p2 are both positive,
and in the linear approximations are given by

(pl)ll (p2)li pl=f(1)(~2) f(1)(~)) '

(53)

Extensive HNC calculations' yield always

~f(2) &0 ~pl=pl pl &0 ~p2=pl p2&0
high accuracy of the linear law is measured by

hp)

(Q2/Ql )' ' —1

(Q2/Q; )—1

with the value of

[(g,/g, )'"—1]'+1

which turns out to be roughly independent of
Q2/Ql for the same I 1.

Of special significance in this context are the re-
sults for pl when Q2/Ql ——2 [denoted pl(I 1,
Q2/gl ——2)]. In that case we have

2 =2 =f(()(1))'Qi

P2 —H'"(r =0 r, ), (55)

The simplest Pade approximant for b f(2) with the
correct limiting behavior (51), namely,

~f(2),pade

where H'"(r =0;I 1) is the screening factor for a
one-component plasma for I =I 2. Recall that in
the linear approximation

2

(54)' 1+[(~p) ~p2)/~p2]X2
is in remarkable agreement with the HNC results
for binary mixtures. ' For I'1 & 1 we find from the

Hl „'„,(r =0;1 1)=2f(, )(I'1)

—f(1)(2' I,),
and the correction to (56) is given by

(56)

(i)=-H(1)(r =0;rl) —Hi(,1„)...(r =0;r))= —p2 I;; =2 —pi = —~p1 I2 (57)

Comparison with Eq. (54) and the discussion following it shows how the vah1es of H (r =0'~) and f(i)(~)
practically determine the EOS of the two-component plasma [i.e., f(2)(I ',xi )].

The statement that

(~f(2) )Monte Carlo (~f(2) )HNC (58)

is within the accuracy of the best computer simulation data available at present. Since the corrections hp&,
b f(2) are relatively small in strong coupling, results leaning on the linear law will be strongly affected in all
cases when one of the arguments, I;=I"Q; & I,r, where I,r=-170 is the value of the solid-fluid transition
for the OCP.
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TABLE IV. (a) Slopes p& and pq (see text) of the free energy vs concentration curves in
the HNC approximation, at constant I", as function of I t

——I"Q) ' and I ~——I"Qq ', for ion-
ic charge ratios Q2/Qt =2. The HNC results are compared with the corresponding results
via the linear law (pi) and via the new equation of state (p& „,„,p2 „,„). (b) Same as (a) for
Qz&Q) =g.

—p& p l,new

(a)

Q2&Q) =2

—pz p2, new

0.05
0.2
1

2
5

10
20
40
60

100

0.02468
0.1750
1.371 1

3.0822
8.513 1

17.839 8
36.795
75.107

113.634
190.966

0.0247
0.1774
1.4137
3.1822
8.7665

18.2910
37.532
76.234

115.049
192.829

0.027 96
0.1910
1.4246
3.1542
8.609 5

17.955 1

36.930
75.258

113.792
191.140

1

2
5

10
20
40
60
80

120
160

0.3563
0.8391
2.4390
5.2589

11.072
22.925
34.897
46.931
71.102
95.353

0.3519
0.8270
2.4044
5.1935

10.960
22.745
34.668
46.660
70.764
94.962

0.3455
0.8206
2.4078
5.2176

11.021
22.863
34.830
46.860
71.024
95.273

(b)

Q2 j'Q) =&

0.05
0.2
0.4
1

2
5

10

0.5300
3.4046
8.0176

23.169
49.574

130.666
267.442

0.5456
3.7077
9.0053

26.706
57.308

148.671
298.014

0.7925
4.2018
9.1761

24.792
51.500

132.956
270.040

5

10
20
40
80

120
160

3.2215
7.0755

15.114
31.631
65.250
99.184

133.278

3.1771
6.9828

14.942
31.340
64.793
98.603

132.596

3.1573
6.9711

14.960
31.421
64.984
98.886

132.957

(59)

(60)

These, together with the results of the linear law and direct HNC calculations, are presented in Table IV.
Equation (32) is exact in the DH limit, is better than the linear law in the weak- and intermediate-coupling
regimes (I ) ( 1), and is of nearly the same accuracy of the linear law in the strong-coupling regime.

After this discussion we should be able to see the picture based on the new EOS [Eq. (32)], by considering
its predictions for p) and p2, namely,

Q) Q) Q) Q)f„, I, ' —f„)(l,)+ ' ' —I [f„)(I',)—u„)(r,
Q2 Q2 Qz Q2

2/3
Q2 Q2 Q2 Q2

(p) )„,„= f()) I') —f())(l ))+ —1 [f ),(I,) —u„)(r, )] .
Q) Q) Q) Q)

VI. CONCLUSIONS

From a purely formal point of view our results can be summarized as follows. Suppose that a very accu-
rate fit of the OCP internal energies can be obtained variationally by a one-parameter function:

uocp(yp, d) = yp[Ad +d W—p(V'Dypd)],

du ocp(yp d )
uocp fit(yp) uocp[ D~d(1 D)]

Bd d=Z

where the constant A and the functional form P D(x) serve as the fitting parameters. The accuracy of Eq.
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(32) suggests that the internal energies for the mixtures can be nearly equally well fitted by

u .(t'n Id j)=—i'~gx I~&Q&Qd;+Q,"d," ~ [(Dy (Q'))'"d;] j,

with the same constant A and the same functional form P D(x) as used for the OCP. We expect that ap-

propriately modified "fitting" functionals, obtained perhaps from the Ewals hybrid scheme, should prove
useful for studying electronic screening corrections for the OCP and, in particular, for plasma mixtures.
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