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Hard-core square-well fermions
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Based on the well-known low-density expansion for the ground-state energy per particle
of a many-fermion system interacting pairwise via a central potential we develop a pertur-
bation scheme in which the zero-order state is that of the purely-repulsive-spheres fluid.
For the hard-core plus square-well pair-interaction case we have deduced, for two-species
fermion matter, perturbation formulas up to sixth order in the attractive coupling parame-
ter. We explicitly report results up to fourth order here. Pade-approximant analyses in the
density are carried out in each order with the intent of providing the basis necessary for ex-

tensive equation-of-state calculations of various many-fermion systems. In particular, for
zero order (the fermion hard-sphere fluid) we predict an uncertainty-principle divergence in
the energy, and hence pressure, corresponding to the random close packing of spheres, at a
density of about 0.5 times the recently obtained value for boson hard spheres and about 0.2
times the well-known empirical value for classical hard spheres.

I. INTRODUCTION

There are essentially two general approaches to
the calculation of the ground-state properties of a
many-body system based on first principles, i.e., on,
for example, the two-body interaction: (1) Varia-
tional trial function techniques' and (2) perturba-
tion theory.

Within the second approach, one usually consid-
ers the ideal, i.e., noninteracting, gas of particles as
the unperturbed problem which can be solved and

I

then applies Rayleigh-Schrodinger perturbation
theory to the interaction potential. For fermions
with singular (e.g. , hard-core) interactions, one must
carry out infinite order partial summations of
selected classes of contributions in order to achieve
finite values for, for example, the energy per parti-
cle. In this way, the various techniques of
quantum-field theory have given for the ground-
state energy E of a system of X fermions of mass
m, contained in a volume V, the clearly low-density
result

10Em =&= 1+Clkj~ +C2(kriss) +C3 rQQ kp+C4A i(0)kF+Cg(kFa)2 & 2 3 3 3

3f'k,'X

+C6(kFa) lnlkF& I+C7 ro~ kF+CS~AO(0)kF+C9(kFQ) +

Note the singular nature of the expansion because
of the log term. The Ci, . . . , C9 are dimensionless
coefficients depending on v; the latter together with
the Fermi-momentum Akz is defined through the
particle number density

p=N/V =vkF/6n (2)

v being the number of intrinsic degrees of freedom
associated with each fermion and a, ro, Ai(0) and
Ao'(0) are parameters containing information relat-
ed to two-body scattering due to a central potential
V(r). Specifically, if 5i(k) is the I wave scattering-

I

phase shift in relative momentum A'k then, as in
"effective-range theory, " the well-known expres-
sions

kcot5O(k) = ——+ —,rok +O(k ),
k~o Q

k cot5i(k) = — +O(k )
k 0 Ai0 (4)

define the S-wave scattering length a and effective
range ro, and the P-wave scattering length (cubed)
A i(0). The first quantity appearing in (1) which is
not determined by scattering phase shifts at all is
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where $0(O, r) is the 1=0, k=O radial scattering
wave function.

Table I contains the coefficients Ci to C9 of (1)
for both v=2 and 4 for both the "ladder approxi-
mation" (Bethe-Goldstone equation) as well as the
"complete" theory, as discussed in Ref. 3. [In ela-

borating Table I, two arithmetic errors in Ref. 3,
Eq. (4.88), have been corrected, namely, the coeffi-
cients of a r0kz and kpa should be, respectively,
0.024631 and —0.018 604, instead of 0.045 899 and
—0.022 16.]

In Sec. II we give explicit formulas for a, r0,
A i(0), and A0'(0) for the hard-core plus square-well
pair potential. Section III transforms the perturba-
tion scheme about the ideal gas into a scheme about
the hard-sphere fluid. Section IV examines the
latter and reports results of a Pade-approximant
analysis in the density, predicting the random
close-packing density for fermion hard spheres. In
Sec. V we study the first four perturbative orders in

the strength of a pure attractive well pair potential
in terms of a density Pade analysis and compare
with the corresponding exact (Monte Carlo) results
available in the literature for both the ladder and
complete theories with the objective of selecting out
the best extrapolant in each order. Section VI has
our conclusions.
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As we are initially mainly interested in how close
one can approach the ground-state energy of the
many-fermion Schrodinger equation —for inter-
mediate density and coupling —we pick the simple
(yet sufficiently rich in physical content) pair poten-
tial

0o, r &C

V(r)= —V0, c &r &R

0, r&R

whose parameters for liquid helium and nucleonic
matter are found in the literature. We define,
respectively, the dimensionless density x, attractive
well strength A, and attractive well range a parame-
ters by
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mVO
2 R —cx =kzc, A, =— (R —c), a —=

$2

Using effective-range theory and matching the
radial wave function and its first derivative at
r =R, we finally obtain the four expressions

tanv XkFa=x 1+a 1—
v'A,

~X,
A,~o (8)

3

3 i 3 3 tan1/g 1 tanv A, i 1 +tan MA, tan~A,
iroa kF= ia x ~ + 1+ 1

3X
A,~O

(9)

3Q
A, (0)kF ———,(a+1)'x' 1—

(1+a) A,

1+a ~
tanv A,

vA,

tanv k1+a

1

3X
A,~O

(10)

3
6

g "(0)kFi ——— ——,as+ (3A, —6)tanvA, +v A(6 —A)+ —v A(2v Ataunt I,—A, +2—2 secvTL, )a ' 3(vA, ) a

X(tanv X—~X)—3

Q 2

'3

(1—secv A, ) ~ ——,x
a A,~O

We note that the pure hard-core limits indicated yield the well-known values fo«ro ~ i (0) and ~ o (0) as c
—,c, —,ci, and ——,

' cs, respectively. Also, for c—+0 and A, —+ —A, , Eqs. (8) to (11) reduce, as they should, to those

of the repulsive barrier potential, Eqs. (4.90) to (4.94), of Ref. 4.

III. NEW PERTURBATION SCHEME

The four expressions (8) to (11) appear in the en-

ergy (1) in the nine different combinations shown
there. These nine terms have been expanded in
powers of A, , around k =0, to sixth order by two dif-
ferent computer algorithms: (i) a FORTRAN subrou-
tine that manipulates double series and (ii) a LISP

program for algebraic manipulation called
REDUCE, which carries out and evaluates nth-order
derivatives. The results of these two schemes ap-
pear in Appendix A.

Substituting into (1) there results the double
series, in x and A,, for the energy

e= g ej(x)AJ= g g etj(a)x'Ai (12)
j=o i=oj =0

valid for ladder, v=2 and 4, and complete v=2,
theories. Clearly, ei(x)lj/ represents the jth-order
perturbation correction to the energy of the hard-
sphere fiuid, at density x, due to attractions between

particles. For the complete theory with v=4 we
have an expression identical to (12) except that the
i=4 term is not x but rather x lnx, the coefficient
of the x term (of smaller order than the x lnx one)

being unknown at present. The coefficients e,j(a)
are listed in Appendix 8 up to 4th order, i.e.,
j=1,2,3,4. In Secs. IV and V we treat the term

eo(x) in (12), namely, the energy per particle of the
hard-sphere fluid, in both the ladder and complete
pictures.

IV. HARD-SPHERE FERMIONS
IN LADDER APPROXIMATIONS

10EL,m
eo(x) =—

2
——1+ g D;x '+ 0 (x )

3N kF
(13)

We will henceforth restrict ourselves to v=2 fer-
mion matter. In this section we try our methods on
the ladder approximations because there is an exact
representation of the sum of all the diagrams in this
approximation in terms of the solution of an in-
tegral equation, the Bethe-Goldstone equation. Nu-
inerical solutions for the hard-sphere case are re-
ported by Baker et al. These provide the oppor-
tunity to compare the results of our methods with
an exact answer. Instead of the energy becoming
infinite at a finite value of k~, as we expect in the
physical problem, the ladder approximation remains
finite at all values of kF. An examination of the
numerical solution reveals that the ladder energy
behaves approximately like (kzc) as k~~ ao.

By putting A, =O in Eq. (B3) of Appendix B, we
obtain



GEORGE A. BAKER, JR. et al. 26

Case

TABLE II. Expansion coefficients for eo(x), Eqs. (13) and (15).

Ladder
Complete

0.353 678
0.353 678

0.185 537
0.185 537

0.460448
0.384 144

0.051 131
—0.024700

in units of the ideal Fermi-gas kinetic energy. The
D; are listed in Table II. For reasons explained in
Sec. V in regard to the physical energy, it is better
to study eo(x) '~ instead of eo(x) directly. Here
we have, by the observation made above, the
result that e (x) '~ is proportional to x as0

x =—kzc —+00. The procedure is to extrapolate the
function values to positive values of x from the
series coefficients given in Table III. We give our
best results based on the Pade approximant method
as

eo(x)=[1/3](x)
2

1+0.249 3688x+0.089 958 608x +0.221 7122x
1+0.072 527 551x

A comparison is given in Table IV with the results from the solution of the integral equation. The solution of
the integral equation is thought to be accurate to within about O. l%%uo. We find the accuracy of this result to be
satisfactory for our purposes.

V. HARD-SPHERE FERMIONS
IN THE COMPLETE THEORY

Setting A, =O in the energy formulas of Appendix
8 we quickly arrive at the fourth-order polynomial

eo(x) =I+Dix+Dzx +D3x +D~x +
(15)

with further terms being unknown at present. The
coefficients D; are given in Table II. Equation (15)
is our only concrete knowledge of the gound-state
energy of a two-species fermion hard-sphere fluid.
On physical grounds we expect that the energy
should diverge at a value of x, say xp, correspond-
ing to a random close packing of the spheres. For
the classical fluid of hard spheres, it is known from
experiments (with ball bearings, for instance) that
the random-close-packing density occurs at about
0.86 times the regular close-packing density
pa= V 2/c, the latter occurring when the spheres of
diameter c are packed in a face-centered-cubic or
hexagonal-close-packing arrangement. %e expect
quantum hard spheres to random close pack at a

density smaller than the classical value of
0.86v2/c, because of well-known diffraction ef-
fects. (The latter are responsible, e.g., for making
the total cross section for the scattering of two iden-
tical hard spheres equal to four times the geometri-
cal cross section of ~c, for zero energy, and twice'
that value for infinite energy. ) For bosons, the
random-close-packing density found in a recent
study, " which agrees very well with available
Green's-function Monte Carlo data points, is about
0.35 times po= v 2/c; this is not inconsistent with
our expectation as described above. For the present
problem we expect the random-close-packing densi-
ty for fermions to be strictly less than the boson
value, since Pauli exclusion effects provide addi-
tional repulsion between the hard spheres. The pole
eo(xp) = oo must, moreover, be a second-order pole,
since it is essentially due to uncertainty principle ar-
guments, namely, that the energy will diverge as the
inverse of an available "length" squared. This
property is clearly absent from (15) and one could
not expect more, given that it is a low density ex--
pansion.

We found it convenient to convert (15) into

TABLE III. Expansion coefficients for eo(x) ', Eq. (16).

Ladder
Complete

—0.176833
—0.176833

—0.045 863
—0.045 863

—0.194827
—0.156677

0.091 995
0.109 672
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TABLE IV. Comparison of the solution of the in-

tegral equation and the prediction of the [1/3] Pade ap-
proximant for Ep(x)

0.25
0.50
0.75
1.00
1.50
2.00
3.00

[1/3]

0.95025
0.881 97
0.791 97
0.686 86
0.476 64
0.314928
0.142 302

integral
equation

0.949 81
0.881 24
0.793 91
0.694491
0.497 58
0.342 11
0.147060

10

p/pp ——x /3v 2m (v=2) . (17)

The best candidate is clearly the one given by the

[3/1] Pade, which yields a random-close-packing
density of about one half the boson value of Ref. 11.
The suggested extrapolant to (15) is therefore

l

ep(x) ' = I+F&x+F2x +F3x

+Fgx +O(x ),
where the coefficients F; are listed in Table III, and
construct to (16) the Pade table, i.e., all
[l./M](x);I. ,M =0, 1,2, . . . for 1.+M &4 and look
for those having a zero at real, positive x. The only
such solutions appear in Table V where, in addition,
we list the corresponding density pz, in units of pp,
where ep(x) will have the sought-after double pole,
recalling from (2) that

--a T

0 0,5 1,0 1.5 2,0 5,0
FIG. 1. First- (1) through fourth- (4) order energies,

Eqs. (21), for the soft repulsive barrier potential of
height unity and range A as function of y—:kFR, for
both the complete (C) and ladder approximation (L)
theory, as taken from Table III of Ref. 3. Both theories
are identical in first and second order.

ep(x)=[3/1](x) 1+0.699 986 10x

1+0.523 152 76x —0.169644 17x —0.188 780 69x
(18)

We next discuss the first four orders in the perturbative correction to this energy, due to the presence of at-
tractive forces.

VI. TREATMENT OF
ATTRACTIVE FORCES

In order to compare with exact results previously
carried out with Monte Carlo techniques up to
fourth order for both the ladder and complete

theories, we shall study only the purely attractive
square-well-potential problem. (The exact results
are listed in Table III of Ref. 3. Note, however,
that the opposite sign convention from ours for the
potential is used there, i.e., in Ref. 3 plus is repul-
sive, and here plus is attractive. ) This will permit

Eq. (16).
TABLE V. Location of zero of [l./M](x) Fade approximants to ep(x)

L,M

2.2926

0.2878

1,2

0.4323

0.0019

2, 1

0.2915
6.1449
0.0006
5.541

22

1.2159

0.0429

3,1

1.939 15

0.1741
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TABLE VI. Coefficients of the form Eq. (20) in orders 1 —4. Suffixes c and 1 refer to
complete and ladder theories, respectively.

Order

1

2
3c
31

4c
41

fo

0.0
—0.437 161
—0.864029
—0.864029
—1.289 476
—1.289476

0.12000
—0.142 857
—0.238 029
—0.090079
—0.251 810

0.186645

0.0
0.102011
0.360 693
0.285 792
0.871 143
0.450267

us to select from the complete Pade approximant
which best fits the data and thus suggest specific
approximants for each order. Thus, we take, ac-
cording to (7),

ax =kF(R ——c)=kzR—:y, (19)

so that our density variable is now y. Substituting
in the energy formulas of Appendix B we get, for
the first four orders, a form

fo+f iy +f2y'+f3y'

for each expression

(20)

——„e,(y)/0. 035 368y,

——„e2(y)/0. 014147 1 ly,
——,, &3(y)/0. 005 7262y,

——,,-e4(y)/0. 002 3204y .

(21a)

(21c)

The coefficients fo to f3 appear in Table VI. (Note
that ladder and complete theories are identical in
orders one and two )In Fig.. 1 we have plotted, us-

ing the Monte Carlo data of Ref. 3, the quantities
of Eq. (21). We observe the following features. In
first order, the behavior is quite mild and varies by
less than a factor of 2. In second to fourth order

the dominant feature is that these higher-order
terms drop precipitously with increasing density.
This effect means that, for the same strength of at-
traction, the higher-order terms become rapidly less
important as the density increases. A minor excep-
tion is that the complete fourth-order term (labeled
4C in Fig. 1) goes through a rather small minimum
at about y= 1.5 and then increases slowly.

Table VII gives the best-fitting Pade approximant
of (20), which turned out to be the [3/0] for first
and the [0/3] for second order. These are listed up
to y =kFR=3. (For comparison, the saturation
density of liquid helium three is x=1.3.)

Finally, Tables VIII and IX give the correspond-
ing best-fitting extrapolant to third and fourth or-
ders, where we found it necessary, because of the
sharp decrease in y, to introduce the exponent 1/n
to achieve better fits, in both (19c) and (19d), and
consequently the general form (18). In third order,
Table VIII, we find that n=3 gives a good fit near-

ly to y=2 for the ladder case, but only up toy=—1

for the complete. On the other hand, n=2 gives a
poorer quality fit but not too bad to about y=1.5.
In fourth order, Table IX, the ladder case, n=8,
gives a good fit to about y=1.5. For the complete
there is a "knee" in the curve at about y=1.5 and
we cannot go beyond this point with the number of
available coefficients in the y series and this
method. We find that n=5 gives a good fit toy= 1

and perhaps even to y=1.25.

TABLE VII. Comparison of best Fade approximant, for first and second orders, to Monte Carlo (MC) data for
several values of y =—kFR for the purely attractive square well of range R, depth unity.

0.25
0.50
0.75
1.00
1.50
2.00
3.00

5.567 x 10-4
4.5516X 10-'
1.589x10 '
3.936x 10-'
1.475 17x 10-'
3.901006x 10—'

1.574696

3 2

0.035 367 76y [3/0](y)

5.5677 x 10-"
4.5536x 10-'
1.5928 X 10-'
3.961 19x 10-'
1.5159x 10-'
4.1875x 10-'
1.968 25

1.960X 10
1.346x 10-'
3.827 x 10-'
7.495 x 10-'
1.715x 10-'
2.868 x 10-'
5.367 X 10

0.014 147 1 ly'[0/3](y)

1.95303x10 4

1.34440x 10—'
3.824 30x 10-'
7.53481x10-'
1.725 95 x 10-'
2.78645 x 10-'
4.663 311x 10-'
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TABLE VIII. Comparison of best Pade approximant to [——, e3(y)/0. 0057262y]'~" with MC data, for the ladder

(lad) and complete (comp) theories.

0.25
0.50
0.75
1.00
1.50
2.00
3.00

MC(lad)

0.921 58
0.833 59
0.738 81
0.645 20
0.483 91
0.376 25
0.26040

[0/3]
n=3 {lad)

0.921 624
0.833 793
0.742031
0.651 572
0.489 154
0.361 501
0.200025

MC(comp)

0.91876
0.823 68
0.71990
0.620 SO

0.483 03
0.450 56
0.435 27

[0/3]
n=3 (comp)

0.918:593
0.822 607
0.720031
0.618 845
0.441 931
0.310724
0.158 652

MC(comp)

0.880 65
0.747 55
0.610 81
0,488 77
0.335 71
0.30241
0.287 17

[0/3]
n=2 (comp)

0.880 529
0.747 561
0.616348
0.498 391
0.318681 .

0.205 605
0.094 121

VII. CONCLUSIONS

The raison d'etre of this paper is contained in Sec.
III: The new perturbation scheme for the ground-

state energy of the many-fermion system. The idea
is to develop a way to expand about the hard-sphere
gas in terms of the interparticle attraction. Our ap-
proach is to make use of the low-density behavior,
which is known to all orders in the interparticle po-
tential, together with such other information as is
available to develop expressions as functions of kF
for the first few derivatives with respect to the at-
tractive part of the interparticle potential. With
these expressions in hand, one can then use them to
complete the ground-state energy as a function of
kF without great difficulty, and to determine the sa-
turation density and energy. We have previously in-

vestigated, with considerable success, the many bo-
son problem '" by these methods. We were greatly
assisted in that investigation by the Monte Carlo
determination' of the hard-sphere boson-gas

ground-state energy, and feel that similar results
would be desirable for fermions.

Specifically, we conclude that our approach looks
like a practical one. The higher derivatives in the
attraction decrease (relative to the lower ones) quite
rapidly in k~ and are well determined by the exact
low-density results for small k~ so that for practical
purposes our representations should do very well

here. Fortunately, the low-order derivatives behave
relatively simply so that we conclude that our ex-

pressions for them are quite satisfactory.
Therefore, in this paper we have developed a

sound basis for the application of this method to
physical problems and expect to do so in the future.
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APPENDIX A: SCATTERING-PARAMETER FORMULAS

This appendix summarizes expansions of the two-body scattering parameters a (scattering length), vo (effec-
tive range), A t(0), and Ao'(0), as defined in Eqs (8)—(11) for the potential described in Eq. (6). The series ex-
pansions for these scattering parameters and for some related quantities, which appear in the ground-state en-

TABLE IX. Comparison of best Pade approximant to [——, eq(y)/0. 0023204y]'~" with

MC data for the ladder (lad) and complete (comp) theories.

0.25
0.50
0.75

1.00
1.50
2.00
3.00

MC(lad)

0.954 88
0.903 50
0.846 10

0.785 03
0.665 41
0.57603
0.451 92

[0/3]
n=8 (lad)

0.955 653
0.904 102
0.847 059

0.786 520
0.662 887
0.546463
0.360 293

MC(comp)

0.923 70
0.83094
0.72722

0.626 52
0.527 55
0.569 39
0.621 94

[0/3]
n=5 {comp)

0.924611
0.831 277
0.728 354

0.624935
0.442 306
0.307 278
0.153446
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ergy, in the notation of Eq. (7) are the following:

1 2 p 17 g 62 4, 1382 5 21 844kFa=x[1 —a( —,A, +—„A, + „,A, + „„A, + „„„A,+ „„,A, + . - )], (Al)

2764 176 5 43 688 47 981+ 155 925 6075 + 6081075 3274425 +
(kFa) =x t 1 —a[A+( —, ——,a)A, +( „,——„a+—„a )7I, +( „,—„„a+—„a )A,

1382 176 169+ 51975 2025 + 4725

21 844 47 981 5114+(„„„,—„„„,+„„„)~+.]'j,

(kFa) =x [1—a[—3A, +(—„——3a)A, +( „,——„a+—a )A, +( — +—a ——a )A,

5528 352 676 p 8 3 5+ 155925 2025 + 4725 405

87 376 95 962 20456 g 844 3+ 6081 075 1091475 + 212 625 42 525 +
(kFa) ln

i
kFa

~

=(kFa) lnx to O[(kFa) ],

(A2)

(A3)

(A4)

(A5)

, roa kF(kFa—)

62 254 4882 p 4 1382 176 19802+ ( 2835 4725 155 925 ) + 155 925 6075 1216215

21 844 47 981 5142 932+ 6081075 327442S 638512875 + (A6)

248 508 2048 p 1406 3 4+ 8505 4725 + 155925 + 42525

5528 352 1184&3 p 25 904 3 5+ 467775 6075 + 6081075 + 1091475

87 376 95 962 2042 882 g 9569 123 3+ 18243225 3274425 + 127702575 + 638512875 ) + ]j

20'(0)kF(kFa)=x [——, +(—,+ —,a+ —,a +—„a )A, +(—„+—„a——„a —12~~a ——„a )7(,

61 67 143 p 1259 3 82 4 3+ 2160 + 2520 2880 22680 4725

277 29 7633 p 50453 g 442 4 4+( 24192 + 19440 201600 1425600 42525

50521 189037 98 107 p 609 157 g 730 4+ 10 886400 59 875 200 4354 560 31 135 104 130977

540553 4365 313 40379 113+ 287400960 1556755200 3353011200

3284054 677 g 1794487

326918592000 63851287S ) +
A 1(0)kF

=x'I
3
—a[(3+ 3a+ 15a'+ 45a')(~i +a)+( is+ 45a+ iosa'+ 210

'+ 945a')(~i + )'
17 23 122 p 22 g 4 4 1 3

315 + 31S + 2835 + 1575 + 1575 + 4725 +
62 478 518 p 617 3 2 4. 2 5 2 4

2835 14175 22275 66825 891 + 623 + 3 )( +
1382 7178 2231 g+ 80 326 p 362 254 4 23 494+ 155925 + 467775 + 184275 14189175 + 212837625 + 70945875

2764 6 1382 7 5+ 70945875 + 638512875 ( +
21 844 58 739 3909736 p 699 376 3 248 896 4+ 6081075 + 8513505 + 638512875 + 212837625 + 212837625

543 398 5 8 6 4 7 4 8 6+ 1915538625 + 173745 + 868725 + 18243225 + +

(A7)

(Ag)

(A9)
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APPENDIX B: GROUND-STATE ENERGY
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In this appendix we list the expansions (complete and in the ladder approximation) for the shift in the
ground-state energy (relative to the ground-state energy of a system of noninteracting fermions) caused by the
interaction (6) and specified in Appendix A. The expansions are in powers of x and A, for the multiplicities
v=2 and 4.

For v=2 the complete series is

=(1.0610X10 'x+5.5661X10 x +1.1524X10 'x —7.410X10 x + )
N kp

+A, x( —3.5368X10 a)+x ( —3.7107X10 a)

+x 2. 1221 X 10 a —1.975X 10 a — (6.3662X 10-'a'+3.8197X 10 'a
(1+a )

+ 9.5493X10 a+9.5493 X 10 )

+ x (4.3295X10 a +3.9200X10 a +9.880X10 a+2.6133X10 )+

+A, x( —1.4147X10 ~a)+x (6.1846X10 a —1.4843X10 a)

+x 2.6273)& 10 a +6.583 y 10 a —7.900' 10 a

z
(6.0630X10 a +5.4567X 10 a +2.1827X10 a

(1+a )'

+ 4.4563X10 a+3.8197X10 )

+x ( —1.4432X10 a +3.1576X10 a —1.6733X10 a +3.0809X10 'a

+ 1.0889X10-')+ ~ ~ ~

+A, x( —5.7262X10 a)+x (4.9476X10 a —6.0079X10 a)

+x 1.424)& 10 a +5.267)& 10 a —3.198' 10 a

(6.0630X 10 a +7.2757X 10 a +4 0016X 1.0 ia
(1+a )

+ 1.2328X10 a +2.0918X10 a+ 1.5461X10 )

+x ( —20654X10 a +2.7893X10 sa —1.9430X10 a~

+ 8.8821X 10 4a+4.4282X10 ~)+

+A, x( —2.3204X 10 a)+x (2.9921 X 10 a —2.4346X 10 a )
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+x 5.904X 10 a +3.185X 10 a —1.296X 10 a

(6.1243X 10 'a'+9. 1864X10-'a'+6.4305X 10-'n'
(1+a )

+2.6451X10 a +6.6620X10 a +9.6604X10

+ 6.2651x 10 ')

+x ( —2.0214X10 a +2.1054X10 a —1.2979X10 a +2.1438X10 a

+ 1.7954x10 ~)+ (Bl)

For v=4 the complete series is

~~m =(3.1831X10 'x+1.6698X10 'x +3.9018X10 'x +4.2258X10 'x 1nx+ )
NFPkF

+A, x( —1.0610X10 'a)+x ( —1.1132X10 'a)

r

+x 6.3662X10 a —2.3103X10 'a

(1.0610X10 n +6.3662X10 a +1.S915X10 'a+1.5915X10 ')t
1+a

+x lnx( —5.6344X10 'a)+

+A, x( —4.2441X10 a)+x (1.8553X10 a —4.4528X10 ~a)

+x 7.8819X 10 a +7.7010X 10 a —9.2412X 10 a

(1.0105X10 'a'y9. 0946X10 'a'+3. 6378X10 'n'
(1+a )

+ 7.4272X 10 a+6.3662 X 10 )

+x lnx(2. 8172X10 'a —2.2538X10 'a)+

+A, x( —1.7179X10 a)+x (1.4843X10 a —1.8023X10 ~a)

+x —2.0894X 10 a +6.1608X 10 a~ —3.7404X 10 a

(1.0105X10 n +1.2126X10 a +6.6694X10 a~
(1+a )'
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+ 2.0547X10 'a'+3.4863X10 'a+2. 5768X10 ')
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+x lnx( —6.2604X10 a +2.2538X10 'a~ —9.1224X10 ~a)+

+A, x( —6.9613X10 a)+x (8.9763X10 a —7.3035X10 a)

+x —5.8635)(10 a +3.7257)&10 o. —1.5158X10 a

(1.0207X10-'a'+1.5311X10 ~a'+1.0718X10 'a'
(1+a)

+4.408X10 a +1.1103X10 a +1.6101X10 u+ 1.0442X10 )

+ x lnx(5. 2170X10 a —7.5125X10 a +1.3630X10 'a —3.6966X10 a)+

+ 0 ~ ~ ~ (B2)

In the ladder approximation for v= 2

AEI m
, =(1.0610X10 'x+5.5661X10 'x'+1.3813X10 'x~+1.5339X10 'x4+ . )

Nfi kF

+A x( —3.5368X10 a)+x ( —3.7107X10 a)

+x 2. 1221y 10 a —4.2641 y 10 a

(1+a) (6.3662X 10-'a'+3.8197X10 'u'+ 9.5493X10 'a+9.5493X 10 ')

+x (4.3295X10 u +9.5490X10 a —2.0452X10 a+6.3660X10 )+

+A, x( —1.4147X10 u)+x (6.1846X10 a —1.4843X10 a)

+x 2.6273)(10 u +1.4214' 10 a —1.7057)& 10 u

(6.0630X10 a +5.4567X10 a +2.1827X10 ~a~
(1+u)'

+ 4.4563X 10 a+3.8197X 10 )

+x'( —1.4432 X 10-'a' —5.34X 10-'a'+1.8184X 10-'u' —1.0303 X 10-'a
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+ 2.6525X 10—')+. . .

+2, x( —S.7262X10 a)+x (4.9476X10 a —6.0079X10 a)

+x 5.7644@, 10 a + 1.1371)& 10 a —6.9038)& 10 u

q
(6 0630X10 a +7.2757X10 a +4.0016X10 a

(1+a)'

+ 1.2328X10—'a'+2. 0918X10 'a+1.5461X10 ')

+x ( —1.6365X10 a —4.4677X10 a +1.3075X10 a —5.0443X10 a

+ 1.0787X10 )+

+A, x( —2.3204X 10 a)+x (2.9921 X 10 a —2.4346X 10 a )

+x —4.2697)&10 +~+6.8768g10 a —2.7976)&10 n

4(6.1243X10 a +9.1864X10 a +6.4305X10 a
(1+a )'

+2.6451)(10 a +6.6620)& 10 n +9.6604X 10 a

+ 6.2651X10—')

+x'( —1.0448X10 ~a4 —5 1086X10 ~a~+7.6080X10 ~a' —2.3986X10 ~a

+ 4.3735X10—')+ (B3)

For v=4 in the ladder approximation

EELI =(3.1831X10 'x+1.6698X10 'x'+2. 8708X10 'x'+4. 6017X10 'x'+ )
EfrkF

+A, x( —1.0610X10 'a)+x ( —1.1132X10 a)

+x' 6.3662X10-'a' —1.2792X10-'n

(1.0610X10 a +6.3662X10 a +1.S915X10 'a+1.5915X10 ')
(1+a )

+ x (1.2988X10 a +2.8647X10 a —6. 1356X10 a+1.9098X10 )+ .
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+A, x( —4.2441X10 a)+x (1.8554X10 a —4.4529X10 a)
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T

+x 7.8819)(10 a +4.2642 X 10 a —5.1171X 10 a

z
(1.0105X10 a +9.0946X10 a +3.6378X10 a

(1+a )'

+ 7.4272X10 ~a+6.3662X 10 ')

+x ( —4.3295X10 a —1.601X10 a +5.4551X10 a

—3.0909X10 a+7.9575X10 )+ ' ' '

+A, x( —1.7179X10 a)+x (1.4843X10 a —1.8024X10 a)

+x~ 1.7293)&10 a +3.4113)&10 a —2.0711)&10 a

(1.0105X10 a +1.2126X10 a +6.6694X10 a~
(1+a )

+ 2.0547X10 a +3.4863X10 a+2.5768X10 )

+x ( —4.9094X10 a —1.3403X10 a +3.9224X10 a

—1.5133X10 a+3.2360X10 )+

+A, x( —6.9613X10 a)+x (8.9764X10 a —7.3037X10 a)

+x —1.2809X10 a +2.0630X10 a —8.3928X10 a

(1.0207X10 a +1.5311X10 a +1.0718X10 a
(1+a )'

+4.4085X 10-'a'+1.1103X10-'a'+1.6101X10-'a + 1.0442X 10-')

+x ( —3.1344X10 a —1.5326X10 a +2.2824X10 a

—7 1959X10 a+1.3120X10 ~)+ . + (B4)
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