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Based on the well-known low-density expansion for the ground-state energy per particle
of a many-fermion system interacting pairwise via a central potential we develop a pertur-
bation scheme in which the zero-order state is that of the purely-repulsive-spheres fluid.
For the hard-core plus square-well pair-interaction case we have deduced, for two-species
fermion matter, perturbation formulas up to sixth order in the attractive coupling parame-
ter. We explicitly report results up to fourth order here. Padé-approximant analyses in the
density are carried out in each order with the intent of providing the basis necessary for ex-
tensive equation-of-state calculations of various many-fermion systems. In particular, for
zero order (the fermion hard-sphere fluid) we predict an uncertainty-principle divergence in
the energy, and hence pressure, corresponding to the random close packing of spheres, at a
density of about 0.5 times the recently obtained value for boson hard spheres and about 0.2
times the well-known empirical value for classical hard spheres.

I. INTRODUCTION

There are essentially two general approaches to
the calculation of the ground-state properties of a
many-body system based on first principles, i.e., on,
for example, the two-body interaction: (1) Varia-
tional trial function techniques' and (2) perturba-
tion theory.?

Within the second approach, one usually consid-
ers the ideal, i.e., noninteracting, gas of particles as

the unperturbed problem which can be solved andI
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then applies Rayleigh-Schrodinger perturbation
theory to the interaction potential. For fermions
with singular (e.g., hard-core) interactions, one must
carry out infinite order partial summations of
selected classes of contributions in order to achieve
finite values for, for example, the energy per parti-
clee. In this way, the various techniques of
quantum-field theory have given for the ground-
state energy E of a system of N fermions of mass
m, contained in a volume V, the clearly low-density
result?

=e=1+Ckpa+C,(kpa)*+Cs5roa’k+C4d,(0)kp +Cs(kga)®

+Cokpa)in | kpa | +Cq5roa’kf+Cyad {(0)kf+Colkpa)*+ - - - . (1)

Note the singular nature of the expansion because
of the log term. The C,, ..., Cy are dimensionless
coefficients depending on v; the latter together with
the Fermi-momentum 7k is defined through the
particle number density

p=N/V =vk}/6r?, @)

v being the number of intrinsic degrees of freedom
associated with each fermion and q, ry, 4,(0) and
A (0) are parameters containing information relat-
ed to two-body scattering due to a central potential
V(r). Specifically, if §;(k) is the I-wave scattering

26

I
phase shift in relative momentum #k then, as in
“effective-range theory,”* the well-known expres-

sions
k cotdo(k) ~ —~ 4+ Lrok? 10 (kY , 3)
k>0 a
3 1 2
~_ 4
k cotS,(k)k_’0 4,(0) +0(k”) (4)

define the S-wave scattering length a and effective
range r(, and the P-wave scattering length (cubed)
A(0). The first quantity appearing in (1) which is
not determined by scattering phase shifts at all is
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TABLE 1. Dimensionless coefficients in energy formula Eq. (1).

Co
—0.062013

Cs
0.052267
0.127320

C;
0.164207
0.089 153

Cs

Cs
0.030467
0.106 770
0.664 000
0.320310

C,
0.954930
0.954930
1.591 549
1.591 549

G
0.106 103
0.106 103
0.318310
0.318310

&)
0.185537
0.185537
0.566 610
0.556610

C,
0.353678
0.353678
1.061033
1.061033

Case

0
0

Complete
Ladder

0.063 853

1.408 598

0

Complete
Ladder

0.381960 0.191 560

0.267 460

4
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" — m ©
A0<0)=_ﬁf0 dr r*V (Ngo(0,r) (5)

where 1,(0,7) is the [=0, k=0 radial scattering
wave function.

Table I contains the coefficients C; to Cq of (1)
for both v=2 and 4 for both the “ladder approxi-
mation” (Bethe-Goldstone equation) as well as the
“complete” theory, as discussed in Ref. 3. [In ela-
borating Table I, two arithmetic errors in Ref. 3,
Eq. (4.88), have been corrected, namely, the coeffi-
cients of a%rok? and kfa* should be, respectively,
0.024 631 and —0.018 604, instead of 0.045 899 and
—0.02216.]

In Sec. II we give explicit formulas for a, ry,
A(0), and 4 (0) for the hard-core plus square-well
pair potential. Section III transforms the perturba-
tion scheme about the ideal gas into a scheme about
the hard-sphere fluid. Section IV examines the
latter and reports results of a Padé-approximant
analysis in the density, predicting the random
close-packing density for fermion hard spheres. In
Sec. V we study the first four perturbative orders in
the strength of a pure aftractive well pair potential
in terms of a density Padé analysis and compare
with the corresponding exact (Monte Carlo) results
available in the literature for both the ladder and
complete theories with the objective of selecting out
the best extrapolant in each order. Section VI has
our conclusions.

II. HARD-CORE SQUARE-WELL POTENTIAL

As we are initially mainly interested in how close
one can approach the ground-state energy of the
many-fermion Schrédinger equation—for inter-
mediate density and coupling—we pick the simple
(yet sufficiently rich in physical content) pair poten-
tial

w0, F<C
V(r)={—V,, c<r<R (6)
0, r>R

whose parameters for liquid helium® and nucleonic
matter’ are found in the literature. We define,
respectively, the dimensionless density x, attractive
well strength A and attractive well range a parame-
ters by
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ke A= mV, » _R—c Using effective-range theory* and matching the
X =Kpc, A= # (R —c), a= : radial wave function and its first derivative at
(7)I r =R, we finally obtain the four expressions
tanV'A
kra=x|14a |1— Ve ] 2 (8)
3
1. 3 1 3.3 tanV'A l_tan\/x 3 l+tan2\/7» tan\/x
Srod kp=75a°x Ve ] 1+a Vi X 9
14 1+2a tanV'A 1
A (OkE=t (@41 [1-—32 ‘ i — 33 (10)
R (14+a)A 1 tanV'A A"’
+a
3 o8 3
A0k} = il [ i 3(¢x>3 [(3&—6)tanﬂ+ﬂ(6—h)+—V')C(Z\/Xtan\/X—A+2—2 secV'R)
+ %Mtanﬂ——\/x)— vi y (1—secV'A) ‘ ]—> —%x3. 1y
a a A—0

We note that the pure hard-core limits indicated yield the well-known values for a, 7y, 4,(0), and 44(0) as c,
—c, yc and — —c , respectively. Also, for c—0 and A— —A, Eqgs. (8) to (11) reduce, as they should, to those

of the repulsive bamer potential, Egs. (4.90) to (4.94), of Ref. 4.

III. NEW PERTURBATION SCHEME

The four expressions (8) to (11) appear in the en-
ergy (1) in the nine different combinations shown
there. These nine terms have been expanded in
powers of A, around A =0, to sixth order by two dif-
ferent computer algorithms: (i) a FORTRAN subrou-
tine that manipulates double series and (ii) a LISP
program for algebraic manipulation called
REDUCE, ® which carries out and evaluates nth-order
derivatives. The results of these two schemes ap-
pear in Appendix A.

Substituting into (1) there results the double
series, in x and A, for the energy

€= 2 €;(x)M = 2 2 €jla)x’d , (12)
i=0j=0

valid for ladder, v=2 and 4, and complete v=2,
theories. Clearly, €;(x)A/ represents the jth-order
perturbation correction to the energy of the hard-
sphere fluid, at density x, due to attractions between
particles. For the complete theory with v=4 we
have an expression identical to (12) except that the
i=4 term is not x* but rather x*Inx, the coefficient
of the x* term (of smaller order than the x “Inx one)
being unknown at present. The coefficients €;;(a)
are listed in Appendix B up to 4th order, i.e.,
j=123,4. In Secs. IV and V we treat the term

€o(x) in (12), namely, the energy per particle of the
hard-sphere fluid, in both the ladder and complete
pictures.

IV. HARD-SPHERE FERMIONS
IN LADDER APPROXIMATIONS

We will henceforth restrict ourselves to v=2 fer-
mion matter. In this section we try our methods on
the ladder approximations because there is an exact
representation of the sum of all the diagrams in this
approximation in terms of the solution of an in-
tegral equation, the Bethe-Goldstone equation. Nu-
merical solutions for the hard-sphere case are re-
ported by Baker et al.” These provide the oppor-
tunity to compare the results of our methods with
an exact answer. Instead of the energy becoming -
infinite at a finite value of kr, as we expect in the
physical problem, the ladder approximation remains
finite at all values of kr. An examination of the
numerical solution reveals that the ladder energy
behaves approximately like (kpc)® as kp— oo.

By putting A=0 in Eq. (B3) of Appendix B, we
obtain

10E, 4 .
LT —1+ 3 Dx'+0(%  (13)

€)=z 1t 2
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TABLE II. Expansion coefficients for €y(x), Egs. (13) and (15).

Case D] Dz D3 D4
Ladder 0.353 678 0.185537 0.460 448 0.051 131
Complete 0.353678 0.185537 0.384 144 —0.024 700

in units of the ideal Fermi-gas kinetic energy. The
D; are listed in Table II. For reasons explained in
Sec. V in regard to the physical energy, it is better
to study €o(x)~!/? instead of €y(x) directly. Here
we have, by the observation made above, the

result that eg(x)~!/? is proportional to x 2 as

x=kpc— . The procedure is to extrapolate the
function values to positive values of x from the
series coefficients given in Table III. We give our
best results based on the Padé approximant method®
as

eo(x)=~[1/3](x)"%=

2
140.249 3688x -+0.089 958 608x 2 +0.221 7122x3
1+0.072527551x '

(14)

A comparison is given in Table IV with the results from the solution of the integral equation. The solution of
the integral equation is thought to be accurate to within about 0.1%. We find the accuracy of this result to be

satisfactory for our purposes.

V. HARD-SPHERE FERMIONS
IN THE COMPLETE THEORY

Setting A=0 in the energy formulas of Appendix
B we quickly arrive at the fourth-order polynomial

E()(x)=1+D1x +D2x2+D3x3+D4x4+ e
(15)

with further terms being unknown at present. The
coefficients D; are given in Table II. Equation (15)
is our only concrete knowledge of the gound-state
energy of a two-species fermion hard-sphere fluid.
On physical grounds we expect that the energy
should diverge at a value of x, say xp, correspond-
ing to a random close packing of the spheres. For
the classical fluid of hard spheres, it is known® from
experiments (with ball bearings, for instance) that
the random-close-packing density occurs at about
0.86 times the regular close-packing density
po=V'2/c3, the latter occurring when the spheres of
diameter ¢ are packed in a face-centered-cubic or
hexagonal-close-packing arrangement. We expect
quantum hard spheres to random close pack at a

density smaller than the classical value of
0.86V2/c3, because of well-known diffraction ef-
fects. (The latter are responsible, e.g., for making
the total cross section for the scattering of two iden-
tical hard spheres equal to four times the geometri-
cal cross section of mc?, for zero energy, and twice'”
that value for infinite energy.) For bosons, the
random-close-packing density found in a recent
study,!! which agrees very well with available
Green’s-function Monte Carlo data points, is about
0.35 times py=V"2/c3; this is not inconsistent with
our expectation as described above. For the present
problem we expect the random-close-packing densi-
ty for fermions to be strictly less than the boson
value, since Pauli exclusion effects provide addi-
tional repulsion between the hard spheres. The pole
€o(xp)= o must, moreover, be a second-order pole,
since it is essentially due to uncertainty principle ar-
guments, namely, that the energy will diverge as the
inverse of an available “length” squared. This
property is clearly absent from (15) and one could
not expect more, given that it is a low-density ex-
pansion.
We found it convenient to convert (15) into

TABLE III. Expansion coefficients for eq(x)~'/2 Eq. (16).

Case Fy F, F3 Fy
Ladder —0.176 833 —0.045 863 —0.194 827 0.091995
Complete —0.176 833 —0.045 863 —0.156 677 0.109 672
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TABLE IV. Comparison of the solution of the in-
tegral equation and the prediction of the [1/3] Padé ap-
proximant for eq(x)~!/2.

integral

X [1/3] equation
0.25 0.95025 0.949 81
0.50 0.88197 0.88124
0.75 0.79197 0.79391

1.00 0.686 86 0.694491
1.50 0.476 64 0.49758
2.00 0.314928 0.34211

3.00 0.142302 0.147 060

€o(x) "V 2=14Fx +Fyx*+ F3x?
+Fx*+0(x%), (16)

where the coefficients F; are listed in Table III, and
construct to (16) the Padé table, ie. all
[L/M](x);L,M =0,1,2, ... for L +M <4 and look
for those having a zero at real, positive x. The only
such solutions appear in Table V where, in addition,
we list the corresponding density pp, in units of p,
where €y(x) will have the sought-after double pole,
recalling from (2) that

p/po=x3/3V2m? (v=2). (1n

The best candidate is clearly the one given by the
[3/1] Padé, which yields a random-close-packing
density of about one half the boson value of Ref. 11.
The suggested extrapolant to (15) is therefore

14+0.699 986 10x
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FIG. 1. First- (1) through fourth- (4) order energies,
Egs. (21), for the soft repulsive barrier potential of
height unity and range R as function of y =k.R, for
both the complete (C) and ladder approximation (L)
theory, as taken from Table III of Ref. 3. Both theories
are identical in first and second order.

2

€o(x)~[3/1](x) 2=

1+0.523 152 76x —0.169 644 17x%2—0.188 780 69x

(18)

We next discuss the first four orders in the perturbative correction to this energy, due to the presence of at-

tractive forces.

VI. TREATMENT OF
ATTRACTIVE FORCES

In order to compare with exact results previously
carried out with Monte Carlo techniques up to
fourth order for both the ladder and complete

theories, we shall study only the purely attractive
square-well-potential problem. (The exact results
are listed in Table III of Ref. 3. Note, however,
that the opposite sign convention from ours for the
potential is used there, i.e., in Ref. 3 plus is repul-
sive, and here plus is attractive.) This will permit

TABLE V. Location of zero of [L /M](x) Padé approximants to €q(x)~'/2,

Eq. (16).
LM 1,1 1,2 2,1 2,2 3,1
xp 2.2926 0.4323 0.2915 1.2159 1.93915
6.1449
pr/po 0.2878 0.0019 0.0006 0.0429 0.1741

5.541
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TABLE VI. Coefficients of the form Eq. (20) in orders 1—4. Suffixes ¢ and [ refer to

complete and ladder theories, respectively.

Order fo fi f2 f3
1 1 0.0 0.12000 0.0
2 1 —0.437161 —0.142 857 0.102011
3¢ 1 —0.864029 —0.238029 0.360 693
3] 1 —0.864 029 —0.090079 0.285792
4c 1 —1.289476 —0.251810 0.871 143
4] 1 —1.289476 0.186 645 0.450267

us to select from the complete Padé approximant
which best fits the data and thus suggest specific
approximants for each order. Thus, we take, ac-
cording to (7),

R —¢

c=0, a= — 00 ,

ax=kg(R —c)=kpR=y , (19)

so that our density variable is now y. Substituting
in the energy formulas of Appendix B we get, for
the first four orders, a form

fotfiy +fw+fy’ (20)

for each expression

——€;(y)/0.035368y , (21a)
—=6,(»)/0.014 147 11y , (21b)
——€3()/0.0057262y , 21¢)
— —-€4(y)/0.002 3204y . 21d)

The coefficients f to f3 appear in Table VI. (Note
that ladder and complete theories are identical in
orders one and two.) In Fig. 1 we have plotted, us-
ing the Monte Carlo data of Ref. 3, the quantities
of Eq. (21). We observe the following features. In
first order, the behavior is quite mild and varies by
less than a factor of 2. In second to fourth order

the dominant feature is that these higher-order
terms drop precipitously with increasing density.
This effect means that, for the same strength of at-
traction, the higher-order terms become rapidly less
important as the density increases. A minor excep-
tion is that the complete fourth-order term (labeled
4C in Fig. 1) goes through a rather small minimum
at about y=1.5 and then increases slowly.

Table VII gives the best-fitting Padé approximant
of (20), which turned out to be the [3/0] for first
and the [0/3] for second order. These are listed up
to y=kpR=3. (For comparison, the saturation
density of liquid helium three is x=1.3.)

Finally, Tables VIII and IX give the correspond-
ing best-fitting extrapolant to third and fourth or-
ders, where we found it necessary, because of the
sharp decrease in y, to introduce the exponent 1/n
to achieve better fits, in both (19¢) and (19d), and
consequently the general form (18). In third order,
Table VIII, we find that n=3 gives a good fit near-
ly to y=2 for the ladder case, but only up to y=1
for the complete. On the other hand, n=2 gives a
poorer quality fit but not too bad to about y=1.5.
In fourth order, Table IX, the ladder case, n=3§,
gives a good fit to about y=1.5. For the complete
there is a “knee” in the curve at about y=1.5 and
we cannot go beyond this point with the number of
available coefficients in the y series and this
method. We find that n=>5 gives a good fit to y=1
and perhaps even to y=1.25.

TABLE VII. Comparison of best Padé approximant, for first and second orders, to Monte Carlo (MC) data for
several values of y =kzR for the purely attractive square well of range R, depth unity.

— >y — 5y
y MC 0.035367 76y°[3/01(y) MC 0.014 147 11y°[0/3](p)
0.25 5.567x10~* 5.5677x 10~* 1.960% 10—* 1.95303%10~*
0.50 4.5516x 1073 4.5536x 1073 1.346 %1073 1.34440x 1073
0.75 1.589x 102 1.5928x 1072 3.827x1073 3.82430x 1073
1.00 3.936x 1072 3.961 19102 7.495% 1073 7.53481x 102
1.50 1.47517x 10! 1.5159x 10! 1.715x 1072 1.72595x 1072
2.00 3.901006% 10! 4.1875% 102 2.868 1072 2.78645x 1072
3.00 1.574 696 1.96825 5.367x 1072 4.663311x 1072
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TABLE VIII. Comparison of best Padé approximant to [——%e;(y)/0.00S 7262y]'/"* with MC data, for the ladder

(lad) and complete (comp) theories.

[0/3] [0/3] [0/3]

y MC(lad) n=3 (lad) MC(comp) n=3 (comp) MC(comp) n=2 (comp)
0.25 0.92158 0.921624 0.91876 0.918593 0.88065 0.880529
0.50 0.83359 0.833793 0.82368 0.822 607 0.74755 0.747 561
0.75 0.738 81 0.742031 0.71990 0.720031 0.61081 0.616348
1.00 0.64520 0.651572 0.62050 0.618 845 0.48877 0.498 391
1.50 0.48391 0.489 154 0.48303 0.441931 0.33571 0.318 681
2.00 0.37625 0.361501 0.45056 0.310724 0.30241 0.205 605
3.00 0.260 40 0.200025 0.43527 0.158 652 0.28717 0.094 121

VII. CONCLUSIONS

The raison d’etre of this paper is contained in Sec.
III: The new perturbation scheme for the ground-
state energy of the many-fermion system. The idea
is to develop a way to expand about the hard-sphere
gas in terms of the interparticle attraction. Our ap-
proach is to make use of the low-density behavior,
which is known to all orders in the interparticle po-
tential, together with such other information as is
available to develop expressions as functions of kg
for the first few derivatives with respect to the at-
tractive part of the interparticle potential. With
these expressions in hand, one can then use them to
complete the ground-state energy as a function of
kr without great difficulty, and to determine the sa-
turation density and energy. We have previously in-
vestigated, with considerable success, the many bo-
son problem™!! by these methods. We were greatly
assisted in that investigation by the Monte Carlo
determination'? of the hard-sphere boson-gas

ground-state energy, and feel that similar results
would be desirable for fermions.

Specifically, we conclude that our approach looks
like a practical one. The higher derivatives in the
attraction decrease (relative to the lower ones) quite
rapidly in kr and are well determined by the exact
low-density results for small kz so that for practical
purposes our representations should do very well
here. Fortunately, the low-order derivatives behave
relatively simply so that we conclude that our ex-
pressions for them are quite satisfactory.

Therefore, in this paper we have developed a
sound basis for the application of this method to
physical problems and expect to do so in the future.
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APPENDIX A: SCATTERING-PARAMETER FORMULAS

This appendix summarizes expansions of the two-body scattering parameters a (scattering length), v, (effec-
tive range), 4,(0), and 4 (0), as defined in Eqgs (8)—(11) for the potential described in Eq. (6). The series ex-
pansions for these scattering parameters and for some related quantities, which appear in the ground-state en-

TABLE IX. Comparison of best Padé approximant to [—%64@)/0.002 3204y]'/" with
MC data for the ladder (lad) and complete (comp) theories.

[0/3] [0/3]

y MC(lad) n=38 (lad) MC(comp) n=>5 (comp)
0.25 0.954 88 0.955653 0.92370 0.924 611
0.50 0.903 50 0.904 102 0.83094 0.831277
0.75 0.846 10 0.847059 0.72722 0.728 354
1.00 0.78503 0.786 520 0.62652 0.624 935
1.50 0.66541 0.662 887 0.52755 0.442 306
2.00 0.57603 0.546463 0.569 39 0.307278
3.00 0.45192 0.360293 0.62194 0.153446
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ergy, in the notation of Eq. (7) are the following:

kpa =x[1—a( A+ 15224 55 A2+ g A4 Tisas A+ os A+ )1, (A1)
(kpaP=x2{1—a[ *A+ (1 — 5N 2+ (55 — 2 @)A} + (505 — pr @A
+ (i35 — s ON + (i — s A+ - 1} (a2)
(kpa)=x3{1—a[A+(F — 3N+ (505 — r@ + 7 I+ (55 —msa + wa A
(siss — s @ + s @ A
+ (o055 — o @+ mas @ A+ ) (A3)

68 248 508

(kFa)4=x4{1—a[%}‘+( 15 3‘1)}‘2 (55 315 150!—!- 27a )A'S'H 2835 1575 + o 2_8_11a3))\’4

5528 352 66 3 8 3.5
+(i50s — @+ EE — s @A
87376 95962 20456 5 84 3.6
+(Gosror5 — To1a5 @ T e @ — mss @A I}, (A4)
(kpa)'In | kpa | =(kpa)*Inx to O[(kgpa)*], (A5)
23 3L 1t 2 2 1 26 24 157 2y43
Troakp=x"{5—a[(s —7a )}‘+(15"9a_315a)}‘ +(55—ma—ma’)r
254 4882 4 1382 176 19802 9,45
(355 — T @ — Ts595 @ A+ (35555 — o @ — ez @ A
21844 47981 5142932 5106
. 3 +( 6081075 3274425 & T e38s12875 & JA°+ : ]} ’ (A6)
7r0a2kp(kpa)
4L 4 2 6 2, 1 32, 8 8 52 323
=x‘{3—al5— }"H _90‘ 315a+45a))» +(sz —ma— 2:;350"+"¢725a))L
28 508 2048 5 1406 3004
(5505 — 752 + 555"+ s @A
5528 352 118493 25904 5
(Z775 — s 2+ w1075 @ a’+ Tooras @A
87376 95962 2042882 5 9569123 3146 .
(2m325 — Traas @+ 70575 4 Gasiaars @A I, (A7)
3 4 1 3 1 o 7 1 4
SOk kpa)=x*[— 3+ (5 + e+ 7o+ e+ (5 + o —al—pma’—ahA?
67 143 2 1259 3 82 4 3
+(Ge + 0~ w0 — ma @ — T A
29 7633 5 50453 3 4 4.4
+(5rm + B ¥ — B @~ Tasen @ T @ A
50521 189037 98107 5 609157 3 T30 4y .5
+(ossea0 — B ® — w . — ImiE® — Toem @ A
(0558 4365313 40379113 o
+ 287400960 1556755200 & ~ 3353011200
384054677 3 1794487 4.4 6 ) »
326918592000 & T 638512875 A ] ’ (A8)

A,(0)k}
=x31—al(++ra+mal+ 5 )M/ 1+a)+ (5 +ga+ e+t ma’+5ea) A /1+a)?

23

Foe 4 e+ e’ + @+ et + o a YA/ 1+a )

62 478 518 2 617 3 _L 4 2 5 2 6 4
Has +amot+tom e + e tord + o+ mssa (A/1+a)

1382 7178 231 5, 80326 362254 23494 s
+( 505 T ¢+ w2 s @ a’+ e @+ Tosisens
2764 e 7 5
~+ Josassrs @ o+ sesnes @ (A/1+a)
(218 58739 3909736 699376 248896 4
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APPENDIX B: GROUND-STATE ENERGY

In this appendix we list the expansions (complete and in the ladder approximation) for the shift in the
ground-state energy (relative to the ground-state energy of a system of noninteracting fermions) caused by the

interaction (6) and specified in Appendix A. The expansions are in powers of x and A for the multiplicities
v=2 and 4.

For v=2 the complete series is
AEm

- =(1.0610X 10 'x +5.5661 X 1022 +1.1524 X 10~ 'x3—7.410X 10 x4 - - - )
N#kg

+A [x(—3.5368>< 10~ 2a)+x%—3.7107X 10" %a)

+x3[2.1221><10"3a3—1.975><10~2a— (1za) (6.3662X 10323 +3.8197 X 10~ 22

+9.5493% 1022 +9.5493 X 10~2) ]
+ x%4.3295% 1032 ®+3.9200x 10322 +9.880 X 1032 +2.6133 X 10~ 3) + - - - ]
+A2 [x(—1.4147>< 10~ 2a) +x%(6.1846 X 103> —1.4843 X 10~ %a)

+x3 [2.6273)( 1033 +6.583% 10322 —7.900x 10~ %

__a
(14a)?

(6.0630X 10~ *a*+5.4567 X 103> +2.1827 X 10~ a2
+ 4.4563x 1022 4-3.8197 X 1072)
+x4(—1.4432X 1032 +3.1576 X 1032 — 1.6733 X 10322 4-3.0809 X 10~ *a
+ 1.0889x1073) 4 - - -
+A3 [x( —5.7262X 10" %a ) +x%4.9476 X 10322 —6.0079 X 10 3a)
+x3 [1.424><10—3a3+5.267><10-3a2—3.198><1o—3a
a

~Utar (6.0630X 10~°a°+7.2757X 10~ *a*+4.0016 X 10~*a*
a

+ 1.2328X 10222 +2.0918 X 102 + 1.5461 X 10~2)

x4 —2 0654 X107 32*+2.7893 X 10323 —1.9430 X 103 2

+8.8821 X 10 % +4.4282X 10~ %)+ - - -

4% | x(—2.3204X 103 ) +x2(2.9921 X 1032 —2.4346 X 10 %)
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+x3(5.904% 1023 +3.185x 10322 —1.296 X 103

- (1f )4(6.1243><10*6a6+9.1864><10‘5a5+6.4305><10‘4a4
a

+2.6451 X 10323 +6.6620 X 10322 +9.6604 X 10 3a
+6.2651x1073) ]
+x4(—2.0214X 10 3a*+2.1054 X 1032 ® —1.2979 X 10322+ 2.1438 X 10— %a

+1.7954 X104+ - - - ]+ . (B1)
For v=4 the complete series is

AEm
N#kE

=(3.1831X1071x +1.6698 X 10~ 'x2+3.9018 X 10~ 1x3+4.2258 X 10~ 'x“Inx + - - - )
+A [x( —1.0610x 107 'a)+x%(—1.1132X 10" a)

+x3 [6.3662>< 10323 -2.3103%x 10" a

a

~ 1) 1-0610X 10~ 22 +6.3662X 10~ 222 +1.5915X 10~ 'a +1.5915x 10~"),

+ x*nx(—5.6344 X 10" 1) + - - -
+A2 [x(—4.2441 X107 2a)+x%(1.8553 X 10~ 202 —4.4528 X 10~ )

+x3 [7.8819X10‘3a3+7.7010>< 107222 —9.2412x 10~ 2

—~ (1f 7(1.0105X 10 +9.0946 X 10~ *+3.6378 x 10~a’
a

+ 7.4272X 10~ 2 +6.3662 X 10~2) }

+ x*nx(2.8172%x 107122 —2.2538 x 10~ la )+ - - }
+A3 [x(—1.7179>< 102 ) +x%(1.4843x 10~ 222 —1.8023 X 10— 2a)

+x3 [—2.0894>< 10303 +6.1608 X 10202 —3.7404 X 102

nry g _(1.0105X 10~ %2’ +1.2126 X 10~ 3a* +6.6694 X 10323

(14a)?
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+2.0547X 107202 +3.4863 X 1020 +-2.5768 X 10~2) ]
+ x*nx(—6.2604 X 1023 +2.2538 X 10~ 122 —9.1224 X 10~ 2 )+ - - J
+A4 [x( —6.9613 %103 ) +x2(8.9763 X 10322 —7.3035 X 103 )

+x3 [—5.8635><10-3a3+3.7257><1o-2a2—1.5158><10-2a

- (1: )4(1.0207><10—5a6+1.5311><10-4a5+1.o718><10-3a“
a

+4.408 X 1033 +1.1103X 10222 +1.6101 X 102 + 1.0442><10-2)]

+ x*Inx(5.2170X 10 3a*—7.5125 X 10223 +1.3630 X 10~ '22—3.6966 X 102 ) + - - - ]

+. . (B2)

In the ladder approximation for v=2

AELm
N#k}

=(1.0610X 10" 1x +5.5661 X 10~2x2+1.3813 X 10~ 'x3+1.5339 X 10~ 2 *+ - - - )
+A [x(—3.5368>< 10~ %2a)+x% —3.7107X 10~ %)

+x3 [2.1221x10—3a3—4.2641>< 102

— (1za) (6.3662X 103> +3.8197 X 10~ 2% + 9.5493 X 102 +9.5493 X 10~2) ]

+ x*4(4.3295% 10323 +9.5490 X 10322 —2.0452 X 10~ 20 +6.3660X 10~3) + - - - ]

+A? [x(_1.4147>< 1020 ) +x%(6.1846 X 10302 —1.4843 X 10~ %)

+x3 [2.6273>< 10303 4+1.4214x 107222 —1.7057 X 102

——  (6.0630X 10~ %a*+5.4567 X 10323 +2.1827 X 10~ 22

(14+a)?

+4.4563% 102 +3.8197x 1072)

+x%—1.4432%103a*—5.34x 10~ %23+1.8184 X 10222 —1.0303 X 10— 2a
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+2.6525X1073) 4 - -
+A3 [x( —5.7262X 1073 ) +x2(4.9476 X 10322 —6.0079 X 10 3a)

+x3 [5.7644><10—4a3+1.1371>< 107222 —6.9038 X 10~ 3a

a

BT (6.0630X 10™°a*+7.2757X 10~ *a*++4.0016 X 10>
a

+1.2328X 107222 +2.0918 X 10~ 2q +1.5461 X 10™2)

+x4—1.6365X 10 3a*—4.4677x 10323 +1.3075 X 10222 —5.0443 X 10 3a

+1.0787X 1073+ - - -

+A4 {x( —2.3204% 107 32) +x2%(2.9921 X 10322 —2.4346 X 10 %a)

+x3 [—4.2697>< 107423+ 6.8768 x 10322 —2.7976 X 103

_ (1f 7(6.1243X107%°+9.1864 X 10~"a°+ 6.4305 X 10~*a*
a

+2.6451 X 10323 +6.6620 X 10322 +9.6604 X 10 3a

+ 6.2651><10-3>]

+x4—1.0448 X 10 3a*—5.1086 X 10323+ 7.6080 X 10322 —2.3986 X 103
+4.3735x 10~ %) + - - - ]+ ) (B3)

For v=4 in the ladder approximation

AELm

[PTE =(3.1831X107"x +1.6698 X 10~ 'x>+2.8708 X 10~ 'x*+4.6017 X 10~ 2x*+ - - - )
F

+A [x( —1.0610X 10~ ') +x*(—1.1132X 10~ %)

+x3 [6.3662>< 107323 —1.2792% 10" 1o

__a
(1+a)

(1.0610X 10223 +6.3662 X 10222 +1.5915X 10~ la +-1.5915 X 10-‘)]

+x%1.2988 % 10~ 20®+2.8647x 107222 —6.1356 X 102 +1.9098 X 10~ 2) + - - - ]
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+A? [x( —4.2441 X 10 %) +x%(1.8554 X 10222 —4.4529 X 10%a )

+x3 [7.8819>< 1033 +4.2642X 10222 —5.1171X 10~ 2

a
(1+a)?

(1.0105X 1032 *+9.0946 X 10323 +3.6378 X 1022

+ 7.4272X 1022 4+-6.3662 X 1072) ]
+x4—4.3295x103a* —1.601 X 10~ %23+ 5.4551 X 1022
—3.0909 X 1022 47.9575X 10~ 3) + - - - ]
+A3 [x(—1.7179>< 107 %a) +x%(1.4843 X 10222 — 1.8024 X 10~ %)
+x3 [1.7293)(10_3a3+3.4113><10_2a2—-2.0711><10'2a
a

U+ )3(1.0105><1o~“¢:z5+1.2126><10—-3(14%.6694)(10_30[3
a

+2.0547X 10" 22?2 +3.4863 X 102 +2.5768 X 10~2)
+x%—4.9094 % 10"3a*—1.3403 X 1020 % +3.9224 X 10~ 2a 2
—1.5133X 10722 +3.2360X 10~ 3) 4 - - -

+A4 [x (—6.9613% 107 3a ) +x2%(8.9764 X 10322 —17.3037 X 10 3a)

+x3 [—1.2so9><10-3a3+2.0630x 107222 —8.3928 x 10~ 3a

_ a
(14a)

(1.0207 X 10 5a%+1.5311 X 10~ *a¢°+1.0718 X 10 3a*

+4.4085% 10323 +1.1103X 1022+ 1.6101 X 10~ %a + 1.0442 % 1072)

+x4(—3.1344 %10 3a*—1.5326 X 10~ 22> +2.2824 X 10~ %a 2

B4
—7.1959X 1032 +1.3120X 10~ 3) 4 - -+ |4 -+ - (BY



3588 GEORGE A. BAKER, JR. et al. 26

*On leave from St. Louis University, St. Louis, MO.
Universidad Nacional, La Plata, Argentina.
Universidad Nacional, La Plata, Argentina.
13. W. Clark, Prog. Part. Nucl. Phys. 2, 89 (1979); J. G.
Zabolitzky, Adv. Nucl. Phys. (in press).
2W. Lenz, Z. Phys. 56, 778 (1929); K. Huang and C. N.
Yang, Phys. Rev. 105, 767 (1957); T. D. Lee and C. N.
Yang, ibid. 105, 1119 (1957); 116, 25 (1959); 117, 12
(1960); P. C. Martin and C. De Dominicis, ibid. 105,
1417 (1957); V. M. Galitskii, Zh. Eksp. Teor. Fiz. 34,
151 (1958) [Sov. Phys.—JETP 7, 104 (1958)]; V. N.
Efimov, Phys. Lett. 15, 49 (1965); 17, 80 (1965); G. A.
Baker, Jr., ibid. 140, B9 (1965); M. Ya. Amusia and V.
N. Efimov, Ann. Phys. (N.Y.) 47, 377 (1968).
3G. A. Baker, Jr., Rev. Mod. Phys. 43, 479 (1971).
4P. Roman, Advanced Quantum Theory (Addison-
Wesley, Reading, Mass., 1965), pp. 175—84; L. S.
Rodberg and R. M. Thaler, The Quantum Theory of
Scattering (Academic, New York, 1967), pp. 45—47.

5T. W. Burkhardt, Ann. Phys. (N.Y.) 47, 516 (1968); G.
A. Baker, Jr., M. de Llano, J. Pineda, and W. C. Stwal-
ley, Phys. Rev. B 25, 481 (1982).

6A. Hearn, computer code REDUCE (Rand Corporation,
1700 Main St., Santa Monica, CA 90401.

’G. A. Baker, Jr., J. L. Gammel, and B. J. Hill, Phys.
Rev. 132, 1373 (1963); (unpublished).

8G. A. Baker, Jr., Essentials of Padé Approximants
(Academic, New York, 1975); G. A. Baker, Jr., and P.
Graves-Morris, in Encyclopedia of Mathematics and its
Applications, edited by G. C. Rota (Addison-Wesley,
Reading, Mass., 1981), Vols. 13 and 14.

9G. D. Scott and D. M. Kilgour, J. Phys. D 2, 863 (1969).

108, 1. Rubinow and T. T. Wu, J. Appl. Phys. 27, 1032
(1956).

HG. A. Baker, Jr., M. de Llano, and J. Pineda, Phys.
Rev. B 24, 6304 (1981).

12M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A
9,2178 (1974).



