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Three-photon resonance enhancement of third-harmonic generation and multiphoton
ionization is treated for a slab geometry configuration. Striking pressure effects which
become important at concentrations n > 10'2/cm? for narrow-bandwidth short-pulse lasers
are predicted for both the third-harmonic signal and the multiphoton ionization. For ex-
ample, part of the third-harmonic signal exits the slab simultaneously with the laser pulse
while another part is time delayed for small detunings from resonance. At intermediate
detuning from the three-photon resonance the two parts can interfere. Multiphoton ioni-
zation yields near three-photon resonance are strongly suppressed under certain condi-
tions, and peaks may occur for proper detunings on both sides of the three-photon reso-
nance. A detailed experimental verification is suggested for Xe.

I. INTRODUCTION

In a recent study, Miller et al.! observed ex-
tremely large shifting and broadening of multipho-
ton ionization signals associated with the three-
photon resonance between the 5p® level and the
5p36s[*P3,,)J =1 level of Xe. Results were ob-
tained with a tightly focused laser beam over the
pressure range of 10~° to several Torr. Similar ef-
fects were seen in Kr and Ar. Accompanying the
increase with pressure in width and shift of the
resonance, a strong decrease in ionization yield was
simultaneously observed. Payne, Garrett, and Bak-
er’ accounted for the general trend of these effects
in a theoretical model which took account of
coherent excitation, ionization, and third-harmonic
generation self-consistently in a laser beam pro-
pagating through a focal volume. In this treat-
ment it was demonstrated that dramatic effects re-
sult from the accumulated influence of the third-
harmonic field on the atomic response of atoms
along the propagating laser pulse. In the previous
theory the beam geometry was greatly simplified
and the effect of the 7 phase change in the laser
field in passing through the focus was simulated.
The theory contained several approximations
which were difficult to evaluate as to their accura-
cy. Consequently, it is desirable to work out the
theory for slab geometry where we shall see that
only well-established approximations are required.
This simplified treatment also predicts other ob-
servable effects which could be observed using

commercially available pulsed dye lasers.

II. MODEL DESCRIPTION

We consider a plane wave normally incident on
a slab of gas of thickness z,. Thus, the laser field
is of the form

E(z,t)= ] Eo(t —z/c)cos[wt —kz +¢(t —z/c)] ,

(1)
where we assume plane polarization in the y direc-
tion j, and E(t —z/c) is (on the average) a max-
imum when its argument is zero and it is very
small if |t —z/c | >> T, Where 7 is a measure of
the pulse length. For transform-limited bandwidth
lasers, ¢ will be constant and E, will change only
over time scales ~1,. However, we can simulate
broad bandwidth lasers by considering the oc-
currence of stochastic fluctuations in E, and ¢. In
this case g is the length of time over which E,
takes on large values, and both E, and ¢ undergo
large changes on much shorter time scales ~1/I;,
where I'; is the laser bandwidth.

In the previous treatment of the present problem
(but for pulse propagation through a focal volume),
the problem was described by a second quantized
effective Hamiltonian which was a function of the
position along the laser beam as a result of (1) the
focusing of the beam and (2) the progressive influ-
ence of atoms within the laser volume with other
“downstream” atoms in the direction of propaga-
tion of the laser pulse. Here we will adopt a more
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transparent model which is capable of describing
the new cooperative effects while retaining a clear
physical picture of the source of various contribu-
tions to multiphoton ionization and third-harmonic
signals.

Thus, if we consider the propagation of a laser
pulse at frequency w which is near a three-photon
resonance between the ground state |0) and an
upper level | 1) of a target gas, then it is well
known from nonlinear optics that in such a situa-
tion a polanzablllty at frequency ~3w will be gen-
erated in the gas.’ If P3a,(z,t) is this polarizability
the resulting field is given classncally by

Eso(z,) —j—f dr e 3“’ t—|z—2'| /) -

()

If w, =w;—wy is the resonance frequency for one-
photon excitation of the upper level, we assume
that the detuning Aj=3w—w, from the three-
photon resonance is such that | Ay | is small as
compared to the detuning from any other three-
photon resonance.

An electromagnetic field at frequency 3w is
strongly dispersed. In particular, the wave vector’s
length is

k3o =3w/c —2mno,Py /(ficA,) , 3)

where Py, is the dipole matrix element between the
ground state and the near resonance excited state
and n is the atomic concentration. It is interesting
to note that a wave packet with central frequency
near 3w would propagate at the group velocity

Vi '=dks,/d (30),

V, ' =1/c +2mnow, Py, /(ficAj)
=k/Aj+c7!, @

where
1

|W(z,t)):ao(z,t)e_i%t[0)+a1(z,t)e_iw"|1)+ i a,(z,t)e
n+0,1

357

k=2mnw,P} /fic =31 /2)(c /0, *nyy

for a J =0 to J =1 transition, with ¥, being the
Einstein A4 coefficient for the transition. The wave
packet would also decrease in amplitude due to
near resonant elastic scattering from concentration
fluctuations. After a distance z, the decrease in
amplitude would be

exp(—no,.z/2)=exp( —yoikz /2A3) ,
since
0. =(37/2)(c/w, 73, /AY .

These effects involving the dispersive properties of
the medium and the scattering from concentration
fluctuations have been reviewed to orient the
reader in making connections with standard third-
harmonic generation theories and to aid in inter-
pretation of the results which will be derived. We
note here that if y5,~4 X 10%/s, ¢ /0,~2Xx 10~¢
cm, and n ~3X 10'%/cm’, the group velocity be-
comes much less than ¢ when |Ag| <10'/s (< 1-
A detuning) and the attenuation of the amphtude
with z for a wave packet becomes rather rapid.
We have it is hoped made the point that the pro-
pagation situation with the third-harmonic signal
within | Ag| <10'%/s is very complex; yet very
near to the resonance even a very weak E;, may
change the atomic response considerably, and it is
imperative that any treatment of atomic response
incorporate the effect of both E,, and E(z,?) self-
consistently.?

We consider the behavior of an atom at depth z.
Let the Hamiltonian be

ﬁ(z)=ﬁ0(z)—ﬁyE(z,t)—ﬁyE3w(Z,t) , &)
and | W(z,t)) represents the time-dependent state

vector of an atom at z,

—io,t

"In), (6)

where H(z) is the Hamiltonian of the isolated atom, and we include the interaction of the atom with both
the laser field and the third-harmonic field. In the following we make a two-state approximation in deriving
expressions for ionization and third-harmonic rates. Although the procedure is a familiar one, we resketch
it here to keep the physical picture clearly in mind. The unit operator is T~ [0)€0| + | 1)(1] _Pl +P2
The field due to the polarizability at 3w is given by Eq. (2) with

Piolz)=Tn{W(z0) | P, | W(z,t))=Tn[e

We endeavor here to treat the situation where
3w —w, is smaller than a few-hundred wave num-
bers and 7 < 10'®/cm’, so that

—i(e;—awglt

ay(z,t)ap(z,t)+c.c.] . (7

2m(n, —1)zg/Ao<< 1,

where n,, is the refractive index at the laser fre-
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quency and A, is the laser wavelength. With these
restrictions on n and o the dispersive properties at
frequency 3w will be dominated by the near one-
photon resonance, and a two-state plus ionization
continuum solution to the problem is appropriate.
Further, we can use o /k,=c in dealing with the
propagation of the laser pulse in situations where n
and o are restricted as described above and power
densities in the unfocused laser beam are suffi-
ciently low so that f _ o adt << 1, where Q3 is
the three-photon Rabi frequency at beam center.
In the case of the three-photon resonance in Xe
studied by Miller and Compton,' we estimate that
with a beam diameter of 0.1 cm and a pulse length
of 7~4X 10~ s the energy per pulse would have
to be €~400 mJ in order to violate the inequality

. Q3dt << 1. Thus, with present commercial

|

lasers which have bandwidths of ~0.05 cm~!,

pulse lengths 7~4X 10~ s, and energy per pulse
€<20 mJ, a linearization in )3 should be an excel-
lent approximation. We will now formulate equa-
tions of motion which will permit us to predict the
effects of the perturbation —P,E;,(z,¢) on the
atomic response.

We let

V=—B,E(z,)—P,Es,(z,N=P, + 7,
where f/\'z = —I”}E 10(2,t). The time evaluation of
| ¥(z,t)) can be described by

—ifly(2)t/

|W(z,0)) =e "z, | Wz, — ). ®)

Now H | W(z,t)) =i#d | W(z,1)) /3t, which implies
that the operator S(z,t) satisfies, with

f}l(z’t)ze~Hot/ﬁl/}(z’t)e—iHot/ﬁ ’
i#id8(z,0) /3t = V1(2,)8(z,1) = P (1) [T+(m)-' [ PaenSeemar . 9

Also, we define a(z,t) and a,(z,t) by
[|W(z,—))=]0)]

—iH /s
oS

(0| W¥(z,1))=(0]e (z,8) | W(z,— ))

=e 0|8z |0)

—iwgt

=e ao(z,t) ’ (10)

(1|Wz0))=e ""(1]8(z,1)]0)

—iw,t
=e mlal(z,t).

The terms a(z,t) and a,(z,t) are probability ampli-
|

|
tudes for atoms at z at time ¢ being in states |0)

and 1), respectively. To derive an equation of
motion for ay(z,t), we use

., 9ag ) &
ifi Py (z,t)=i# Y (0]S8(z,t)|0)
=(0| V;(z,08(z,1) |0) , (11)
where we have used Egs. (9) and (10). We retain
only first-order processes involving V,(z,t) since

this is very weak light which is nearly resonant
with a one-photon dipole-allowed transition,

a A A A A
i =2 (2,02(0 | Pra(z,0)(|0)(0| + | 1)(1)8(2,0|0)+(0| P1(z,08(z,0) | 0)

ot

~ (0| Ppy(z,0)| 1)ay(z,0)

+<o}?,,(z,t) [T+(m)-‘ I ﬁ,,(z,x')§(z,z')dt'] }o)

~( 0| Ppafz,0)| 1>a,(z,z)+<o{t7,,(z,t) f:m Vii(z,t)dt'ag(z,t') fo)/(m)

+{0|Pn@n [ Puze@— 10008 edr 0 /i) .

Using
A A t A P
Se=T+um" [ Vn(e")S(z,e")dr”
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again and (1— | 0)(0|)|0)=0, we obtain

a A A A
m%(z’t)z (0| Viplz,0) | 1)ay(z,t)+ f:m 0| Vi)V (z,t") | O)ao(z,t’)dt’/(z‘ﬁ)

t t A A A~ A A
+GM72 [ de [ de (0| Pz Pz )A— [0)€0 ) Pri(z,t")8(z,") | 0)
~(0| Prz(z,0) | Day(z,0)+ f:m 0| Pri(z,0P(2,t") | 0) (i)~ lag(z,1)

+am2 [* ar [T dr(0] P nPnis) (- 00 P | Dayzn (12)

where we have used 1~ |0)(0] + | 1){1] inserted between V11(z,t") and S(z,t") with

(0] Vii(z,) P12, Py (2,0 )|0)=0. Since (1 [S(z, )| 0)=a,(z,t"), unit operators were inserted between
products of interaction representation operators so that the time integrations could be performed. The time
integration over ¢” in the last term of Eq. (12) involves complex exponential times a,(z,¢") with the ex-
ponential term oscillating with a period ~10~'* s. Thus, assuming a,(z,t) changes much slower and in-
tegrating by parts permits one to show that a(z,¢"’) can be brought outside the time integrals evaluated at ¢.
The same technique was used to remove ay(z,t’') from the dt’ integral in the second term. The equation for
da(z,t)/dt becomes

aao . —1 A AOt
~—5t—(z,t)=(1ﬁ) (0] Vpplz,t) | 1)ay(z,0)+iAJ(t —z /c)ag(z,t) +ie” O Qs(t —2z/c)ay , (13)

where
t A A
iA(t —z/0)=(if)"2 [ (0| Pry(z,00Pp(z,t') | 0)dr

. t t' A A A A
ie" ™0yt —z /)=~ [ dr [T (0| Pz Pzt )= 000 )Pzt | 1) (14)
AN=30—0w,,

and in evaluating Aj and Q; only the terms with slow time dependences will be retained. Keeping only
those terms which do not oscillate rapidly is analagous to a rotating wave approximation and is also neces-
sary to be consistent with a two-state plus continuum approximation.

To derive an analogous equation for da(z,t)/dt, one begins with i#0a(z,t) /9t =i#d{ |S(z,t) |0) /3t and
proceeds as we did in deriving an equatlon for day(z,t )/at Here, one allows a,(z,t) to be coupled to ay(z,?)
via V,z(z,t) and in third order by V“(z,t) In addition, V,,(z,t) couples a,(z,t) to states in the ionization
continuum. If dipole matrix elements between | 1) and states in the ionization continuum are slowly vary-
ing as a function of the photoelectron energy and if continuum-continuum scattering is neglected, the con-
tinuum states can be eliminated in terms of an ionization rate and a principal-value integral contribution to
an ac Stark shift. We find

a, v —1 & Y
—aT(z,t)= (i)~ (1| Va(z,0) | 0)ag(z,t) +iAY(t —z /c)ay(z,t)

+ie 01—z /c)ag(z, ) — vyt —z/c)ay(z,0) /2 , (15)
where

iaft —z/a)=w? [ (1 D@0 Pz e,

and v;(t —z/c) is the ionization rate of the population of state |1). In evaluating Af by inserting a unit
operator 1=S, |n){n | between V;1(z,0) and V;,(z,t"), the integral over intermediate continuum states is
evaluated as a principal value integral (this is dictated by the detailed treatment of the coupling of |1) to
the continuum states). The terms A5 and A are, of course, ac Stark shifts induced in the atom by the laser
fields. By considering d( | ao(z,t) | 2+ | @;(z,¢) | 2)/3t, we can show that the rate of change of the ionization
probability P; is
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B oy — 2
” (z,t)=y(t —z/c) | a,(z,t)|*, (16)

where a,(z,t) must be obtained by solving simultaneous nonlinear equations for a(z,t) and aq(z,?).
It is of primary importance in this problem to keep track of the phase of ay(z,¢) and a,(z,t) in detail. We
consider first the phase information in ;. Since

V\(z,0)=—B,Eo(t —z/c) cos[wt —kz +(t —z/c)]=—P,E(z,1)
we have
ie" 0yt —z/0)=m= [ _ar [ ; at"w,
where
W=(0| V(2,0 Vp1(z,t)(T= |00 ) P1(z,t") | 1)
=i f (0| Prilz,d) | n' Y n' | Vyy(z,t") [m Y m | Ppi(z,t) | 1)
n m
m=£0
=£ : 0| iz, [n')e ™ (n' | Dy(z,t") | m Ye' @ ~m
n m
m=£0

™ . _ "
t <m | i;](z,t")l 1>et(mm o))t )

In carrying out the integration over ¢’ and ¢" the factor cos[wt” —kz +¢(t" —z /c)] is broken up into a sum
of two complex exponentials according to cosx =(e*+e ~%)/2, and several terms with similar amplitudes
result after carrying out both the ¢’ and ¢" integrations while using the fact that E,(t —z/c) and

exp[i¢(t —z/c)] are slowly varying compared with factors such as exp[i (w, —®,, +®)t]. The resonant slow-
ly oscillating term comes from the exp(iwt” )exp(iwt’)exp(iwt) term when all three f’] (z,t) terms are ex-
pressed as complex exponentials. Thus,

i(wg—o)+3w)t

Py P E3(t —2/c)e
(O —01+ )0y —o1+20)

i i o P
ie'A°‘Q3(t—z/c)= lse—3lkze3l¢(t—z/c)j f On
8% n m
m#£0
Thus,

Ot —z/c)=

. 3
Eq(t —Z/C)e'¢(t_2/0) e_3,-kz : Pop PPy y
2% (O — 01+ 0O N0y —01+20)

n' m';'&O
(17)

where Py =(k | P\y |1). The evaluation of the ac Stark shifts proceeds in a similar way, and the nonoscillat-
ing results in the latter case carry no phase information. We write

Q3(t '—Z/C)=Qoy3(t _z/c)e3l'¢(t—z/c)e—3ikz=ﬂo’3(t _z/c)e3i¢(t—z/l.‘)e-—3(l'(o/¢.‘)z , (18)

where we assume that n is small enough so that k ~«/c for the propagation of the laser pulse.

We will now develop a systematic way of solving for P;(z,t) in the limit where the power density is suffi-
ciently low so that |a,(z,¢)| remains small compared with unity throughout the laser pulse. Consider the
system of equations

aa1 cpv—1 A S
T(A,z,t): (7)1 | Via(A,z,8) | 0)ag(A,z,t) +iAY(t —z /c)ay(A,z,1)
—vi(t —z/c)a(A,z,t)/z +i)»e-m°t()§(t —z/cag(A,z,t),
(19)
d A
%a,m: (i)~ 10| Via(A,z,0) | 1)ay(A,2,0)+iAS(t —z/c)ag(A,z,t)

+ire Q1 —z/c)ay(Az,0)
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where ay(A,z, — 0 )=1, a;(A,z, — 0 )=0. Clearly, for A=1, Eqs. (19) represent the time evolution of a(z,?)
and a,(z,t) if

f}'2(}"2’”=""iﬁ0‘/ﬁ[ —B,Es,(Az1)]e ~iflot/4 ,
ap . .
E""(“")“—f a5 et =5 ] (20)
c
with
ap »
asw (Az,0)~—iw,e” "'nPyab(Azba (A,z,t)+c.c. on

In order to develop a perturbatlon-theory solution of these nonlinear coupled equations, we develop
aog(A,z,t), ay(A,z,t), and Vn(k z,t) as power series in A. Thus,

ag(A,z,t)= 2 a(z,H)A",
n=0

a,(A,z,t)= i a‘l")(z,t)k" ,
n=0
and
Pohan=S P .
n=0

Substituting the power series into Eq. (19) and equating coefficients of A", we obtain a hierarchy of coupled
equations for a®(z,1), a(z,t), and V(")(z,t) By using the initial conditions and the hierarchy equations,
we find

ag(M,z,)=a (z,0)+ A2 ‘2’(z,t)+ ,
a,(Az)=Aa{"(z,)+ A% Pz 0+ - - -, (22)
Vi Az, ) =AP YV z,0) + 3P (z,0)+ - - -

That is, the equations from equating A-independent terms are
(0)

a(: (z,t)=iA§(t —z/c)ai)m(z,t) ,

since with no 3 coupling, a(,O)(z,t):O. We then have

©O(z,1)=exp [i [ Afw—zscar | (23)

From the linear in A equations,

a(ll)

5 &= (i#) 11| P15 (2,0 0)a(z,0)+iAf(t —z/c)a{V(z,1)

— it —2/0)a V(2,0 /2 +ie 0% —2/0)a@(z1) (24)
where 74" (z,t)= — P, ESL,), and
Py s
(l) y___ 0 ’ -
=— =
o (2,0)= f dz {z c

aP(l)
ot

(25)

(z,t)= ——ico,e @ Po (a(O)(z,t))‘a(l”(z,t)+c.c.
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Up to first order in the three-photon coupling between |0) and | 1), one must solve Egs. (24) and (25) in
order to determine the third-harmonic signal and the atomic response. The error in a(z,t) obtained by solv-
ing Eqgs. (24) and (25) will be of third order in the three-photon Rabi frequency. We note that

t—(z—2")/c s *
I At~z sevar' | |

’
, z—z

O
c

ap

exp

=exp

t
—i [ aSur—z /e |
by the substitution ¢t"”=t'—(z —z')/c. Correspondingly,

(26)

N 2mn |Poy |20, pz  ie(z—z _
(iﬁ)—l<l I V};)(Z’t)lo)a(()())(z’t)=_____l_£|___’. fo dz’e' (z 2)/Ca(l) ‘z',t—i—z

fic

(0) (0)
0 0

Owing to the fact that ag ' (z',t —(z —z')/c)=ay (z,1), the ac Stark shifts which determine the phase of
a(z,t) have disappeared from the term which represents the interaction of the third-harmonic field on the
downstream atoms. Letting k=2mn | Py, | 20r /(fic), we find with A=1,

aal io,(z—2'/c)

z
—J(Z,t)=~:c fo dz'e a,

z—z'

+iA(t —z/c)a,(z,1)

z't —

— it —z/c)ay(z,) /2+iQ(t —z /c)e ~3$F—2/¢)

t
X exp |i ——Aot-f-f_mAg(t’—z/c)dt'—f—% 27

To remove the phase factors from the inhomogeneous term, we let

a(z,t)=A,(z,t)exp( —iAgt) exp exp

)
3i—z
c

i1 Afw—z/ear |

The term A4 (z,?) is also an amplitude for being in the state |1) since it only differs from a(z,t) by a phase
factor. Substituting into Eq. (27) and finally dividing by the phase factor

s
—ilot +3iwz/c+i [ Ao(t'—z/c)dt'] ,

exp
8. (z0) (28)
1 z,t z ., , z—2z' .
—r =k [ a2, |2 = io—o, + 8,1 —2 /014, (2)
+iQG(t —z/c)e 73—/ _y (t —z/c)A,(2,1) /2 ,
l
where Ag(t —z/c)=Af(t —z/c)—Ad(t —z/¢). e | oz z—z |
From Eq. (16), P;(z) represents the probability of F,= vy f 0 dz'A, |zt ———— .
ionizing an atom at z and
(30
Pi(z)= f_m yi(t —z/c)|A,(z,t)|%dt . If the integral operator term in Eq. (28) is neglect-
(29) ed and Eq. (28) solved for |Ag| >>T'; and
| Ag| >> | Ar |, one finds for P;(z) the standard
perturbation-theory result for ionization near a
Expressing E;,(z,t) in terms of 4(z,t) and writing three-photon resonance. Similarly, Eq. (30) leads
an expression for the energy current we show that, to the standard result for third-harmonic genera-
with F, representing the flux of third-harmonic tion in the same limit. However, we shall see that

photons at z and ¢, the integral operator term leads to profound
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changes in both P;(z) and F, in the region where
Kzo/A} >1 (i.e., very near resonance) while produc-
ing no effect when kz,/ Al<<l.

In what follows we will use

0A4 )
atl — .AAl+i933(t_z/c)e—3l¢(t—z/c)
—x fo’Al 2i—2"% @z, @D
where
A=A(t —z/c)

= Ag+Ag(t —2z/c)
+i[vo+vi(t —2z/¢)]/2,

and the spontaneous decay rate ¥, has been insert-
ed phenomenologically.

G(t,ty,z2)=H(t —ty—z/c)exp

t—z/

=H(t —ty—z/c)exp [i f:
0

(4
A(r)dr

III. SOLUTION FOR THE ATOMIC RESPONSE

The most direct way to solve Eq. (31) is to
derive a Green’s function such that

Ai(zt)=—i f.: Qosltgle 8%
XG(t,tO)z)dto . (32)

Then A4,(z,¢) is a solution to Eq. (31) if G(¢,ty,2)
satisfies

oG

,to,2" |dzZ’

ot

+8(t —z/c—1ty) , (33)

and G (t,ty,2) is zero for t —z /c < ¢,.

Equation (33) can be converted to an integral
equation which can be solved by iteration, i.c.,
through a Born-type series carried to all orders.
We find

t—z/c © —1)
if, A(T’)dr'] ;0‘ 1)1 [kz(t —z/c —tx)]"

(n!

Jo(2[kz(t —z/c —10)]'?), (34)

where J, is the zero-order Bessel function and H(x)=0 if x <1 and H(x)=1 if x >0. Thus, we have an
exact solution to Eq. (31). We let r=t —2/c, u=«z(t —z/c —ty), u =kz, a=3¢(r—p /u) and find

Ay=—Gi/w) [ Qoslr—p/ue~"exp [i ) Mr—p sy ]Jo(zx/mdu , (35)

Fy=% fom Qos(7—p/ule ~"*exp [i fOFA(T—;L'/u)d;L’/u ‘11(2\/;_4)—‘1-%

In Eqgs. (35) and (36) there are no assumptions
about the detailed time structure of Qg;, ¢, or A.
Thus, these relations are ideal for making approxi-
mations which lead to simple analytical formulas
of high accuracy or for carrying out ensemble
averages to include finite bandwidth effects. In the
following sections we shall see how these analyses
proceed.

IV. IONIZATION AND
THIRD-HARMONIC GENERATION
WITH TRANSFORM-LIMITED PULSES

Equations (35) and (36), if evaluated numerical-
ly, can be used in situations where dynamic Stark
shifts and ionization rates are large. However, in

2
(36)

‘/_

T
what follows we will assume that

f_ww vit —z/c)dt << 1

and that Ag(t —z/c) is small. In general, this as-
sumption puts even further restrictions on the
power density.

Important analytical results can be derived from
Eqgs. (35) and (36) if we let A=A+ A, where A is
the detuning (independent of #) and define L by

L=0, pu<O0
=expliAqu/u)o(2VL), p>0. 37

The function L can be Fourier analyzed as

S=["e"Wre " 12V pdp (38)
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and
L=-L [ e-wugqw (39)
2 Je

s=3 =

® e —Bugy — — !
= (n ')2 fo ne n= W+

Using Eq. (39) in Eq. (36) with a=3¢=0,
1 dw’

A=
" omu Je w4D

exp[ —i/(W'+D)] f

26

where the contour C is a straight line running from
— o0 +i€ to o +i€ where € is any positive number.
Let B=—i(W'+D), where Ref>0 and D =A,/u.
Then,

exp[—-l/( W'+D)] . (40)

e~ Wrdp Qos(t—p/u)

M
X exp [i fo Ay(r—p'/u)dy' /u | . (41)
Assuming that {)y; vanishes exponentially or faster at + oo, we can define
V=f:°e"'W'l‘dy Qo3(t—p/u)exp [i fO”Al(T—u’/u)dp’/u ] , (42)
and
. L ' ’ 1 iw’ ’
Qe3(7—p/u) exp [1 fo A(r—pu'/u)dpu' /u ] =3, fce Weydw' . (43)

The term {2y; changes only on a time scale 7. If u |D |79>>1and |D |u/|A;| >> 1, then for small

lel << |D|
Ay=e="PwD)='2m) =t [ dwe™ Py,

) -2
=(uD)~le ~/PQy(7—1/D%u) exp [i fOD Ar—p'/u)dp' /u | . (44)

We have used
1/(W'+D)~D " (1—W'/D)

which also requires that the next term in the series
plays no role. This more stringent requirement is

D |Puti>>1, 45)

where t; =min(7o,1/|A;|). The smallest D for
which Eq. (44) holds is | D | >4(ut,)~2"* or

| Ag| >4(u/t})'73. In the region of validity and
for small y;(r—p/u),

v u/AR
|41 | 2=A52 | Qos(r—u /A2 | 2 T80
(46)

To get an idea about the ionization rate, consider
Xe at n =3%10'%/cm? and z =10 cm. The value
of uis

u=kz=z(31/2)(c/w,)*nys=~2x10"/s .

Suppose that t; ~10~° s. Our approximations dic-
tate that

|Ag| >4(2X 1057107183 2410 /s .

|
At this detuning,

u /A3 ~2% 10" /(18X 102)~1x 103

With a pulse length of 7o=4X10~° s, the value of
|A;|?at z=10 and 7=0 would be strongly
depressed over the value that would be obtained if
the effect of E;, had been neglected. With Es,
neglected in Eq. (31), we obtain

|4y |2= | Qos(7) | 2/A]

for A, this large. When u /A3 << 7y and

Yot /AO << 1, these results become the same and
E,,, indeed produces no effect on |4, |2 The
depression starts when

’A0|,SL u/TO’
or
[Ao| <V'uvor -

Equation (46) suggests that the laser pulse pro-
duces almost no |4, | ? at large u, but that an ap-
preciable wave packet of third-harmonic radiation
is produced on the passage of the pulse at z~0.
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The small third-harmonic pulse propagates down
to larger z at the group velocity, and as it pro-
pagates it is attenuated by elastic scattering from
concentration fluctuations. When this third-

|

Fy

A time analysis of the third-harmonic signal for

u /A3 > 27, should show a pulse which exists at z,
simultaneously with the laser pulse followed by a
second smaller pulse time delayed by «xz,/ A2, The
third-harmonic signal is, of course, small here
since, in contrast to the earlier study,’ no 7 phase
change due to focusing occurs, and thus there is no
way to compensate for dispersive effects over a siz-
able distance (i.e., no phase matching). The power
densities are also far lower without focusing,” fur-
ther reducing third-harmonic generation (THG).

In Xe the ionization near the three-photon reso-
nance at A~4409 A requires five laser photons.
Thus, if the 4409-A radiation is achieved by pump-
ing a dye with the radiation from a XeCl exciter
laser and a portion of the XeCl radiation is crossed
with the dye laser beam at some depth z in the gas,
the dominant ionization signal can be almost en-
tirely due to

Xe=3%w+#iw'—Xet +e ,

where fiw’ is the energy of the XeCl photons. The
line shape for ionization with simultaneous pulses
at » and ' and for n~3 X% 10'%/cm? should show
nearly zero ion yield for |Ag| <V'kz/75. The
ionization signal should have peaks at | 4|
~1.5v/kz /7, on either side of resonance. At a
fixed z the spacing between the peaks increases
«V'n and the peak height is independent of pres-
sure. Once one is at | Ag| >3V kz/7), the present
result merges with the conventional expression for
the ion signal neglecting E;,,. The same is true

of the third-harmonic signal for large |Aq|. It
would also be interesting to choose u /A3~27, and

1

4,200 _aw
' 2mu Je w4D

harmonic signal reaches z, it produces a value of

| A, |? given by Eq. (46). The third-harmonic sig-
nal resulting from the same approximations is in
accord with this interpretation and is given by

— 2 —_—eu 2
=% [| Qos(r) | 2+ | Qos(r—u /A3 | %7 _ 2| Quy(r)Qostr—u/8Y) | e 78 cos(u /o) ] -

(47)

f

to study the ionization signal as the ionizing pulse
is time delayed. The signal should peak for a time
delay of 27, It is clear that very short pulses
could be used to great advantage in studying these
effects. In the latter case the time delays would be
easily achievable by varying the propagation dis-
tance. In addition, with large effects being possible
for small time delays and relatively large A, the
attenuation of the time-delayed behavior due to
scattering should be almost negligible.

At first glance the reader may have been
surprised by Egs. (46) and (47) in which the effects
of elastic scattering from concentration fluctua-
tions appear to be present in a treatment in which
no explicit consideration of these phenomena was
present. However, when one retains for excitation
on the far wing of the line an incoherent damping
Yo1/2, provisions have been made for an incoherent
coupling back to the ground state; and this is just
what is required to simulate the effect of scatter-
ing. The spontaneous emission term was originally
included to provide the proper decay of coherence
and the proper line shape for resonance excitation
and ionization, but it also simulates an extremely
important effect on the line wing.

Before terminating our discussion of transform-
limited pulses, we shall specialize to a particular
shape of pulse. Let

Qo3(8) =003(0) exp( — 3t2/273) . (48)
We shall now discuss an improvement on Egs. (46)

and (47) for this special case. Equation (41) is ex-
act and for this pulse shape,

exp[ —i/(W'+D)] f_: e~ Wkdy exp[ —youn /2u — %(T-—[L/U)Z/T%] . (49)

The second integral can be done analytically, and the contour integral for | Agrg| >> 1 can be evaluated
with (W'+D)~'~D~Y1—W'/D + W'*/D?) in the exponential and (W’'+D)~'~D ! for the resonance
factor multiplying the exponential. We get
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_ 2

|4, |22A52 | Qg3(0) | 2e T/ MR =172 exp[ —3(r/79—u /A2ro)/R] , (50)
where

R =1+(4u/A3d)? . (51)

Extensive calculations have been made by numerical integration of Eq. (49) with yy;=0. In these numerical
calculations, |4, |? was tabulated as a function of A, for 7ou =10* and 10° and for values of 7/7, ranging
from 0 to 200. For 7/75=0 or 1, Eq. (50) is accurate to several significant figures over regions where
|4, |? is not very small compared with its peak values. For 7/79=200, the peak position, width, and mag-
nitude of |4, |? are predicted to about 30% accuracy over the region near the maximum, even though the
peak is at relatively small A, where the approximations are not clearly accurate. Thus, Eq. (50) can be con-
sidered to represent | A, |2 with good accuracy for ury>> 1 for the Ay values where | 4; | ? is large for all
T/7Tg.

From Eq. (50) we see that Eq. (46) gives identical results if |4u/Adr3 | <1/2o0r |Ag| > Au/m)V3 I
the ionizing laser has y; of the form

y1(1) =y (10) exp[ —(r—70)2/72] , (52)
then at z,
am| 3w |V —3(rp—u /A2
P, = | Qp3(0) | 2Ag5 2 T /M0 | 20 R (53)
1 =v1(10)7; | Qo3(0) | “Ag “e 32T RA exp 32T R

Above, 7p is the time delay between exciting and ionizing pulses. Even with non-Gaussian pulse shapes, Eq.
(53) can give insight into expected line shapes for ion yield as a function of 7, u, and Ay. If E;, is neglect-

ed in finding P;, one obtains, instead of Eq. (53),

Pro=71(1o)7; | Qo3(0) | 2Aq 37 /(372 +73)] 2 exp[ — 375 /(312 +73)] .

When u /A} << 1o and you /A% << 1, the results
are identical. R R

The inclusion of the —P,E;, term in H(z) has
profound effects on |4, | 2. Since for z=10 cm
and n ~3X 10'%/cm?, we can easily have
u =kz ~3X% 10"/, it follows immediately that for
| A| <10'%/s, the effect of the integral term at
such large z will dominate the effect of iA4,, as
implied by Eqgs. (46) and (47). The implication of
these equations is that for times when the laser
pulse is present, we have 4, =0 for large z, and all
absorption is converted directly into third-
harmonic photons. The latter statement follows
because the solution corresponds to

’

Z—2Z

N z
—iﬂo3e—3'¢=K fOAl c

z't— dz'

for times such that the laser field is large and for
A, small enough so that u /A(z, >> To.

In our earlier work? we suggested a close relation
to phenomena which occurs in super radiance’® in
which once there is a macroscopic polarizability
and conditions for strong constructive interference,
a system of particles can radiate away energy very
rapidly. This, in effect, leads to a very short radia-

I

tive lifetime and makes it difficult to generate a
large upper-state population by way of a highly
coherent beam of light. Such a picture also ex-
plains the time-delayed third-harmonic signal.
Those atoms near z =0 have no atoms at smaller z
to give a third-signal which balances out against
the three-photon excitation. Thus, their excitation
proceeds at a level characteristic of isolated atoms
subjected to the same laser field. Their excitation
produces a polarizability and a packet of third-
harmonic photons which propagate downstream at
the group velocity. By the time this wave packet
reaches large z the laser pulse is absent and a bal-
ance occurs (for Agrg>> 1) in which

, z—z'
z,t—

c

z
iAAl:KfoAl dzl)

the excitation and 34, /9t terms being negligible.
In a situation where a laser pulse impinges on a
medium in which the concentration of atoms starts
out very small and increases with z (as in a pulsed
nozzle jet beam where n ~ 10*/cm? can be
achieved at beam center), the time-delayed third-
harmonic signal would not be present and |4, |2
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would be small for large u at all times. In the harmonic signal, it is interesting to determine the
latter case the ionization signals would be very power spectrum of these photons. If P(w')dw’ is
strongly suppressed, even more so than in the situ- the number of photons emerging per pulse per unit
ation described here. area in the frequency range dow' around '’ and the
In view of the time structure of the third- transform-limited pulse is Gaussian,
|
Po')=3T | Q3(0) | *rgne ~ (e’ =30)2/6) l—exp |— KzoYor/2 cos KZo(@' —ay) .
3« (0" —w, P +75,/4 (0" —w, 475 /4

The interesting interference effects in the power spectrum might be observable by using mode-locked lasers
and allowing the third-harmonic signal to pass through a properly chosen atomic vapor absorption cell
where its frequency spectrum could be studied by choosing the peak in power to coincide with the reso-
nance. The absorbing atoms would be ionized by the intense light at . Thus, one should be able to pres-
sure tune (via the changes in k) the third-harmonic photon spectrum and the resulting absorption cell
through a series of maxima and minima.

V. IONIZATION WITH BROAD-BANDWIDTH LASERS

We assume reasonably good wave-front spacial uniformity with a coherence time which is very short
compared with the pulse length. In this situation the laser light will generally undergo both amplitude and
phase fluctuations on a time scale of the order of the coherence time. Further, even in situations where the
energy per pulse, the length in time of the pulse envelope, and the time-integrated beam intensity profile re-
peat very well from pulse to pulse, the detailed time structure of the amplitude and phase will not. Thus,
averaging over the phase space of the laser field, we obtain®

F1=f_: {(vi(m)pulz,tdr, G4
where
wlpy= [ dp [” du’ expli (B~ D) MoV M o2VE N Q' *(r— ' /) r—p /) (55)

where we assume that y; is dominated by effects due to a second laser beam which is crossed with the first
at a distance z after the first enters the medium. Above, Q3 =Qqe =¥ and D=(A¢+iv,/2)/u. We assume
a Gaussian line shape for the laser, and in particular, we let

(Q*(r—p' /u)Qs(r—p/u)) = | Qoa(r—p/u) | 23 exp[ —THp —p' 2 /u?] . (56)

Here Q;(¢) is the three-photon Rabi frequency evaluated at the mean intensity at time ¢, and I is a measure
of the coherence time of the laser. A rough simulation is achieved if one identifies I with about 0.6 of the
laser’s full width at half maximum bandwidth. The 3! is related to the fact that with incoherent light, pho-
tons tend to arrive in bunches; and for high-order processes, these brief periods of constructive interference
between different modes during which the field amplitude is much larger tend to dominate.® Using the field
autocorrelation function in Eq. (56), we can write

u’py =3 fowd#lf—los(r—#/u)!zeiﬁ"-’o(z‘/l_‘)Q ’ 7
where
o=/ ow du'e =D 102V ) exp[ —THp —p'?/u?] . oY

For a particular situation, Egs. (57) and (58) can be dealt with numerically.

However, a very useful approximation to the solutions for these equations can be obtained by using
Fourier representations of exp( —iD*u')Jo(2V/') and exp[i (D —w')Jo(2V/) in analogy with Egs.
(38) —(40). Thus, we can transform Eq. (57) to
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uzp,1/3!=—47r3—“/zl: [ _aw' [~ aWexp{—i[l/(W'—D*+1/(W +D—W")]]
X X exp(—iutW —u*W'?/41?) , (59)
where
X=u [~ |Qoyr)|%"*7ar . (60)

Since X is proportional to the Fourier transform of | Qoy(7') |?, its width in uW is ~1/(7o) or in terms of
Wit is ~(u7o)~!. Further, it peaks near W =0 if |Qq3(7’) |2 is not too asymmetric about 7'=0. Letting

- __L_ —i D __ '], —iutW
R [ R exp[—i /(W +D—W')]e "X , (61)
we have
dw’ iy et —u W
ulpy /3= — s | g SR/ (W=D wWrarly (62)

When u7o>> 1 and |D—W’| >3/(uro)*”*, we can use (W +D—W')"'~(D—W')"'[1—W/(D—W"] in
the exponential term of Eq. (61) and (W +D —W’)~!~(D—W’)~! in the multiplicative factor. Thus, with
these restrictions,

Hx~-— !
4

5 exp[i /(W'—D)]| Qos[7—1/u(W'—D)*]| 2. (63)
Furthermore, as | D—W'| decreases past |D—W'| ~1/v/ut,, H rapidly decreases and by the time

| D—W'| =3/(ury)*? it has become extremely small. In the region where Eq. (63) does not hold, there is _
almost no contribution to the integral in Eq. (62). Thus, when u7y> 10° or so, Eq. (63) can be used for all D
for which p;, is not extremely small. We now have by combining Egs. (62) and (63) and letting

B=uW'/2TI:

2

142p11/3!~ f—-oo ——— > exp —-Lz Qo 7'—————1—2 . (64)
_2FB u‘,;_zr_ﬂ_ o|p_2r8
u u u

Thus, if |D | >5T/u and |D | >3/(ur)*’, Eq. (64) becomes
u’py /3= |D | ~2exp(—yo1/u | D |*) | Qos(r—1/uD?) | 2. (65)

Comparing Eqgs. (65) and (46), we see that for large uty and | D | > 5T /u stochastic light leads to very simi-
lar results. Equation (65) will still be valid for | D | =(u7o)~"/?if (ury)~'/2> 5T /u and that for |D |

< (u1y)~1/? the magnitude of p,; for 7=0 decreases rapidly just as in the case of transform-limited lasers.
For u /T > 100I" 7y, one should be able to observe nearly all of the phenomena described for transform-
limited bandwidth lasers. That is, line shapes for multiphoton ionization should (within the limit

u /T >100I'7y) be independent of I as it is decreased further. Also, ionization signals with time-delayed
ionizing pulses should be observable. Similar approximations can be made in carrying out ensemble averages
for the third-harmonic signal:

= 3 u
F,—-—EHQ();(T)I +e T A"|Qo3(‘r—u/Ao)lz—2|003 )| 2exp(—T2u2/A¢) cos(u /Ap)] (66)
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From Eq. (66) we see that interference effects only
occur for |Ag| >Vul'. The time-delayed pulse of
third-harmonic photons is still present.

VI. PREDICTIONS FOR THE
5p%—5p°6s[*P3 2} =1
THREE-PHOTON RESONANCE IN XENON

We consider a slab of Xe gas of thickness ~6
cm. A dye laser beam with vacuum wavelength
near A; ~4409 A and a beam diameter ~0.1 cm is
normally incident on the Xe slab. With reasonable
wave-front coherence, we expect to simulate a slab
geometry reasonably well since the Fresnel number
for this arrangement is large. To give a specific
example, we further assume that 7~ 5 ns and
I'=1X10""/s. Thus, the laser line width in
angstrom units is ~0.06 A. We take
Yo1==3 X 10%/s for this transition® and find x
(cm~'s™1)~2.5X 10'*Py, (Torr). The ionization
signal is assumed to be produced largely by a

second laser pulse of sufficiently short wavelength
J

wpn(z7=0) _ 2 f "’dB
310302 - (B—8)?

where §=A4A,/2T", s =21y, r =u /2T, and
Ey=v01/4T. In our example we have
Ey=7.5X10"% r =6.25%x 10’ Py, and s=1X10°.
Numerical calculation shows that the ionization
signal at resonance increases linearly with pressure
for Px. <1073 Torr. In the same pressure region
the linewidth for ionization is independent of pres-
sure. However, between 10~ and 5% 10~ Torr,
the Ay=0 signal starts to increase less rapidly with
pressure and by 5% 102 Torr, it is actually small-
er than the signal at Ag=+3.2I". Above 5X 10~2
Torr the Ag=0 signal decreases with pressure and
the ionization signal is largest (for Px, >0.1 Torr)
at Ag=~19.2I''Px. (Torr). As Py, is increased,
the two side peaks separate proportional to 1/ Py,
but the peak height of the ionization signal in-
creases very little above Px.=0.1 Torr. At Py.=1
Torr the peak separation in terms of the dye laser
wavelength is ~0.6 A.

With pulse energies for the dye laser of ~10 mJ,
|

Mf___;ﬁzdi_

2
2rg |

to ionize 5p°6s[*P;,,]J =1 by one photon. This
second laser pulse crosses the dye laser beam over
a 0.3-cm region at z~5 cm. Consequently, the
relevant value of u is u =kz~1.25X 10"°Py,
(Torr). With some of the uv lasers which are com-
mercially available, one should be able to achieve
¥1(0)19=1 over the 3-mm region where the laser
beams overlap.

Predictions can be based on Eqgs. (54) and (64)
since u g is very large. For this purpose, we as-
sume that

(I(1)) =(I1(0)) exp( —72/73) ,

i.e., a Gaussian envelope for the power density.
Most lasers will not have a Gaussian pulse shape
in time, but there is relatively little model sensitivi-
ty if the average pulse profile has a single nearly
symmetric peak. With 7o=5 ns, the full width at
half maximum in time is close to 10 ns. When the
two lasers are fired simultaneously, the line shape
for ionization is very close to that for p;(z,0).
Thus, a convenient form for Eq. (64) is

exp{ 2Eor /[(B—8)2+EJ]—3(r/5)2/(B—8)%} , (67

T
a few hundred ions will be produced and some
form of gas amplification will probably be required
to observe them. Due to a lack of phase matching
and relatively low-power densities, the THG signal
will be a few thousand photons. A good calcula-
tion or measurement of | 43(0) | 2 would be re-
quired to make a more accurate estimate.
Equation (67) can be generalized a bit if we as-
sume that the ionizing laser also has a Gaussian
pulse shape and may be time-delayed relative to
the first by a time 7p. Taking

(yi(n)y=(y;(rp)) exp[ —(r—7p)*/F],

where 7; is the pulse length of the ionizing laser,
we get N;, the number of ions produced, to be

AV y(14))7i | 05(0) | 2
[143(7; /79)%]'2

where AV is the volume over which the laser

= M, (8

3 p_ 2B

{—7’01/11 D—

© | Du—2I'B|? u

beams overlap and
212
Tp/To—1/uty ] ] .

(69)

1+3(T,'/T())2

The quantity M is relatively easy to evaluate numerically. When |A,| > 8T, we can use
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—Yo1/u | D |?

—_rmT
|Aol?

3 212
———————(1o/T—u /ToA})
1+3(T,‘/T0)2 o7 om0

. (70)

We will now tabulate M for 7,=0 (i.e., simultaneous pulses) and 7; =7,. Letting §=A/2T, s =2I"7,

r=u /2T, and Eq=y¢, /4T,

» e Pdp

2E,r
4F2M=f PP a— 2
- (B—8)"+Ej

exp

Figure 1 shows 4T'2Px.M vs | Ay | /2T for the
values 7,=5%10"°%s, T=1x10'!/s,
Yo1=3X%10%/s, and u =1.25X 10'*Py, (Torr). The
evaluation of M for a situation where 74> 0 can be
based on Eq. (69). The computational effort in-
volved with Eq. (69) is nearly one thousand times
less than that involved by combining Egs. (54),
(57), and (58) with no approximations. However,
detailed numerical checks based on the latter equa-
tions were carried out and found to agree very well
with Eq. (71) for cases where the peak in M occurs
for |Ag| >3(u /73)'3. The latter condition is well
satisfied for nearly all experimentally observable
effects for Py, >0.05 Torr.

VII. CONCLUSIONS

A two-state plus ionization continuum model
has been developed for multiphoton ionization and
third-harmonic generation near a three-photon res-
onance. The theory is based on the assumptions
that (1) there are no other resonances involved; (2)

0.030

0.025 |-
0020

0015

2 —
4T Py, M

0.010

Ji BN S

0.005

FIG. 1. 4T'?Py, (Torr) M vs | Ay | /2T for four-
photon ionization of Xe near the 5p®—5p 6s[*P3,,]J =1
three-photon resonance. Gaussian pulse shapes with
pulse length 7o=>5% 10" s has been assumed for both
the ionizing and the excitation lasers. The two laser
beams cross at Z =5 cm. The linewidth of the exciting
laser is AA=0.06 A. , Px.=0.1 Torr, —+—-—-,
Px.=0.3 Torr, and ----- , Pxe=1.0 Torr.

T (3r/4s)*/(B—8)*
(B—8)*+E}3

. (71)

[

the geometry is well simulated by a plane wave
normally incident on a slab of gas or vapor; (3) the
concentrations are low and the slab thickness is re-
latively small so that propagation of the laser
pulses are describable by using kK =w/c; (4) the
concentration is low enough so that collisional de-
phasing for |Ag| <10'"/s and free-bound absorp-
tion by colliding pairs of atoms are unimportant;
and (5) the power density (7(0)){10'© W/cm?).
For the Xe example discussed in the text, the con-
centration restrictions mean Z; <5 cm and

nxe <3X10'%/cm>. The effect of the third-
harmonic signal on the atomic response has been
included in detail.

As in an earlier study,’ a strong suppression of
the three-photon resonance enhancement of multi-
photon ionization has been predicted. In particu-
lar, at near zero detuning (Ay=0) the ion yield is
extremely small, with ionization signals having
their maxima at symmetrically displaced peaks on
either side of the three-photon resonance. The
splitting between the ionization maxima above and
below the resonance position increases o V'n, and
at n~3%10'®/cm? the splitting in angular frequen-
cy units can be as large as 1 10'2/s. With small-
bandwidth lasers, large effects on ionization should
be observable at n~3X 10'>/cm?, and these phe-
nomena are enhanced by using short pulse lengths.
Except for somewhat modified interference, effects
and changes in the time of generation spectrum of
the third-harmonic photons, harmonic generation
is very similar to the results predicted by conven-
tional theories of this process. When
| Ao | > 5V u /7, the results for multiphoton ioni-
zation and third-harmonic generation become
identical to the results of conventional theories.
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