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Three-photon resonance enhancement of third-harmonic generation and multiphoton

ionization is treated for a slab geometry configuration. Striking pressure effects which

become important at concentrations n ) 10' /cm for narrow-bandwidth short-pulse lasers

are predicted for both the third-harmonic signal and the multiphoton ionization. For ex-

ample, part of the third-harmonic signal exits the slab simultaneously with the laser pulse

while another part is time delayed for small detunings from resonance. At intermediate

detuning from the three-photon resonance the two parts can interfere. Multiphoton ioni-

zation yields near three-photon resonance are strongly suppressed under certain condi-

tions, and peaks may occur for proper detunings on both sides of the three-photon reso-

nance. A detailed experimental verification is suggested for Xe.

I. INTRODUCTION commercially available pulsed dye lasers.

In a recent study, Miller et al. ' observed ex-

tremely large shifting and broadening of multipho-
ton ionization signals associated with the three-

photon resonance between the Sp level and the

Sp 6s [ P3/2]J = I level of Xe. Results were ob-

tained with a tightly focused laser beam over the
pressure range of 10 to several Torr. Similar ef-
fects were seen in Kr and Ar. Accompanying the
increase with pressure in width and shift of the
resonance, a strong decrease in ionization yield was

simultaneously observed. Payne, Garrett, and Bak-
er accounted for the general trend of these effects
in a theoretical model which took account of
coherent excitation, ionization, and third-harmonic
generation self-consistently in a laser beam pro-
pagating through a focal volume. In this treat-
ment it was demonstrated that dramatic effects re-
sult from the accumulated influence of the third-
harmonic field on the atomic response of atoms
along the propagating laser pulse. In the previous
theory the beam geometry was greatly simplified
and the effect of the m phase change in the laser
field in passing through the focus was simulated.
The theory contained several approximations
which were difficult to evaluate as to their accura-
cy. Consequently, it is desirable to work out the
theory for slab geometry where we shall see that
only well-established approximations are required.
This simplified treatment also predicts other ob-
servable effects which could be observed using

II. MODEL DESCRIPTION

We consider a plane wave normally incident on
a slab of gas of thickness zo. Thus, the laser field
is of the form

E(z, t) = j Eo(t z/c)cos[—rot —kz+P(t z/c) —j,
(1)

where we assume plane polarization in the y direc-
tion j, and Eo(t —z/c) is (on the average) a max-

imum when its argument is zero and it is very
small if

~

t —z/c
~

&&ro, where ro is a measure of
the pulse length. For transform-limited bandwidth

lasers, P will be constant and Eo will change only
over time scales -vo. However, we can simulate
broad bandwidth lasers by considering the oc-
currence of stochastic fluctuations in Eo and P. In
this case ro is the length of time over which Eo
takes on large values, and both Eo and P undergo
large changes on much shorter time scales -1/I L,
where I L is the laser bandwidth.

In the previous treatment of the present problem
(but for pulse propagation through a focal volume),
the problem was described by a second quantized
effective Hamiltonian which was a function of the
position along the laser beam as a result of (1) the
focusing of the beam and (2) the progressive influ-
ence of atoms within the laser volume with other
"downstream" atoms in the direction of propaga-
tion of the laser pulse. Here we will adopt a more
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If co, =oui —coo is the resonance frequency for one-

photon excitation of the upper level, we assume
that the detuning ho=3M —co„ from the three-

photon resonance is such that
~
4o

~

is small as

compared to the detuning from any other three-

photon resonance.
An electromagnetic field at frequency 3' is

strongly dispersed. In particular, the wave vector's

length is

kg„——3'/c —2~neo, Poi /(Sicko), (3)

where Pol is the dipole matrix element between the

ground state and the near resonance excited state
and n is the atomic concentration. It is interesting

to note that a wave packet with central frequency
near 3' would propagate at the group velocity

Vs
' ——dks„/d (3co),

transparent model which is capable of describing
the new cooperative effects while retaining a clear
physical picture of the source of various contribu-
tions to multiphoton ionization and third-harmonic
signals.

Thus, if we consider the propagation of a laser
pulse at frequency co which is near a three-photon
resonance between the ground state

~
0} and an

upper level
~
1) of a target gas, then it is well

known from nonlinear optics that in such a situa-

tion a polarizability at frequency -3e will be gen-

erated in the gas. If P&„(z,t) is this polarizability
the resulting field is given classically by

-. 2m
Ei„(z,t) =—j dz' (z', t —

~

z —z'
~

/c) .
c o Bt

K =2 em co,Po i /Ac = ( 3n/2')(c /co, ) n ye i

for a J=0 to J=1 transition, with yo& being the
Einstein A coefficient for the transition. The wave

packet would also decrease in amplitude due to
near resonant elastic scattering from concentration
fluctuations. After a distance z, the decrease in

amplitude would be

exp( n—o,z/2) =exp( —yoiaz/2hii),

since

c», =(3n/2}(c/a), ) yoilho .

These effects involving the dispersive properties of
the medium and the scattering from concentration
fluctuations have been reviewed to orient the
reader in making connections with standard third-
harmonic generation theories and to aid in inter-
pretation of the results which will be derived. We
note here that if yoi-4&(10 /s, c/co, =2)& 10
cm, and n -3X 10' /cm, the group velocity be-
comes much less than c when

~
ho

~
& 10' /s ( & 1-

A detuning} and the attenuation of the ainplitude
with z for a wave packet becomes rather rapid.
We have it is hoped made the point that the pro-

pagation situation with the third-harmonic signal
within

~
6o

~
& 10' /s is very complex; yet very

near to the resonance even a very weak E& may
change the atomic response considerably, and it is
imperative that any treatment of atomic response
incorporate the effect of both E&„and E(z, t) self-

consistently.
We consider the behavior of an atom at depth z.

Let the Hamiltonian be

Vz
' ——1/c +2mncorPo& /(%ciao)

=~/a(', +c-',
where

(4)

H(z) =Ho(z) P»E(z, t } P»E—i„(z,t), —

and
~
%(z,t) ) represents the time-dependent state

vector of an atom at z,

~
%(z, t) ) =ac(z, t)e

~
0)+a, (z, t)e '

~
1)+ ~' a„(z,t)e "

~
n ),

n~, 1

where H(z) is the Hamiltonian of the isolated atom, and we include the interaction of the atom with both
the laser field and the third-harmonic field. In the following we make a two-state approximation in deriving
expressions for ionization and third-harmonic rates. Although the procedure is a familiar one, we resketch
it here to keep the physical picture clearly in mind. The unit operator is 1=

~
0) (0

~
+

~
1)(1

~
=Pi+Pi.

The field due to the polarizability at 3to is given by Eq. (2) with

Pi„(z,t)= j n(%(z, t) ~P» ~
%(z,t))=j n[e ' ' ai(z, t)ao(z, t)+c.c.] .

We endeavor here to treat the situation where

3'—co, is smaller than a few-hundred wave num-

bers and n (10' /cm, so that

2e(n„1)zo/Q «—1,
where n„ is the refractive index at the laser fre-
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quency and ){p is the laser wavelength. With these
restrictions on n and m the dispersive properties at
frequency 3' will be dominated by the near one-

photon resonance, and a two-state plus ionization
continuum solution to the problem is appropriate.
Further, we can use m/k„=c in dealing with the
propagation of the laser pulse in situations where n

and co are restricted as described above and power
densities in the unfocused laser beam are suffi-
ciently low so that f Q3dt « 1, where Q3 is

the three-photon Rabi frequency at beam center.
In the case of the three-photon resonance in Xe
studied by Miller and Compton, ' we estimate that
with a beam diameter of 0.1 cm and a pulse length
of v=4)&10 s the energy per pulse would have
to be a=400 mJ in order to violate the inequality

~

~

~

Q3dt « 1. Thus, with present commercial

lasers which have bandwidths of -0.05 cm
pulse lengths ~=4X10 s, and energy per pulse
e & 20 mJ, a linearization in 03 should be an excel-
lent approximation. We will now formulate equa-
tions of motion which will permit us to predict the
effects of the perturbation —P„E3„(z,t) on the
atomic response.

We let

V= —PyE(z, t) —PyE3„(z,t) = Vi+ Vz,

where V2 —— P„E3—„(z,t). The time evaluation of
I
g(z, t) & can be described by

I
%(z, t)&=e ' $(z, t}

I
%(z, —Op)& . {8)

Now H
I
'P(z, t) & =t'AB

I
'P{z,t) & IBt, which implies

that the operator S(z,t) satisfies, with

V ( )
HPf/AV tHof/$

r

iaaS(z, t) pa~ = V, (z, t)S(z, t) = V, (z, t) 1+(ta} 'f '-V, (z, t')S(z, t')dt (9)

Also, we define ap(z, t) and ai(z, t) by

&OIqi(z t)&=&OIe S(zt) IV(z, — )&

=e &0
I
$(z, t)

I
0&

=e ' ap(z, t), (10)

I

tudes for atoms at z at time t being in states
I
0&

and 1 &, respectively. To derive an equation of
motion for ao(z, t), we use

Baoi' (z, t)=i'—&0 IS(z,t) I0&
at ' at

= &0
I

V, (z, t)S(z, t)
I
0&,

& 1
I
%(z,t) & =e '

& 1
I
S(z, t)

I
0&

=e ' a i(z, t) .

The terms a p(z, t} and a, (z, t) are probability ampli-

where we have used Eqs. (9) and (10). We retain
only first-order processes involving V2(z, t) since
this is very weak light which is nearly resonant
with a one-photon dipole-allowed transition,

« t}=&0
I ~r2(z, t)(

I
o& &o

I + I
1 & &1I )$(»t)

I
0&+ &0

I Vti{z t)${z t)
I
0&

at

= &0
I

Vtz(z, t)
I

1&ai(z, t)

+(0 VI, (z, t) 1+(ih) f Vti{z,t')S(z, t')dt' 0)

=& 0
I Vt2(z, t)

I
1 &ai(z, t)+(0 Vti(z, t) f Vti(z, t')dt'ap(z, t') 0)/(iiri)

~(0 Vti(z, t) f Vti(z, t')(1 —
I
0&&0

I
)S(z,t')dt' )0/(ih') .

Using

S(z,t') =1+(i%) ' f V„(t")$(z,t")dt"
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again and (1—I0)(0I ) I0) =0, we obtain

Bao P A
(»t}=&0

I Vr2(»t}
I
1&ai(»t}+f &0I Vri(»t}Vri(»t')10)ao(z t )dt'/I(i&)

I

+(i') f dt' f dt"(OI Vri(z, t)Vri(z, t')(1 —I0)&0I)Vri(zt )S(zt )IO)

= &0I Vrz(z t)
I
1)ai(z t)+ f &0I Vri(z t)Vri(z t') I0)(i') 'ao(z t)

I

+(iA) f dt' f dt" (0
I Vr i(z, t)Vr, (z, t')(1

I
0) (—0

I
) Vr i(z, t")

I
1)a, (z, t), (12)

where we have used 1=
I
0) (0

I
+

I
1)(1

I
inserted between Vr, (z, t") and S(z,t") with

(0
I

Vr i(z t) Vr, (z t') Vr, (z t")
I
0) =0. Since (1

I
S(z t")

I
0) =a i(z t"), unit operators were inserted between

products of interaction representation operators so that the time integrations could be performed. The time
integration over t" in the last term of Eq. (12} involves complex exponential times a i(z, t"} with the ex-
ponential term oscillating with a period -10 ' s. Thus, assuming a~(z, t) changes much slower and in-

tegrating by parts permits one to show that a &(z,t") can be brought outside the time integrals evaluated at t.
The same technique was used to remove ao(z, t') from the dt' integral in the second term. The equation for
dao(z, t) /dt becomes

ai
(z, t)=(ih') '(OI Vrt(z, t)

I
l)ai(z, t)+iso(t z/c)ao—(z, t)+ie Qi(t z/c)ai—,

where

ii)0(t z/c)—=(ih) f (0
I

Vri(z, t)Vri(z, t')
I
0)dt',

I

ie Q,(t z/c)=(i'—)
' f dt' f dt"(OI V»(z, t)V»(z, t')(1 I0)(0I—)V„(z,t")

I
1),

0=3

(13)

(14)

and in evaluating ho and 03 only the terms with slow time dependences will be retained. Keeping only
those terms which do not oscillate rapidly is analagous to a rotating wave approximation and is also neces-
sary to be consistent with a two-state plus continuum approximation.

To derive an analogous equation for Ba i(z t)lt)t, one begins with ifiBa, (z t) It)t =i A'8(
I
S(z t)

I
0) It)t and

proceeds as we did in deriving an equation for Bao(z, t)/Bt. Here, one allows a ~(z, t) to be coupled to ao(z, t)
via V&2(z, t) and in third order by Vz&(z, t). In addition, Vz~(z, t) couples a&(z, t) to states in the ionization
continuum. If dipole matrix elements between

I
1) and states in the ionization continuum are slowly vary-

ing as a function of the photoelectron energy and if continuum-continuum scattering is neglected, the con-
tinuum states can be eliminated in terms of an ionization rate and a principal-value integral contribution to
an ac Stark shift. We find

Ba~
~ S

at
(z, t) = (i') ( 1

I
Vr2(z, t)

I
0)ao(z, t)+i hi(t z/c)a i (z, t)—

where

—i h,of+ie 03(t —z/c)ao(z, t) —yz(t —z/c)a
& (z, t) /2, (15)

id i(t zlc)=(if—r) f (1
I

Vri(z, t)Vji(z, t')
I
1)dt',

and yr(t —z/c) is the ionization rate of the population of state
I
1). In evaluating 5, by inserting a unit

operator 1=S„
I

n ) (n
I

between Vr, (z, t) and Vr i(z, t'), the integral over intermediate continuum states is
evaluated as a principal value integral (this is dictated by the detailed treatment of the coupling of

I
1) to

the continuum states). The terms 60 and 5& are, of course, ac Stark shifts induced in the atom by the laser
fields. By considering 8(

I
ao(z, t)

I

2+
I a, (z, t)

I
2)IBt, we can show that the rate of change of the ionization

probability Pz is
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dPI

di
(z, t) =y, (t —zlc)

~
a, (z, t)

~

', (16)

where a) (z, t} must be obtained by solving simultaneous nonlinear equations for a ) (z, t) and ao{z,t)
It is of primary importance in this problem to keep track of the phase of ao(z, t) and a) (z, t) in detail. We

consider first the phase information in 03. Since

V) {z,t) = P~E—O{t z lc—}cos[cot kz—+P(t z l—c)]= P„E—(z, t),
we have

I

ie' 'Q3(t zlc) =—(iR) f dt' f dt" IV,

where

IV=(0
~

Vt)(z, t)Vt)(z, t')(1=
~
0) (0

~
}Vt)(z,t"}

~
1)

=gf gf (0( Vt)(z t) )n')(n') Vt((z, t') (m)(m ( Vt)(z t")
(
I)

= jf .~ (0
)

V((z, t)
)
n')e " (n'

)
V)(z, t')

(
m )e " (m

(
V)(z, t")

(
1)e

n' m

In carrying out the integration over t' and t" the factor cos[cot"—kz+/(t" —z/c)] is broken up into a sum
of two complex exponentials according to cosx =(e +e )/2, and several terms with similar amplitudes
result after carrying out both the t' and t" integrations while using the fact that Eo(t —z/c) and
exp[i(t)(t —zlc)] are slowly varying compared with factors such as exp[i (t0„—co +a))t] The. resonant slow-

ly oscillating term comes from the exp{icot"}exp(i a)t'}exp{ia)t) term when all three V((z, t) terms are ex-
pressed as complex exponentials. Thus,

3 i (coo—co&+3')t
iso( t 3(kz 3(t)(( z/z) ~ I Po„'P„~P~ )Eo(t zlc)e-

ie Q3(t —z/c)= 3e
' e '

8R „~ (tg~ —CO)+CO)(Q)„—CO)+2a))
m~

Thus,
3

Eo{t—zlc)e'&"
03(t —z/c) = 3( Pon Pmn Pm i

{to~—co) +co)(toz —CO) +2N}

(17)

where Pkt = (k
~ P~ ~

i ). The evaluation of the ac Stark shifts proceeds in a similar way, and the nonoscillat-

ing results in the latter case carry no phase information. We write

3(()(t —z/c) —3ikz II (t zlc)e3ig(( —z/c)& —3(ia&/c)z
t t

(18)

where we assume that n is small enough so that k =co/c for the propagation of the laser pulse.
We will now develop a systematic way of solving for P~(z, t) in the limit where the power density is suffi-

ciently low so that
~
a((z, t)

~

remains small compared with unity throughout the laser pulse. Consider the
system of equations

Ba& ~ S
at

(A.,z, t)= (il) (1
(

Vt2{A,,z, t) )0)ao(A, ,z, t)+ii)((t zlc)a)(A—,z,t),
—y&(t —z/c)a &(A,,z, t)/z+i M 03(t —z/c)ao(A, ,z,t),

—id()t

Bao
~ S

at
(A,,z, t)= (ih) (0

~
Vt2(A, ,z, t)

~
1)a)(A,,z, t)+iso(t zlc)ao()(, ,z, t)—

(19)

+ike 03(t —z/c)a ~(i,,z, t),it
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where ao{)(z,—oo)=1, ai(A, ,z, —ao)=0. Clearly, for A, =l, Eqs. (19) represent the time evolution of ao(z, t)
and a, (z,t) if

sPof]a —r'80~]a
Vti(A, z, t.) =e ' [ P~—Ei„(A,,z, t)]e

2~
E3„(A,,z, t)= — dz' A, ,z', t— (20)

with

~P3eu . —im f
(k,z, t) —iso„e ' nPp~ap(k, ,z, t)a &(k,z, t)+c.c.

at
(21)

In order to develop a perturbation-theory solution of these nonlinear coupled equations, we develop

ao(A, ,z, t), ai(A, , zt ,)and Vti(},,z, t) as power series in }(,. Thus,

a{A,, zt)= g a,'"'(z,t)V,

a(A, , zt)= g aI"'{z,t)A,",

Vt2(k. ,z, t)= g Vt2 (z, t)A," .

Substituting the power series into Eq. (19) and equating coefficients of A,", we obtsjn a hierarchy of coupled
%nations for ao"'(zf)a, i",'(zt)a, nd, VI'2'(z, t). By using the initid conditions md the hierarchy ~nations,
we find

ap(i, ,z, t) =ap '(z, t)+A ap (z t)+

a, (A, , tz)=AaI"(z, t)+A. 'a', '(z, t)+

V»(k, ,z, t) =AV„(z,t)+k'.V„ (z, t)+

That is, the equations from equating k-independent terms are

(p)

at
(z, t) =ihp(t —z/c)ap '(z, t),

since with no 03 coupling, a'~ '(z, t) =0. We then have

ap '(z, t) =exp i hp(t' —z/c)dt'

(22)

(23)

From the linear in A. equations,

(1)

at
(z, t)= (i') '(1( V,", (z, t) (0}a,"'(z,t)+ii},i(t zlc)a', "(z,t)—

yl(t zlc)a'i" (—z—,t)I2+ie Qi{t zlc)ao —(z, t), (24)

where V2 '(z, t) = —P~E3„",and

(i)

E3„(z,t) = — dz'( $) 2' r 3cil e z z
Z st

Bt c

(i)

at
"

(z, t)= ito, e ' Po, {a—o '(z, t) }~aI"(z, t)+cc. (25)
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Up to first order in the three-photon coupling between
~
0) and

~
1), one must solve Eqs. (24) and (25) in

order to determine the third-harmonic signal and the atomic response. The error in a &(z,t) obtained by solv-
ing Eqs. (24) and (25) will be of third order in the three-photon Rabi frequency. We note that

( ) 2 —2 t —(z —z')/c Sa p z', t — = exp hp(t' —z'/c)dt'
c 00

t=exp i—f b,p(t" z/c)d—t'

by the substitution t"=t' —(z —z')/c. Correspondingly,

2

(ih) '(1
~

Vt2 (z, t) ~0)ap' '(z, t)= — f dz'e ' gI" z', t-
c

Owing to the fact that a p '(z', t —(z —z')/c) =ap '(z, t), the ac Stark shifts which determine the phase of
a p '(z, t} have disappeared from the term which represents the interaction of the third-harmonic field on the
downstream atoms. Letting «=2nn.

~

Pp. l ~

tpr/(Re}, we find with A, = 1,~a], icuff(z z /c) t 2 2
(z, t) = —a' dz'e ' ai z', t — +i A&(t —z/c)a &(z, t)Bt

—yl(t —z/c)a i(z, t)/2+i Qp3(t z/c)e

S 3COZ
Xexp l —Apt + Ap(t —2/c)dt +

00 c

To remove the phase factors from the inhomogeneous term, we let

a, (z, t)=A, (z, t)exp( ihpt)exp —3i zex—p i f hp(t' z/c)dt'—
c 00

The term A l(z, t) is also an amplitude for being in the state
~
1) since it only differs from a, (z, t) by a phase

factor. Substituting into Eq. (27) and finally dividing by the phase factor
t

exp ihpt+3itpz/c+i —f hp(t' z/c)dt'—
(28)

BA)(z t) z 2 2'
dz'A

&
z', t-

Bt C
+i [3co tp„+h, (t z/—c)]A, (z, t}—

+i Qp3(t —2/c)e '~" ' "—yl(t —2/c)A ~(z, t)/2,

where hs(t —z/c) =h)(t —z/c) —hp(t —z/c).
From Eq. (16), Pl(z) represents the probability of
ionizing an atom at z and

n~ ', , (z —z')F = dz'3 i z', t—
4 o c

(30)
Pt(z)= f yt(t -z/c) iAl(z, t) i'dt .

(29)

Expressing E3„(z,t) in terms of A~(z, t) and writing
an expression for the energy current we show that,
with Fz representing the flux of third-harmonic
photons at z and t,

If the integral operator term in Eq. (28) is neglect-
ed and Eq. (28) solved for

~
lip

~
&& I t and

~
4p

~
&&

~
4T ~, olle flllds for Pt(z) tile S'talldal'd

perturbation-theory result for ionization near a
three-photon resonance. Similarly, Eq. (30) leads
to the standard result for third-harmonic genera-
tion in the same limit. However, we shall see that
the integral operator term leads to profound
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changes in both Pq(z) and Fr in the region where

Iczp/kp & 1 (i.e., very near resonance) while produc-
ing no effect when Kzo/50(( 1.

In what follows we will use

III. SOLUTION FOR THE ATOMIC RESPONSE

The most direct way to solve Eq. (31) is to
derive a Green's function such that

0) —3ip(to)
A i(z, t) = —i 003(to)e

aA,
1 03=iM +io' (t —z/c)e )(G(t, tp Z)dto . (32)

where

z z z t

—K A) z' t- dz'
c

(31)
Then A, (z, t) is a solution to Eq. (31) if G(t tp z)
satisfies

aG . ~ (z —z)=ihG —K G t—,to,z' dz'
Bt o c

5=A(t —z/c)

0+~s(t —z/c)

+t [rpi+rt(t z/c—)]/2

and the spontaneous decay rate yo~ has been insert-

ed phenomenologically.

+5(t z/c— t, )—, (33)

and G(t, to,z) is zero for t —z/c (to.
Equation (33) can be converted to an integral

equation which can be solved by iteration, i.e.,
through a Born-type series carried to all orders.
We find

t z/c ~
( 1)~

G(t, tp, z)=H(t tp z/c—)exp—i h(r')dr' g, [Itz(t —z/c —tp)]"
. „=0 (n!)'

t —z/c
1/2=H(t tp z/c) exp i— — h(r')dr' Jp(2[KZ(t —z/c —tp)] ),

fo

where Jp is the zero-order Bessel function and H (x)=0 if x & 1 and H (x)= 1 if x & 0. Thus, we have an
exact solution to Eq. (31). We let r=t —zlc, p=ttz(t z/c —tp)—, u =i', a=3/(r p/u) —and find

Ai ———(i/u) f Qp3(r p/u)e —' exp i f b(r p'/u)dp'/u —Jp(2V p)dp,
2

00 —IaFr f Qp3——(r p, /u)e ' e—xp i f h(r p'/u)dp'/— u Ji(2~@)
4u

(35)

(36)

In Eqs. (35) and (36) there are no assumptions
about the detailed time structure of Qp3, P, or b.
Thus, these relations are ideal for making approxi-
mations which lead to simple analytical formulas
of high accuracy or for carrying out ensemble

averages to include finite bandwidth effects. In the
following sections we shall see how these analyses

proceed.

I

what follows we will assume that

f rt(t z/c)dt «—1

and that h,s(t —z/c) is small. In general, this as-

sumption puts even further restrictions on the
power density.

Important analytical results can be derived from
Eqs. (35) and (36) if we let b =ki+ kp where bp is

the detuning (independent of t) and define L by

IV. IONIZATION AND
THIRD-HARMONIC GENERATION

WITH TRANSFORM-LIMITED PULSES

Equations (35) and (36), if evaluated numerical-

ly, can be used in situations where dynamic Stark
shifts and ionization rates are large. However, in

L=O, p(0
=exp(ibpp/u)Jp(2Vp), p&0.

The function L can be Fourier analyzed as

S =f e '"e "Jp(2v p)dp

(37)

(38)
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L = e '~I'SdW',1

C
(39)

where the contour C is a straight line running from
—ao +i e to Oo +i e where e is any positive number.
Let P= i—(W'+D), where ReP & 0 and D = b,o/u.
Then,

( 1)1l
S = g f p"e ™diM=, exp[ —i/(W'+D)] .

ii (n!)~ ii W'+D

Using Eq. {39)in Eq. {36)with a=3/=0,f, exp[ —i/(W'+D)] f e ' i'dp, Q&»(r p—/u)
W' . , " .w

2~u c W'+D —00

&&exp i f hi(r p'/u)—dp'/u

(40)

(41)

Assuming that Qp3 vanishes exponentially or faster at + ~, we can define

00 PV= e ' &dp Qp3(~ —p/u) exp i h&(~—p'/u)dp'/u (42)

and

Q03(r —p/u) exp i b i(r iJ,'/u)dp'/—u = f e' i'VdW' .
p 2'

The term Qc3 changes only on a time scale ro. If u
~

D
~
ro&& 1 and

~

D
~
u/

~
hi

~
&& 1, then for small

(43)

~
——e ' (uD) '(2a) ' d W'e'w / y

C

g)
—2

=(uD) 'e ' Q03(r —1/D u) exp i h, (r p'/u)dp'/—u
p

(44)

We have used

1/( W'+D) =D '(1 —W'/D)

ID I
u ri » I, (45)

where ti ——min(ro, 1/
~
6i

~
). The smallest D for

which Eq. (44) holds is
~
D

~
& 4(ut, )

~3 or

~

b ii ~
& 4( u /t i )

' ~ . In the region of validity and
for small yr(~ —p/u),

—y u/b~
~
Q03(r —u/~,') ~'e "'""'

which also requires that the next term in the series

plays no role. This more stringent requirement is

At this detuning,

u/5p'=2X10" /(18g10")=1y 10-' s .

With a pulse length of 7p=4X10 s, the value of
~

A i ~

at z =10 and r=0 would be strongly
depressed over the value that would be obtained if
the effect of E3„had been neglected. With E3
neglected in Eq. (31), we obtain

=
I Q03«) I

/~o

for hp this large. When u/hp+(7p and

yp~u /hp && 1, these results become the same and

E3„ indeed produces no effect on
~
2,

~

. The
depression starts when

To get an idea about the ionization rate, consider
Xe at n =3&(10' /cm and z =10 cm. The value
ofuis

u =Kz =z(3m. /2)(c/co, ) nyp& 2&& 10' /s .

or

~60~ (/ut/1 0

I ~0 I «ul'oi
Suppose that t~ -10 s. Our approximations dic-
tate that

~
6,

~

&4(2X10"/10 i')i"=4X 10"/s .

Equation (46) suggests that the laser pulse pro-
«ces almost no

~
A,

~

at large u, but that an ap-
preciable wave packet of third-harmonic radiation
is produced on the passage of the pulse at z=0.



COOPERATIVE EFFECTS ON MULTIPHOTON IONIZATION AND. . . 365

The small third-harmonic pulse propagates down

to larger z at the group velocity, and as it pro-

pagates it is attenuated by elastic scattering from
concentration fluctuations. When this third-

harmonic signal reaches z, it produces a value of
~A ~ ~

given by Eq. (46). The third-harmonic sig-
nal resulting from the same approximations is in
accord with this interpretation and is given by

—y u/~ —y g /22
I03«)

I

'+
I
Ilo3« —ul~o)

I
e " 2

I
IIo3«)&o3(&—ul~o)

I
e " cos(»~o)

4u

(47)

A time analysis of the third-harmonic signal for
u/6p & 27p should show a pulse which exists at zp

simultaneously with the laser pulse followed by a
second smaller pulse time delayed by Kzp/Ap. The
third-harmonic signal is, of course, small here

since, in contrast to the earlier study, no m phase
change due to focusing occurs, and thus there is no

way to compensate for dispersive effects over a siz-

able distance (i.e., no phase matching). The power
densities are also far lower without focusing, fur-
ther reducing third-harmonic generation (THG).

In Xe the ionization near the three-photon reso-
0

nance at A,=4409 A requires five laser photons.
Thus, if the 4409-A radiation is achieved by pump-

ing a dye with the radiation from a XeC1 exciter
laser and a portion of the XeC1 radiation is crossed
with the dye laser beam at some depth z in the gas,
the dominant ionization signal can be almost en-

tirely due to

Xe=3%co+fico'~Xe++ e,
where fico' is the energy of the XeC1 photons. The
line shape for ionization with simultaneous pulses
at co and co' and for n =3)& 10' /cm should show

nearly zero ion yield for
~
6o

~
& Qtrzlro The.

ionization signal should have peaks at
~

kp
~

—1.5+Kzlrp on either side of resonance. At a
fixed z the spacing between the peaks increases
~ v n and the peak height is independent of pres-
sure. Once one is at

~
kp

~
& 3+Kzl pitthe present

result merges with the conventional expression for
the ion signal neglecting E3„. The same is true
of the third-harmonic signal for large

~
hp

~

. It
would also be interesting to choose u /hp-2' and

Qp3(t) =QQ3(0) exp( —3t 12') . (48)

We shall now discuss an improvement on Eqs. (46)
and (47) for this special case. Equation (41) is ex-

act and for this pulse shape,

I

to study the ionization signal as the ionizing pulse
is time delayed. The signal should peak for a time

delay of 2~p. It is clear that very short pulses
could be used to great advantage in studying these
effects. In the latter case the time delays would be

easily achievable by varying the propagation dis-

tance. In addition, with large effects being possible
for small time delays and relatively large hp, the
attenuation of the time-delayed behavior due to
scattering should be almost negligible.

At first glance the reader may have been

surprised by Eqs. (46) and (47) in which the effects
of elastic scattering from concentration fluctua-
tions appear to be present in a treatment in which

no explicit consideration of these phenomena was

present. However, when one retains for excitation
on the far wing of the line an incoherent damping

ypi/2, provisions have been made for an incoherent

coupling back to the ground state; and this is just
what is required to simulate the effect of scatter-
ing. The spontaneous emission term was originally
included to provide the proper decay of coherence
and the proper line shape for resonance excitation
and ionization, but it also simulates an extremely
important effect on the line wing.

Before terminating our discussion of transform-
limited pulses, we shall specialize to a particular
shape of pulse. Let

Qp3{0) d W tm 3

A&
—— I, exp[ —il(W'+D)] I e ' "dpexp[ —yp, p/2u —, (r flu—) lv—p] .

2m.u c W'+D —00
(49)

The second integral can be done analytically, and the contour integral for
~ hollo ~

&& 1 can be evaluated

with (W'+D) '=D '(1—W'/D+ W' /D ) in the exponential and (W'+D) '=D ' for the resonance

factor multiplying the exponential. We get



366 M. G. PAYNE AND W. R. GARRETT 26

+pe
I
A J I

—Eo I
Qo3(0)

I

e " R ' exp[ —3(rlro —u /Sod o) /R]

where

(50)

+ (4u /gprp ) (51)

Extensive calculations have been made by numerical integration of Eq. (49) with yp]
——0. In these numerical

calculations,
I
A

~ I
was tabulated as a function of b,o for sou =10 and 10 and for values of r/ro ranging

from 0 to 200. For r/rp=0 or 1 Eq. (50) is accurate to several significant figures over regions where

I
A, I

is not very small compared with its peak values. For r/ro ——200, the peak position, width, and mag-

nitude of
I
A,

I

2 are predicted to about 30% accuracy over the region near the maximum, even though the

peak is at relatively small ho where the approximations are not clearly accurate. Thus, Eq. (50) can be con-

sidered to represent IAI I
with good accuracy for ufo»1 for the b,o values where IA, I

is large for all

r/rp.
From Eq. (50) we see that Eq. (46) gives identical results if I4u/horo I

&1/2 or
I
6o I

&2(u/ro)' . If
the ionizing laser has yl of the form

yl(r)=yl(ro) exp[ (r r—o) /—r ]

then at z,
' 1/2

/Q 3 r
I'r =yl(ro)r IIIo3(0)

I
~o e " exp3;+R o

—3(rp —u /4p}22

3r; +Rrp
(53)

Above, rD is the time delay between exciting and ionizing pulses. Even with non-Gaussian pulse shapes, Eq.
(53) can give insight into expected line shapes for ion yield as a function of rp, u, and hp. If E3„ is neglect-

ed in finding Pl, one obtains, instead of Eq. (53),

I'Io=yi(ro)r;
I
Ilo3(0)

I
'~o '[3nro/(»+ro)] exp[ 3~i)/(3r,'+ro)] .

When u/hp((rp and yp]u/Ap((1, the results

are identical.
The inclusion of the —P&E3 term in H(z) has

profound effects on
I
A

~ I
. Since for z = 10 cm

and n =3X 10' /cm, we can easily have
u =Kz 3)& 10' /s, it follows immediately that for

I
b,

I
& 10' /s, the effect of the integral term at

such large z will dominate the effect of iLA1, as
implied by Eqs. (46) and (47). The implication of
these equations is that for times when the laser
pulse is present, we have A1-0 for large z, and all

absorption is converted directly into third-
harmonic photons. The latter statement follows
because the solution corresponds to

—iQp3e '~=K A1 z', t — dz'3i.- ' . I
z —z'

I

p c

for times such that the laser field is large and for
5p small enough so that u /Ap)& rp.

In our earlier work we suggested a close relation
to phenomena which occurs in super radiance in
which once there is a macroscopic polarizability
and conditions for strong constructive interference,
a system of particles can radiate away energy very

rapidly. This, in effect, leads to a very short radia-

I

tive lifetime and makes it difficult to generate a
large upper-state population by way of a highly
coherent beam of light. Such a picture also ex-

plains the time-delayed third-harmonic signal.
Those atoms near z =0 have no atoms at smaller z
to give a third-signal which balances out against
the three-photon excitation. Thus, their excitation
proceeds at a level characteristic of isolated atoms
subjected to the same laser field. Their excitation
produces a polarizability and a packet of third-
harmonic photons which propagate downstream at
the group velocity. By the time this wave packet
reaches large z the laser pulse is absent and a bal-

ance occurs (for hprp+p 1) in which

r

irhA1 ——K 31 z', t — dz',
p C

L

the excitation and BA1/Bt terms being negligible.
In a situation where a laser pulse impinges on a
medium in which the concentration of atoms starts
out very small and increases with z (as in a pulsed
nozzle jet beam where n —10' /cm can be
achieved at beam center), the time-delayed third-
harmonic signal would not be present and

I A, I
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would be small for large u at all times. In the
latter case the ionization signals would be very
strongly suppressed, even more so than in the situ-
ation described here.

In view of the time structure of the third-

harmonic signal, it is interesting to determine the
power spectrum of these photons. If P(co')de' is
the number of photons emerging per pulse per unit
area in the frequency range dao' around co' and the
transform-limited pulse is Gaussian,

4m 2 ~ (~0(a) 3') /6) Kzpgoi/2 ~octo(a)' —co, )
P(c0') =

~
Qo)(O)

~ zaire
0 I —exp cos

3K (N' —co, ) +yQ[/4 (c0'—co, ) +yQ//4

The interesting interference effects in the power spectrum might be observable by using mode-locked lasers
and allowing the third-harmonic signal to pass through a properly chosen atomic vapor absorption cell
where its frequency spectrum could be studied by choosing the peak in power to coincide with the reso-
nance. The absorbing atoms would be ionized by the intense light at co. Thus, one should be able to pres-
sure tune (via the changes in k) the third-harmonic photon spectrum and the resulting absorption cell
through a series of maxima and minima.

V. IONIZATION WITH BROAD-BANDWIDTH LASERS

(54)

where

We assume reasonably good wave-front spacial uniformity with a coherence time which is very short
compared with the pulse length. In this situation the laser light will generally undergo both amplitude and
phase fluctuations on a time scale of the order of the coherence time. Further, even in situations where the
energy per pulse, the length in time of the pulse envelope, and the time-integrated beam intensity profile re-
peat very well from pulse to pulse, the detailed time structure of the amplitude and phase will not. Thus,
averaging over the phase space of the laser field, we obtain

Pr = J (yi(r) )p»(z, t)dr,

u p~~
——J dp J dp' exp[i(Dp, —D~p')]Jo(2V p)J (2o~p')(Q'~( rp'/u)Q'(r p/u) )—, (55)

where we assume that yz is dominated by effects due to a second laser beam which is crossed with the first
at a distance z after the first enters the medium. Above, 03——003e '~ and D =(kp+iyo/2)/u. We assume
a Gaussian line shape for the laser, and in particular, we let

(Q3 (r y'/u)Qq—(r , p/u)) =—
~
Qo&(r p/u)

~

(3—!)exp[ —I (p —p') /u ] (56)

Here 003(t) is the three-photon Rabi frequency evaluated at the mean intensity at time t, and I is a measure
of the coherence time of the laser. A rough simulation is achieved if one identifies I with about 0.6 of the
laser s full width at half maximum bandwidth. The 3. is related to the fact that with incoherent light, pho-
tons tend to arrive in bunches; and for high-order processes, these brief periods of constructive interference
between different modes during which the field amplitude is much larger tend to dominate. Using the field
autocorrelation function in Eq. (56), we can write

u'p„=3!J dp~Q„(r —p/u)~' 'e&nJ( ~2@)g,

where

Q= J dp, 'e '+&Jo(2~p, ')exp[ —I (p —p') /u ] .

(57)

(58)

For a particular situation, Eqs. (57) and (58) can be dealt with numerically.
However, a very useful approximation to the solutions for these equations can be obtained by using

Fourier representations of exp( iD p, ')Jo(2~@'—) and exp[i(D —w')]Jo(2v p, ) in analogy with Eqs.
(38)—(40). Thus, we can transform Eq. (57) to
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u p~l/3!= — f dW' f dWexp[ i—[1/(W' —D~)+1/(W+D W—')]]

XXexp( iu—rW —u W' /4I' ), (59)

where

X=u f ~Q»(r') ~'e'"~'dr'. (60)

Since X is proportional to the Fourier transform of
~
Qo3(r ) ~, its width in u W is —1/(ro) or in terms of

Wit is -(ufo) '. Further, it peaks near W=O if
~

Qo3(r')
~

is not too asymmetric about 8=0. Letting

1 ~ dR'
H = f exp[ i /—( W+D —W' )]e '"'~X,

2m. —~ 8+D W

we have

d
u p()/3!= — f exp[ i/(W—' D~)]e " —~ H .2rv+ -- W

(61)

(62)

When ufo»1 and ~D W'~ &3—/(ufo) /, we can use(W+D W') '=—(D W') '[1——W/(D W')] in-
the exponential term of Eq. (61) and ( W+D W') ' =—(D W') ' in—the multiplicative factor. Thus, with
these restrictions,

H= — exp[i/(W' D))
~
Qo3[—r—1/u(W' D) ]~—

W' —D
(63)

Furthermore, as
~

D W'
~

dec—reases past
~

D W'
~

—I/Q—ufo, H rapidly decreases and by the time

~
D W'

~

=3/(u—ro) ~ it has become extremely small. In the region where Eq. (63) does not hold, there is
ahnost no contribution to the integral in Eq. (62). Thus, when ufo& 103 or so, Eq. (63) can be used for all D
for which p« is not extremely small. We now have by combining Eqs. (62) and (63) and letting
P=u W'/2I:

ce

u p)l/3!
e ~dP

& exp
2I'P

—Xol

2I P 2I P

2

(64)

Thus, if
~

D
~

&5I'/u and
~

D
i

& 3/(ufo) ~, Eq. (64) becomes

u'pil/3l=
I
D

I
'exp( —roi/u I

D
I

')
I
Qo3(~ —I/uD')

I

' . (65)

Comparing Eqs. (65) and (46), we see that for large ufo and JD
~

& 5I'/u stochastic light leads to very simi-
lar results. Equation (65) will still be valid for ~!D ~

=(ufo) '~ if (uro) '~2&51'/u and that for ~D
~

& (ufo) ' the magnitude of p~l for ~=0 decreases rapidly just as in the case of transform-limited lasers.
For u /I & 100I ~0, one should be able to observe nearly all of the phenomena described for transform-
limited bandwidth lasers. That is, line shapes for multiphoton ionization should (within the limit
u/I & 100I vo) be independent of I as it is decreased further. Also, ionization signals with time-delayed
ionizing pulses should be observable. Similar approximations can be made in carrying out ensemble averages
for the third-harmonic signal:

—y u/2+y= ——[ ~
Qo3(7)

~
+e "

~no3(7 u/5o)
~

——2~ Qo3(r)
~

exp( —I u /Et)cos(u/5o)] .
2 Q (66)
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From Eq. (66) we see that interference effects only
occur for

~
hp

~

& V'u I'. The time-delayed pulse of
third-harmonic photons is still present.

VI. PREDICTIONS FOR THE
5p'~5p'6s['P3/2]J =1

THREE-PHOTON RESONANCE IN XENON

We consider a slab of Xe gas of thickness -6
cm. A dye laser beam with vacuum wavelength
near A,L -4409 A and a beam diameter -0.1 cm is
normally incident on the Xe slab. With reasonable
wave-front coherence, we expect to simulate a slab

geometry reasonably well since the Fresnel number

for this arrangement is large. To give a specific
example, we further assume that 7 p 5 ns and
I"=1X10"/s. Thus, the laser line width in

angstrom units is -0.06 A. We take
ypi-3 g 10'/s for this transition and find K

(cm 's ')=2.5 X 10' Px, (Torr). The ionization
signal is assumed to be produced largely by a
second laser pulse of sufficiently short wavelength

to ionize Sp 6s [ P3/2]J =1 by one photon. This
second laser pulse crosses the dye laser beam over
a 0.3-cm region at z=5 cm. Consequently, the
relevant value of u is u =~z=1.25 X 10' Px,
(Torr). With some of the uv lasers which are com-
mercially available, one should be able to achieve
yg(0)7p 1 over the 3-mm region where the laser
beams overlap.

Predictions can be based on Eqs. (54) and (64)
since u Tp is very large. For this purpose, we as-
sume that

(I(r) & = (1{0)& exp( —2/2),
i.e., a Gaussian envelope for the power density.
Most lasers will not have a Gaussian pulse shape
in time, but there is relatively little model sensitivi-

ty if the average pulse profile has a single nearly
symmetric peak. With ~p

——5 ns, the full width at
half maximum in time is close to 10 ns. When the
two lasers are fired simultaneously, the line shape
for ionization is very close to that for p&~(z, 0).
Thus, a convenient form for Eq. (64) is

u p»(z, r=0) „~ e &'dp—
3!

i
Q(g(0)

i
~ —"(P—5)'+Ep [(~—~) +@p]—3( / ) /(tI —5

where 5=kp/2I s =2I 7p r =u /21, and

Ep ——ypi/4I . In our example we have

Ep ——7.5)(10, r =6.25X10 Px„and s=1)&10 .
Numerical calculation shaws that the ionization
signal at resonance increases linearly with pressure
far Px, g 10 Torr. In the same pressure region
the linewidth for ionization is independent of pres-
sure. However, between 10 and 5& 10 Torr,
the h,p ——0 signal starts to increase less rapidly with
pressure and by 5)& 10 Torr, it is actually small-
er than the signal at 5p ——+3.2I . Above 5 X 10
Torr the hp ——0 signal decreases with pressure and
the ionization signal is largest (for Px, & 0. 1 Torr)
at hp-+9. 21'l/Px, (Torr). As Px, is increased,
the two side peaks separate proportional to QPx„
but the peak height of the ionization signal in-

creases very little above Px, ——0. 1 Torr. At Px, ——1

Torr the peak separation in terms of the dye laser
wavelength is -0.6 A.

With pulse energies for the dye laser of —10 mJ,
I

e ~ dP — 21P
, exp —y»/u D-

/!
Du —21'P

/

' u

ry( r&)=& ry«D)&epx[ (r rD—) /~—i]
where ~; is the pulse length of the ionizing laser,
we get Nz, the number of ions produced, to be

3)«I'(ri(rd ) &r
I Qp, (0

Nr= M,
[1+3(r;/rp) ]'/ (68)

where 5V is the volume over which the laser
beams overlap and

3 21'P
&3/&p —1/u &p1+3(r; /rp) 2 u

a few hundred ions will be produced and some
form of gas amplification will probably be required

to observe them. Due to a lack of phase matching
and relatively law-power densities, the THG signal
will be a few thousand photons. A good calcula-
tion or measurement of

~
Qp3(0)

~

would be re-

quired to make a more accurate estimate.
Equation (67) can be generalized a bit if we as-

sume that the ionizing laser also has a Gaussian

pulse shape and may be time-delayed relative to
the first by a time ~z. Taking

The quantity M is relatively easy to evaluate numerically. When
~ hp~ &St, we can use

(69)
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V rr 2
2 exp —yot/tt

I
D

I

I

~ol'
3

(~0/~ —u /~oho)
2 2

1+3(~; /~p)'
(70)

We will now tabulate M for 70=0 (i.e., simultaneous pulses) and 'T =70. Letting 5=50/21, s =21 ro,
r =u/21, and Eo ——yo~/41,

e ~dp41'M=, 2 exp—"(P &)'—+Eo
(3r—/4s) /(P ft)—

(P—5)'+Eo
(71)

Figure I shows 41 PX,M vs
~
ho

~

/2I for the
values ~0=5)&10 s I =1)&10 /s,
&0~ =3X 10 /s, and u = 1.25' 10' Px, (Torr). The
evaluation of M for a situation where 70+ 0 can be
based on Eq. (69). The computational effort in-

volved with Eq. (69) is nearly one thousand times
less than that involved by combining Eqs. (54),
(57), and (58) with no approximations. However,
detailed numerical checks based on the latter equa-
tions were carried out and found to agree very well

with Eq. (71) for cases where the peak in M occurs
for

~

bo
~

& 3(u /ro&&)'~ . The latter condition is well

satisfied for nearly all experimentally observable
effects for Px, &0.05 Torr.

VII. CONCLUSIONS

A two-state plus ionization continuum model
has been developed for multiphoton ionization and
third-harmonic generation near a three-photon res-
onance. The theory is based on the assumptions
that (1) there are no other resonances involved; (2)
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FIG. 1. 4I P», (Torr) M vs
~

ho
~

/2I for four-
photon ionization of Xe near the 5p ~5p 6s [ P3/t]J =1
three-photon resonance. Gaussian pulse shapes with
pulse length 70=5)& 10 s has been assumed for both
the ionizing and the excitation lasers. The two laser
beams cross at Z =5 cm. The linewidth of the exciting

0

laser is AA, =0.06 A. , Px, ——0. 1 Torr, —.—.—,
Px, ——0.3 Torr, and ——-, Px, ——1.0 Torr.

I

the geometry is well simulated by a plane wave
normally incident on a slab of gas or vapor; (3) the
concentrations are low and the slab thickness is re-
latively small so that propagation of the laser
pulses are describable by using k =co/c; (4) the
concentration is low enough so that collisional de-

phasing for
~

b,o ~

(10"/s and free-bound absorp-
tion by colliding pairs of atoms are unimportant;
and (5) the power density (I(0))(10' W/cm ).
For the Xe example discussed in the text, the con-
centration restrictions mean Zo (5 cm and
n«(3)(10' /cm . The effect of the third-
harmonic signal on the atomic response has been
included in detail.

As in an earlier study, a strong suppression of
the three-photon resonance enhancement of multi-
photon ionization has been predicted. In particu-
lar, at near zero detuning (60-—0) the ion yield is
extremely small, with ionization signals having
their maxima at symmetrically displaced peaks on
either side of the three-photon resonance. The
splitting between the ionization maxima above and
below the resonance position increases ~ v n, and
at n=3)& 10' /cm the splitting in angular frequen-
cy units can be as large as 1X 10' /s. With small-
bandwidth lasers, large effects on ionization should
be observable at n =3X 10' /cm, and these phe-
nomena are enhanced by using short pulse lengths.
Except for somewhat modified interference, effects
and changes in the time of generation spectrum of
the third-harmonic photons, harmonic generation
is very similar to the results predicted by conven-
tional theories of this process. When

~
5o

~
& 5+tt /1 o, the results for multiphoton ioni-

zation and third-harmonic generation become
identical to the results of conventional theories.
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