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We study the connections between the chain summations of variational theories of Fermi

fluids and those generated by ring-diagram summations in the correlated-basis-functions

(CBF) perturbation theory. The effective interactions of CBF theory and the random-

phase-approximation (RPA) equations in the correlated basis are rewritten in an irreducible

form. We discuss local approximations to the irreducible vertex which are sympathetic

with the use of variational wave functions. They allow contact to be made with conven-

tional formulations of the RPA, to weak-coupling, pseudopotential, or "local-screening"

theories. Our studies lead also to consistency requirements between variational calculations

of ground-state properties and the effective interactions used in CBF theory.

I. INTRODUCTION

The random-phase approximation (RPA) has in
the past been applied successfully to the study of
elementary excitations in various many-body sys-
tems such as finite nuclei, nuclear matter, or terres-
trial quantum fluids like the electron gas. The im-

portant class of perturbation-theory diagrams gen-

erated by the RPA equations is also used to corn-

pute corrections to the ground-state energy of
many-body systems, and to study the coupling of
excited states to the particle-hole excitations and the
collective modes of the medium.

In the case where the microscopic interaction be-

tween two particles is strong, the conventional for-
mulation of the RPA relies on phenomenological or
semimicroscopic models for the particle-hole in-

teraction (for example, Skyrme-type forces or local
approximations for the G matrix) which have only
indirect connections with the bare force between
two particles. Clark and collaborators have recently
demonstrated' how this problem may be circum-
vented by the use of correlated wave functions,
which, roughly speaking, build in the core ex-

clusion. The study of low-lying excitations in a
basis of correlated wave functions led, in an analysis
patterned after conventional derivations of the RPA
equations, to the so-called "correlated RPA theory"
(CRPA).

In this paper we will examine the meaning and

potential applications of the CRPA theory from
various points of view. In contrast to earlier work,
which was formulated sufficiently generally to be
applicable to finite nuclei and quantum liquids, we

emphasize here the case of an infinitely extended

system. This will allow us to take advantage of the
far more developed formalisms and computational
possibilities.

To give some motivation for the present studies,

it is worth illuminating the conceptual differences

between the CRPA and the conventional RPA.
Conventiona1 RPA is usually formulated in terms
of a particle-hole-irreducible interaction, which has
a direct resemblance to the quasiparticle interaction.
This is no longer true in the CRPA: Here, the ef-

fective interactions entering the formalism also
contain diagrams that may be classified as particle-
hole reducible. (These diagrams are usually referred
to as "chain diagrams" in variational theories of
quantum liquids. ) The task of the correlated RPA
consists, in essence, in the inclusion of propagator
corrections and state dependence which were not
built into the variational wave function. As a
consequence, the effective interaction entering the
CRPA equations becomes energy dependent. There
is still some formal connection with the quasiparti-
cle interaction. This connection, however, relies on
a cancellation of chain diagrams in the limit of zero
momentum transfer. The identification of the
quantities entering the CRPA equations with the
finite-momentum extension of the quasiparticle in-

teraction is no longer permitted.
It is one of the purposes of this paper to examine

the connection between the correlated RPA and
conventional formulations of the RPA. To this
end, in Sec. II we briefly discuss the correlated-
basis-functions (CBF) theory and the structure of
the effective interactions. Section III discusses the
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CRPA equations and the representation of the two-

body Green's function in the correlated basis. We
will reformulate the CRPA equations in terms of a
suitably defined particle-hole-irreducible interac-
tion. It turns out that this in fact simplifies the
equations and largely eliminates the energy depen-
dence of the interaction. In other words, the CRPA
will emerge in a form and interpretation identical to
conventional RPA. The essential (and most impor-
tant) difference is that unique prescriptions are pro-
vided for the computation of the particle-hole in-

teraction from the underlying microscopic two-

body potential.
In Sec. IV we study the perturbation expansion

for the ground-state energy in the correlated basis.
The expansion is represented in terms of
Goldstone-type diagrams containing effective one-,
two-, three-, . . . , n-body operators. Topological
comparison with Goldstone diagrams allows the
identification of the class of "ring diagrams" in

CBF theory. We draw the connections between

these ring diagrams and those generated by iteration
of the (C)RPA equations. It is worth noting here

that there is no a priori reason that there should be

a complete agreement: Studies. of the CBF pertur-
bation theory within the framework of the
correlated-coupled-cluster theory have shown that
diagrams of similar topology emerge from both
high-order diagrams containing the effective two-

body interaction and reducible low-order diagrams
arising from effective four-, six-, . . . , 2n-body in-

teractions. Since the CRPA is based on the effec-
tive two-body interaction alone, one need not expect
that such effects are included properly. Neverthe-

less, we will verify up to fourth order that the
CRPA equations sum the CBF ring diagrams
correctly. Beyond this order, there are no new

mechanisms for generating topologically equivalent

diagrams.
In Sec. V we return to the variational calculations

of the irreducible vertex function and give explicit
working formulas for the particle-hole interaction,
which are based on variational wave functions and

can be used in conjunction with the conventional
RPA. Despite the somewhat formal appearance of
the studies of Secs. II—V, the results are quite prac-
tical in nature. The determination of the most gen-
eral irreducible vertex requires no more effort than
the computation of the full effective interaction; it
essentially requires a different combination of pre-
calculated quantities.

Of course, one can continue to analyze the CBF
perturbation series and the effective interaction at
the same time. In principle, it must be possible to

eliminate the correlation operator systematically
and to arrive ultimately at an ordinary Goldstone
perturbation expansion. Such a procedure is, of
course, not only impractical, but also against the
spirit of CBF theory: The power of CBF lies in the
fact that it makes it possible to sum large arrays of
diagrams in an approximate way, which would be
out of reach in any conventional (e.g., Brueckner-
Bethe-Goldstone or Bethe-Faddeev-type) theory.
One does not want to undo this. On the other hand,
if a certain subclass of CBF diagrams is summed by
a systematic procedure, it is necessary to consider
the relationship between this subclass of diagrams
and ones which were already (approximately) in-
cluded in a preceding variational calculation. One
result of this study is a requirement for consistency
between the approximations used for the variational
calculation of the physical observable under con-
sideration (e.g. , the ground-state energy or the opti-
cal potential) and those used for the effective in-

teraction entering the CBF expansion.
To be definite, the RPA sums certain classes of

ring diagrams, whose obvious counterparts are the
chain diagrams of variational theories. ' On the
other hand, it should be clear that RPA does not
sum the equivalents of those chain diagrams in
which a "ladder diagram" acts as the driving term.
We will exploit the correspondence between the
chain diagrams of variational theories and those
generated by the iteration of the (C)RPA equations
at a practical level which clearly shows the connec-
tions to polarization potentials and conventional
RPA, and allows study of the most interesting
physical effects.

In order to make contact to phenomenological
theories, we study in Sec. VI simple models for the
vertex function. The reader with only casual in-

terest who skims through the technical Secs. II—V
will find here the simplest applications and the in-

terpretation of our results. An averaging procedure
which is sympathetic with the use of variational
wave functions defines a local approximation of the
effective interaction. The averaging is related to the
"fluid-dynamic approximation, ' " or the "quasibo-
son approximation. ' " Our local approximation for
the vertex function is readily identified with the
pseudopotential model of Aldrich and Pines" or
with a screened interaction in the Hubbard model. '

The most important feature of these studies is that
to the extent that a local approximation is adequate,
the pseudopotential U(q) may be obtained algebrai-
cally from the RPA relation

1/S (q)=1/SJ(q)+4mU(q)/(R q )
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in the fluid-dynamic approximation. $~(q) is the
static structure function of the noninteracting Fer-
mi system. Note that Eq. (1 ~ 1) is to be understood
in a way opposite to what one usually does in RPA:
Normally, RPA is used to determine the static
structure function S(q) from a given, local weak in-
teraction U(q). Here, Eq. (1.1) serves to determine

U(q) from a structure function $(q) that was calcu-
lated previously for a strongly interacting system.
The only additional prerequisite for Eq. (1.1) is that
the local correlations were determined by minimiza-
tion of the energy expectation value; the relation is
somewhat more complicated for nonoptimal corre-
lation functions. The local U(q) may, in turn, be
used to determine the response function, the
dynamic structure factor, the self-energy, etc.,
essentially via equations commonly available in
textbooks.

Section VII concludes by summarizing the conse-
quences of our studies in a broader framework. We
discuss some of the stringent consistency require-
ments for variational-CBF calculations for the ele-

mentary excitations in quantum liquids.

II. CBF THEORY AND THE EFFECTIVE
INTERACTION

trix elements are, given a sensible choice of the
correlation operator F, a priori finite. Actually, for
many of the considerations to follow, no particular
choice of the correlation operator needs be made.
However, the Jastrom choice

F= g f(r'J) (2.2)

Further quantities of interest are the particle-hole
excitation energies and off-diagonal matrix elements
of the Hamiltonian and the unit operator. The
single-particle energies are computed from the ener-

gy difference of a lp-lh "excited" state

4p» & =Furr» I Po &~~pV
(2.4)

for F is the only one for which we currently have
sufficient mastery of the forrnal structure of the in-
gredients of CBF theory and reliable algorithms
for the accurate computation of the relevant matrix
elements. %e expect, however, that the essential
conclusions of our work will remain valid for state-
dependent correlations, and in finite systems.

The first quantity to be computed using the
correlated basis states

l g ) is, of course, the ener-

gy expectation value,

(2.3)

The literature now contains many descriptions of
the correlated-basis-functions' theory; we can re-
strict ourselves therefore to a very brief review of
the theory and to a definition of the nomenclature
used below. CBF theory uses a correlation operator
F to generate a correlated basis I l g ) I of the Hil-
bert space from a basis I l P,„)J of noninteracting
particle states by

and the correlated ground state

e(p) —e(h) = &0,» I
H Hoo I 0,» & .— (2.5)

The variational single-particle energies are a gen-
eralization of the Hartree-Fock single-particle spec-
trum to correlated wave functions. They are of the
form

e(k) =fPk /2m+u„(k), (2.6)

The uncorrelated states
l
{( ) are, in the case of

infinite matter under consideration here, Slater
determinants of plane waves characterized by a set
of quantum numbers m =(m &, . . . , mq). The filled
FerIni sea carries the subscript 0. The choice of the
basis (2.1) generally sacrifices the orthogonality of
the basis states, on the other hand, all relevant ma-

where u„(k) is the average field seen by a single par-
ticle.

Off-diagonal matrix elements between two corre-
lated states

l P ) and l'{('„) are usually classified
by the number d of orbitals in which l'{('~) and

l
t('„) differ. They are most conveniently expressed

in terms of antisymmetrized plane-wave matrix ele-
ments of d-body operators, e.g.,

(p» l
H —Hoo l g» ) = (ph'

l

P"(12) hp'),

(2.7)

= &ph'I ~(12) lhp'), + , [e(p)+e(p') e(h) —(e)h]—(ph—'l~(12) lhp') . (2g)
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The last two lines in Eq. (2.8) are structural decorn-

positions of the effective two-body interaction
P"(12): The two-body operators M(12) and ~(12)
are Hermitean, whereas P'(12) is not. In a more
general environment, the single-particle energies in
Eq. (2.8) have to be taken with a positive sign for
particle states and with a negative one for hole
states. The subscript a indicates antisymmetriza-
tion.

For future reference, we also define the ratio of
normalization integrals

z~ =(I /Ioo), z~a =(Iia/Ioo) (2 9)

The analytic form and the most important prop-
erties of the operators P (12), K (12), and M(12) has
been discussed in various places, see, e.g., Ref. 4.
For the formal study of the CBF ring diagrams and
the CRPA equations performed in the next two sec-
tions, we need only assume that these quantities can
be calculated reliably. In order to make contact
with the quasiparticle interaction, however, it is
necessary to analyze the CBF interaction in more
detail.

To this end, we first study the diagrammatical
structure of the two-body operator M(12). Once
this is determined, P (12) may be generated by "di-
agrammatical differentiation, " as described in Ref.
4. To be definite, we assume the Jastrow ansatz
(2.2) for the correlation operator. For a convenient
representation, we utilize the diagrammatical
language introduced for Jastrow correlations. '
With the use of this diagrammatic scheme, ~(12) is
expanded in

~(12)= g (6+ )(;)(12), (2.10)
l

where the subscript (i) refers, e.g., to the number of
correlation factors present in a cluster contribution
(b.rV)1;)(12). Each term may be represented di-

agrammatically by (dashed) "correlation lines"
describing a function h(r)=f (r) 1, and (solid, —
oriented) "exchange lines", describing an exchange
function

with (2.12)

m (k k +q IM(12)
~
k+q k

q~O
(2.13)

Following this scheme, some direct matrix elements
of the diagrams shown in Fig. 1 may in an obvious
manner be classified as particle-hole reducible.
These include not only the chain diagrams of the
first line of Fig. 1, but also the separable diagrams
shown in the second and third lines. These terms
may be explicitly represented in a Goldstone-type
manner involving sums over particle-hole loops.
For example, the second plus the third diagram can
be written as

g (ip
~

h (r) ~j h ) ( kh
~

h (r)
~

lp )
p, h

I 2
+ 0' 'w + b

I 2 I 2

2/ 2/

'o a, I

2/

~dd(rl r2 r 1 r 2) ~dd(r12+(rl r 1@(r2 r 2)

~d«(ri, r2, r i, r 2) =Md«(ri, r2, r 2)5(ri —I'1)

The configuration-space functions appearing in
(2.12) are all symmetrical under the exchange
r;~r,'. Typical diagrams depicting cluster contri-
butions to the distinct portions of M(12) are shown
in Fig. 1. The absence of a unique particle-hale
structure in the cluster expansion of the operators
M(12) [and M(12)] leaves possible ambiguities as to
just which contributions to M(12) should be classi-
fied as particle-hole reducible. One procedure is to
isolate all those contributions that vanish in the
Landau limit

(2.11)1(rkF) =2 ' g n (k)exp(i k. r ),
k

where n (k) is the Fermi distribution.
In configuration space, the two-body operator

~(12) has the form of a four-point function:

Il
0

2
C7

I

2/

0
2

+ 0-—
I

I/ 2/
0- ——-0
/1 it

0- ——M
I 2

2/
0,

+
U

I 2

~(12)=M(ri, r2,'r 'i, r 2)

=~V'dd ( r 1, r 2; r 1, r 2 ) +~/ d„(r 1, r 2; r '1, r 2 )

+~«d ( 1 1, r 2, 1 1,1 2 )

+~„,„(ri,r2;r i, r 2)

FIG. 1. Configuration-space representation of the
leading terms of M(12). The dashed line represents a
correlation factor f'(r) 1, the oriented, solid —line an ex-

change line l(rkF). Open circles represent the "external
points" r;, r,', closed circles indicate coordinate-space in-

tegration.
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g &ik
I
h(r) Ipp'&&pp'

I
h(r) Ijl &,

p~p

or of a particle-hole ladder,

X & ii
I
ii (r) IN & &pk I1 (r)

I
11 &

p, h

(2.15)

(2.16)

Note that (2.15) generates an additional diagram
not shown in Fig. 1. This contains factor h (r),
which does not occur in ~(12) and corresponds, in
higher orders, to parallel-connected diagrams.

In order to introduce a formal definition of
particle-hole-irreducible diagrams we define a corre-
lation matrix of the form

&pii'I~(12) Iitp'&. &pp'I~(12)
I
itii'&.

& itii
'

I
~(12)

I
pp' &. & 1tp'

I
~(12)

I pii
'
&,

Cph, p'h' Cph, h'p'

Chp, p'h' Chp, h'p'
(2.17)

and a matrix of particle-hole irreducible diagrams

where p and Ji refer to internal particle and hole la-

bels.
The identification becomes less clear in the case

of the diagrams shown in the last line of Fig. 1.
The first one may be generated either as a piece of a
particle-particle ladder,

Once the steps for identifying the particle-hole-
irreducible diagrams are determined, it is straight-
forward to extend them to analyze the effective in-

teraction P"(12). A cluster expansion of P (12) is

generated from the corresponding expansion for
M(12) by replacing, in turn, each correlation factor
h (r) by a screened interaction f (r)ui„(r), where

uiF(r) =u(r) —(iri /2m)V' lnf (r) (2.20)

is the Jackson-Feenberg potential, and u(r) is the
bare two-body interaction. (Similar equations have
been derived for alternative forms of the kinetic en-

ergy. ) ln addition, uiF(r) must be supplemented by
kinetic-energy terms involving derivatives of the ex-
change function 1(rkF). Explicit formulas for the
construction of %(12) may be found in various
places '; we will return to this question in Sec. V.
At present, we generalize the algorithm (2.19) to
handle the two-body operator P"(12). Again, writ-

ing the matrix elements of M(12) in the two
particle-hole channels in the supermatrix form

&pii'I ~(12)
I
hp' &. &pp'I ~(12)

I
Jib'&.

&hh'
I
P"(12)

I
pp'&, &hp'

I
% (12)

I
ph'&,

~ph, p h ~ph, h p
(2.21)

~hp, p h

Xph p h Xph h pX=
Xhp, p h Xhp, h p

(2.18)

(2.22)

we define the particle-hole-irreducible piece X'
through

W =(1+—,C)X'(1+ —,C),
which is defined by the relation

C =X+—,CX . (2.19)

We will later give further motivation for the de-
finition (2.19). At present, it is sufficient to state
that the iteration of Eq. (2.19) generates from the
bare correlation 1't (r) all chain diagrams. By includ-

ing the exchange terms, we also recover the factor-
izable diagrams shown in the second and third lines
of Fig. 1, and the exchange terms arising from the
last line with a factor of —,. Since the definition of
the correlation matrix C does not rely on notions of
reducibility we consider Eq. (2.19) as a definition of
the matrix X. We stress that rather than computing
X =(1+—,C) 'C, we use Eq. (2.19) to identify and

eliminate diagrams contributing to C but not to X.
At the two-line level, the construction of X from C
via Eq. (2.19) eliminates all direct matrix elements
of the two-line diagrams displayed in lines 1 to 3 of
Fig. 1, and half of the exchange matrix elements of
the diagrams shown in the last line.

where X', like 8', is a supermatrix of the form

(2.23)

f(k, k')=5 HOOI5n (k)5n (k') . (2 24)

Since the occupation number n (k) enters the en-

ergy expectation value only through the exchange
line 1(rkF) [Eq. (2.11)], the variation (2.24) may be
performed explicitly by variation with respect to the
exchange function 1(rkF) as

~l ~r
~ph, p'h' ~ph, h'p'

Xhp, p'h' Xhp, h'p'

Again, it is worth stressing that Eq. (2.22) is not to
be solved by constructing the inverse of (1+—,C).
Rather, X' is generated from &by omitting certain
diagrams.

At this juncture, we can also draw the connection
to the Landau definition of the quasiparticle in-

teraction. This is generated by functional variation
of the energy expectation value with respect to the
quasiparticle occupation number,

f(k, k')=g I [5 HOOI51(r~jkF)51(rkikF)]exp[i (k r~1+ k' rki)]d rd rjd rkd'ri . (2.25)
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Here, and throughout the paper, we suppress spin
labels for ease of writing. Fermi sea orbitals will be
referred to as by their associated momenta. In Eq.
(2.5) we allow for i =j, in which case the variation
with respect to the exchange function reduces to a
density derivative.

It has been pointed out in various places (see, e.g.,
Ref. 15) that the procedure (2.25), if carried out or-
der by order in a diagrammatical expansion of the
energy expectation value Hoo, produces all matrix
elements of P"(12) which survive in the Landau
limit (2.13). The construction (2.22) eliminates all
those diagrams that vanish in the Landau limit.
Consequently, we have also

cph(t) =zph [xph(t)e '"'+yph(t)e'"'], (3.4)

one finds a set of RPA-type equations of the form

A B X M
BA' Y ~ 0

L

0 X
—M* Y' (3.5)

where

~ = (~ph p'h') =le 4» e(h—)]&pp ~hh'

Refs. 1 —3. The CRPA equations are expressed in
terms of the CBF single-particle energies and effec-
tive interactions: Introducing the usual Fourier
decomPosition of cph(t) in the form

lim X'h, + h. h, h+ ——f(k, k') . (2.26)
+(ph'i W(12)

i
hp' ), ,

(3.6)

To conclude this section, we emphasize that the
Landau limit alone is insufficient to characterize
the portions of the effective interaction that should

be kept in a finite-momentum extension of the
quasiparticle interaction. We will identify below a
further class of contributions, arising from the
kinetic-energy operator, that vanish for zero
momentum transfer.

III. CORRELATED RPA, LINEAR RESPONSE,
AND THE SELF-ENERGY

XexP gcph(t)apah ~PP) .
ph

(3.2}

Studying small-amplitude oscillations about the (as-
sumed) stationary state leads by a derivation invok-
ing the least-action principle

5 f (iI'j(t) ~H —i%/Bt ~p(t))dt=0 (3.3)

to the CBF analog of the RPA equations. Details
of the algebraic manipulations may be found in

The formal analog of the RPA equation was de-

rived recently' by embedding the small-amplitude
limit of the time-dependent Hartree-Fock theory in

the CBF context. The most satisfactory derivation
is based on a least-action principle, which is applied
to a class of time-dependent correlated states

~
y(t)) =~

~
y(t) )/(y(t)

~

s9
~

y(t))'" .

(3.1)

The time-dependent model state
~

P(t)) is taken to
be a Slater determinant of particle-hole states:

~
P(t)) = exp( iHcot/A)—

(+ph, h 'p' ) (PP
'

~
~( 12 )

~

hh ' ),

~=(Mph p h )=5pp5»h +(Ph l~(12)
I
hP' &, .

Note that we have, in contrast to Ref. 2, absorbed
the normalization constants zpI, in the amplitudes
X = (Xp» ) and Y = ( Yph ). This is necessary to
guarantee the appearance of the unit matrix as the
leading, diagonal contribution to M, and the proper
definition of the CBF single-particle energies in A.
We note that the nonorthogonality corrections ap-

pearing in the nontrivial part of the "metric ma-
trix'" M may also be understood as an energy
dependence of the particle-hole interaction. The
elements of the amplitude vector (Xph) should not
be confused with the irreducible normalization ma-

trix X introduced in Eq. (2.18).
The procedure for constructing the dynamic

structure factor and the response function from the
amplitude vectors X and Y may be found in Refs. 2
and 3. Here, we wish to go a step further and uti-
lize the CRPA equations (3.5) and (3.6) to generate
the ring diagrams in CBF theory. Owing to the in-

timate relation' between the particle-hole propaga-
tor and the response function, and in view of the
applications of the last section, we must briefly re-

view the derivations of Ref. 2.
As usual, the system is subjected to an external

time-dependent perturbation

H'(t) =P(co )(e'"'+e ' '} . (3.7)

To be definite, we may think of a periodic density
fluctuation. Assuming that the time-dependent
state

~
g(t}) may be faithfully expressed as a super-

position of the correlated lp-1h states
~ /~»), and

linearizing in the amplitude of the perturbation, one
finds that in analogy to Eq. (3.4} the new ampli-
tudes X', Y' are determined by solving
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8 X' M 0 X' J'
=%co 0 Mg yg

—Pg
L

(3.8)

G cRPA( )
8

A *+ficoM*+i g

(3.10)

Here, p =(P~s) are the matrix elements of the exter-
nal perturbation P (o/),

p/h=&4p/ Ip I Po&

By applying formal analogy arguments, the matrix
—1

with the bare propagator Go (co)=Q '. The
presence of the energy numerator terms in Eq.
(3.13) [c.f. also Eq. (2.8)] means, however, that the
resulting expansion is no longer ordered strictly ac-
cording to the number of energy denominators.
Rather, successive cancellations between energy-
denominator and energy-numerator terms result in
a series in which the nth-order contribution to
G (co) contains diagrams with 1,2, . . . , n ener-

gy denominators. We will now show that a rear-
rangement of this series according to the number of
energy denominators is, in essence, equivalent to a
reformulation of the CRPA equations in terms of
the irreducible vertex functions X' and X introduced
in the last section. Defining

is identified as the particle-hole approximation for
the Green's function. From this we may, for exam-

ple, calculate, as described in Ref. 2, the density-
density response function

G(o/) =(1+—,C)G (o/)(1+ —,C),

we can rewrite (3.13) in the form

[Q+ U( o/)] G( o/) =I,

(3.14)

(3.15)

II(q, o/) = —g p;(q)G;, , (o/)p, (q),

pps(q) =
& 4,/ I p, I 4o &,

(3.11)
with U(o/) again being a supermatrix, expressible
entirely in terms of the irreducible quantities X and
X' defined in Sec. II:

where the subscripts i and j stand for particle-hole
pairs (ph) and (hp).

We have constructed the object G (o/) here
simply by taking over equations from conventional
RPA (see, e.g., Ref. 17). It must be stressed that the
formal identity of our definition does not also justi-
fy carrying over the physical interpretation or un-

critically using working formulas from convention-
al many-body theory: The Green's function (3.10)
should be understood as a correction to the full
particle-hole propagator. An explicit example in

which the blind application of standard many-body
techniques with CBF quantities fails is the self-

energy, which we will discuss later.
Appealing to our study of the effective CBF in-

teractions, we now transform Eq. (3.10) to a new

equation in terms of the irreducible vertex functions
(2.18) and (2.23). To this end, we define

e (p) —e (h ) —fun ir/—0
0 e (p) —e (h)+duo+i/)

(3.12)

and observe that (3.5) can be written in the form

(Q+ W+ 'QC+ -' C-Q )G'"'A(~ ) =I
where I is the unit matrix. The CBF diagrams con-
tributing to the particle-hole propagator may be ob-
tained as usual' by iterating Eq. (3.13) starting

U(co ) =X'——,XQX (3.16)

(XQX),j ——y [ (X; /, X/, +X//yX/y )[e(p)—e(h)]
p, h

~ (X,// X//, J X,//, X//, ,J )]—
(3.17)

The last term in Eq. (3.17) is the only remaining

energy-dependent term in the effective interaction.
We note that this term vanishes for a local X, i.e., if
X is just a function of the momentum transfer

q =
I p —h

I

. In fact, the symmetries of the opera-
tor 4 (12) may be used to prove that only combina-

tions of exchange matrix elements give nonzero
contributions to the energy dependence of the ir-

reducible operator U(co), and all of them vanish in

the Landau limit q~0. It also turns out that the
local approximations discussed in the preceding sec-

tion will cause the energy dependence to disappear
entirely. We expect therefore that the energy
dependence of U(o/) is of relatively little impor-
tance. It is also worth noting that the nonvanishing

Let us study the structure of the energy-

dependent term in U(o/) a bit more closely. Denot-

ing by i and j a pair (ph) or (hp), the second term in

Eq. (3.16) has the form
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contributions to the energy-dependent term in U(co )
are of fairly complicated structure (mostly "elemen-
tary" in the language of variational theory4 ~). To
be consistent, they should be included only together
with contributions of corresponding structure oc-
curring in the energy-independent terms. Actually,
the energy dependence may be entirely eliminated
by an additional transformation of the CRPA equa-
tions similar to the one performed above. We will
refrain from such a transformation since it leads to
additional complications without producing any
further physical insight. It is of relevance only in
cases when also elementary diagrams are included
in the energy-independent parts. From now on, we
will neglect the energy dependence, we also drop
corresponding terms in the investigations of the
next section. In this approximation, we will refer to

the supermatrix U~i(co =0) simply as U; .
By the transformation (3.14) we have arrived at a

formulation of the CRPA that is formally and con-
ceptually identical to conventional RPA. In addi-
tion, precise prescriptions can be given for obtaining
the particle-hole interaction from the underlying
microscopic force. Our derivations also provide a
tool for investigating the justifiability of the ad hoc
use of "screened" interactions. ' Finally, by using
local approximations, one readily makes contact
with pseudopotential" or static screening theories. '

Let us now turn to the study of the self-energy of
a single particle. Relying on the formal correspon-
dence between the CBF perturbation expansion and
ordinary Goldstone perturbation theory, we try to
write the self-energy in the form'

X(k,E)=u„(k)+i f g G (p,E fico)(ki—
~

P (co) ~pj), Gij ~„(co)(pm
i
&(co)

i
kn), . (3.18)

p,i,j,m, n

Here, G (p,E) is the free one-particle Green's function. The energy-dependent effective interaction is of the
form

(ki
I
~(E)

I pj )a ——(ki
I
~(12) Ipj)a+ —,[e(i) e(j)—E](—ki

I
~( )

I pj )a . (3.19)

The labels (ij) and (mn) refer to particle-hole pairs (ph) or (hp), the positive sign applies if (ij) is a pair (ph).
The energy-dependence of (3.19) might seem somewhat ad hoc, it is built after the CBF self-energy diagrams
in second and third order. ' ' We see immediately that the uncritical application of Eq. (3.18) leads to prob-
lems. The reason for this is that the (linear) energy dependence of the interaction P"(E) generates diverging
contributions to the frequency integral. Actually, by inserting the first-order approximation
Go (co)=0 ', we find that (3.18) misses even a part of the second-order CBF approximation for the self-
energy. The missing terms, which might be understood as Hartree-Fock-type contributions (we will confirm
this interpretation later), have to be singled out and treated separately.

In order to make the frequency integration in (3.18) work as desired, we have to eliminate the contributions
containing energy numerators. We have already pointed out that the energy dependence of the effective in-
teraction generates contributions to G (co) which go as co

' in all orders. To rearrange the CBF series, we
transform the integrand of Eq. (3.18) to the irreducible representation. A few algebraic manipulations show
that

( ki
~

P (co )
~ pj ),G;J „"(co) (pm

~

F (co )
~

kn ),
i,j,m, n

[Uzpcj(co)Gcj ~„(co)U~„aq(co)—Uzppk(co)+Wgppk] ) (3.20)
i,j,m, n

where (ij) and (mn) refer to pairs (ph) and (hp),
respectively. To the extent that we can neglect the
frequency dependence of U(co ) we have singled out
the "catastrophic" terms in the frequency integral
(3.18). One expects therefore that the full self-

energy can be expressed in the form of a Hartree-
Fock-type term u (k) and a subtracted frequency in-

tegral involving only U;J mn..

X(k,E)= u (k)

+i f g Go(p, E —%co)Uk;,.
p, i,j,m, n

X G,J ~p, (co ) U~„ i,k .

(3.21)
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The leading, Hartree-Fock-type term consists of the
CBF average field u„(k), plus correction terms ori-

ginating from all those CBF diagrams in which the
energy-numerator and the energy-denominator
terms completely cancel. We have already pointed
out that these terms are not identical with the
frequency-independent term W- U in Eq. (3.20).
They cannot be obtained from the analysis of the
CRPA equations, but call for a separate determina-
tion which we will pursue in the next section. An
expression similar to (3.21) may be derived for the
CRPA correction to the ground-state energy by
closing the remaining particle-hole loop and per-
forming the familiar integration over a ficticious
coupling constant. ' ' '

IV. CBF RING DIAGRAMS

We have demonstrated in Sec. III that the simple
iteration of the interaction, using the particle-hole
approximation for the two-particle Green's function
and the subsequent frequency integration does not
generate all ring diagrams of CBF theory. We
therefore go back to the CBF expansion of the
ground-state energy and identify, to a satisfactorily
high order, CBF diagrams with those generated by
the iteration of the RPA equations. Most impor-
tant, we have to isolate all terms in which the ener-

gy numerators of the effective interaction (2.8) can-
cel all energy denominators. At the same time, we
confirm that the CBF expansion may in fact be re-
formulated entirely in terms of the irreducible ver-

tex U.
Following the analysis for the ground-state ener-

gy, we obtain the self-energy by functional variation
with respect to the particle occupation number.
This seems like a detour, but actually leads to con-
siderable simplifications. The reason is that the
leading term u (k) of Eq. (3.21) also contains contri-
butions arising from the variation of the vertex
functions (2.18) and (2.22) with respect to the parti-
cle number. (Recall that these involve summations
over particle-hole loops. ) This leads to a profusion
of diagrams, which makes the identification of the
distinct terms complex and opaque.

The Goldstone-type diagrams of CBF perturba-

tion theory may be obtained either by a step-by-step

evaluation or by the generating equations of the
correlated-coupled-cluster theory. The result is a

perturbation expansion that is structurally very

similar to an ordin'ary Goldstone expansion. The
essential differences may be understood to be due to
the fact that we always deal with many-body wave

r

n- U

FIG. 2. Diagrammatical representation of second- and
third-order CBF ring diagrams. The wavy line represents
an effective interaction P (12), the dashed line a
nonorthogonality correction M(12). Particle and hole
lines are drawn as up- and down-going arrows, respec-
tively. The horizontal bar indicates an energy denomina-

tor, a closed circle on a particle-hole loop an energy
numerator e (p) —e (h).

h"

't&

ff 0'
Il I

tl

FIG. 3. Fourth-order CBF ring diagrams. See Fig. 2
for further explanations.

functions. This is reflected in the appearance of ef-
fective three-, four-, . . . , n-body interactions and
in the energy dependence which we have already en-
countered above. This energy dependence is deter-
mined by the simple rule that each (say, two-body)
interaction (ij

~

W(12)
~

kl) has to be supplemented
by a term E(ij

~

~(12)
~

kl ), where F. is the energy
carried by all particle lines minus the energy carried
by all hole lines at the same time.

Let us now turn to the explicit construction of
the leading CBF ring diagrams. The construction is
straightforward in second and third order; the dia-
grams are shown in Fig. 2. The diagrammatical
conventions used in there and in Fig. 3 are as fol-
lows: particle and hole lines are drawn as up- and
down-going arrows; antisymmetrized matrix ele-
ments of the two-body operators F'(12) and ~(12)
are drawn as a wavy and a dashed line, respectively.
Energy denominators are drawn as horizontal bars,
and a heavy dot on a particle or a hole line
represents an energy numerator e (p) —e (h) associ-
ated with this particle-hole bubble.

In fourth order, an awkward feature of the CBF
perturbation expansion appears: The four-body
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operators ~(1234) and P (1234) contain unlinked
contributions, e.g.,

W(1234) =M(12)~(34)+~(13)~(24)

of all CBF ring diagrams in terms of the effective
interaction P"(12), where the index counts the num-
ber of energy denominators. We seek a rearrange-
ment of series (4.2)

+~(14)M(23)+M, (1234) . (4.1) E= g (SE)„,
n=0

(4.3)

E= g (SE)„
8=2

(4.2)

[~, stands for the connected part of M(1234),
which vanishes whenever any particle or any pair of
particles is moved far away from the others. ] These
diagrams lead to a catastrophic dependence of the
CBF perturbation series on the particle number un-

less special truncation prescriptions are employed to
cancel the unlinked diagrams in different orders of
the CBF expansion. For example, the unlinked dia-

gram arising in the second-order CBF correction
from the four-body interaction is canceled against a
fourth-order diagram containing only two-body

operators.
While the unlinked diagrams can be canceled sys-

tematically by an appropriate classification of the
CBF expansion, they leave remainders which are of
a structure similar to the ordinary Goldstone-type
diagrams of the CBF series. Examples are shown in

Fig. 3. Diagrams 1 —7, 9, and 10 represent fourth-
order ring diagrams in terms of P (12) and some
correction terms arising from the energy depen-
dence of the effective interaction. Diagrams 8 and
11 are third-order diagrams including the reducible
part of one four-body interaction. Finally, diagram
12 is the linked remainder of the second-order 4p-4h
contribution. Clearly all of these diagrams must be
considered of equal importance. In fact, some alge-
braic manipulations exhibit substantial cancella-
tions, including, among others, the exact cancella-
tion of all diagrams of the types shown as the last
three in Fig. 3. It is important to notice that the
energy dependence of the pp-hh and the hh-pp ma-
trix elements has been eliminated entirely. This
cancellation between the reducible parts of the
four-body interaction and some of the energy
dependence of the two-body interaction will actual-
ly make it possible to use the (C)RPA equations to
sum CBF ring diagrams. Of course, we have to as-
sume that the cancellations observed here will also
occur in higher orders of the CBF expansion.

In order to construct the connection between the
CBF diagrams and those generated by the (C)RPA
equations we have to isolate and cancel all energy
numerator and denominator terms. Formally, we
start from the series

obtained by cancellation of all energy numerator
terms and subsequent rearrangement according to
the number of remaining energy denominators.
This procedure has the two purposes already posed
above: first, to determine all those contributions to
the energy which do not have energy denominators
and therefore cannot be determined by the frequen-
cy integration (3.18). Owing to the absence of ener-

gy denominators, all hole lines reduce in this case to
exchange functions l(rk~), and all particle lines to a
5 function minus an exchange function. Conse-
quently, the diagrammatical elements to describe
the resulting expansion for (AE)0 are identical to
those used in the variational estimate H00 of the
ground-state energy.

It must be stressed, however, that the procedure
of separating interaction and energy-numerator
terms is only valid if all diagrams of the same topo-
logical structure are retained. This is so because the
small quantities (ij

~

W(12)
~

kl ) are effectively
split into large pieces (ij i

M(12)
i
kl ) and

E(ij ~M(12)
~

kl).
The second task of analyzing the CBF ring dia-

grams is to verify that the sum of all of the remain-
ing ring diagrams (i.e., all those containing proper
energy denominators) is correctly given by the sub-
tracted frequency integration (3.21). The reader is
reminded that the original derivation of the (C)RPA
is based on one- and two-body matrix elements
alone. There is no a pnori reason to assume that
the reducible four-, six-, . . . , 2n-body diagrams
are also correctly treated. If, on the other hand, the
interpretation of the Fermi hypernetted chain
(FHNC) diagrams as ring diagrams with a simpli-
fied (local) propagator is valid, the identification
should be exact.

The cancellation between the energy-denominator
and the energy-numerator terms of the CBF ring di-
agrams is a tedious task, one in which we have per-
severed through all fourth-order ring diagrams.
The essentially new aspects arising in fourth order
were already discussed; for a demonstration of the
general calculational procedure it is sufficient to
consider second- and third-order terms. For ease of
writing we introduce the abbreviation
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eph =e(P) —e(&) . (4.4)

Since the frequency integrals [(3.18) and (3.21)]

overcount the second-order diagram by a factor of
2, we also include this term with this artificial fac-
tor. Using the notation of Eqs. (2.17), (2.21), and
(4.4), we find

p, h,p', h'

1 1 ']

~hh ~p, p +e, , pp 'h' + p (Cph, h'p'~hpp'h'+ ~ph, h'p'Chp, p'h')+ ph Cph, h'p'Chpp'h'
ph p'h'

(4.5)

and the identification of the three distinct contributions to (b,E)0 and (AE)& is obvious. In third order we ob-
tain

(b,E)3——

PlP lP
l 7

1
~ph, p h ~p h,p-h-

eph +ep'h' eph +ep "h"

1+ 2 ~ph, h' p' ( ~p'h', p"h "Chp, p"h" +Cp'h', p"h" ~hp, p"h )
eph+ep h

+ 2 ( ~ph, h'p'Cp'h', p "h"+Cph, h'p ~p'h', p "h" ) ~hp, p-h
eph+e -h-

eph +epllhll e h+e+ g ~ph, hp Cp'h', p "h"Chp, p "h"+Cph, h'p'Cp'h', p "h" ~hp, p-h-
eph +ep h

' ' ' '
eph+ep-h-

1+ 4 ( ~ph, h'p'Cp'h', p "h "Chp, p "h"+Cph, h'p' ~p'h', p "h"Chp p "h" +Cph, h'p'Cp'h', p "h" ~hp, p "h" )

1+ 8 (2~ph +~ 'h'+e "h" )C h, h'p'C 'h', (4.6)

where we sum over all particle and hole labels p, p', p", h, h', and h". The terms in Eq. (4.6) containing a ra-
tio of single-particle energies call for additional rearrangement. The representative first term is written as

r

eph
II ph, h'p' Cp'h', p"h" Chp p"h" 4 g ~ph, h'p'( p'h', p"h" Chp p"h" + Cph, p"h" Ch'p', p "h" )

eph +ep'h'

eph
—ep'h'

+ ~ph, h'p' (Cp h', p"h"Chp, p"h" Cphp"h" Ch'p', p"h"
eph +ep'h'

(4.7)

We are now ready to identify the third-order contributions to (EE)0, (bE)~, and (EE)z. In the terms with
one remaining energy denominator we discover the supplementation of 8' with kinetic-energy terms in the
combination

1

Wh, h' ' ~ 8 "h"(C 'h', p"h"Ch, p"h" +Cph, h Ch ,p h"")''""
ptl htl

1

(~ph p'h')(Cp'h', p "h "Chp p"h" Cph, p"h" Ch'p', p "h" ) (4 8)
pll I ll

which we found already in our reformulation of the
CRPA equations (3.15) and (3.16). The last term of

(4.8) obviously originates from the remaining energy
dependence. The second and the third term of Eq.
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(4.6) display, moreover, the rearrangement of in-

teraction and correlation terms corresponding to the
reduction (2.22) of W~h hp to its irreducible part.
Thus we find first evidence that the series of CBF
ring diagrams may in fact be rearranged and formu-
lated in terms of the irreducible vertex function
U(co ) driving the CRPA equations.

These findings are confirmed by extending the
rearrangement to the fourth-order ring diagrams of
Fig. 3, which also gives sufficient information to
identify the leading term (b,E)0 of the expansion
(4.3). Without engaging in further details of the
tedious algebraic manipulations, we display the end
result:

1

(~E)0— y ( eph+ph, h'p'+hp p'h'

p, h,p', h'

+Xph h p Chp p h

CRPA formalism, since the success of variational
methods indicates that the approximations on the
propagator do not have serious consequences in this
case. The situation is significantly different in situ-
ations where one concentrates on effects close to the
Fermi surface. Examples are the self-energy,
Fermi-liquid parameters, and the pairing interac-
tion. In all of these cases, CBF corrections to the
variational estimates were found to be large, if not
overwhelming. "' '

To study the self-energy, we must calculate the
variation of the variational ground-state energy plus
its (C)RPA correction with respect to the particle
number. This leads us to a representation of the
form (3.21), in which we can identify in a symbolic
notation,

5[(QE)oj 5ERPA 5U
u (k) =u„(k)+

5n(k) 5U 5n(k)

p+Cph, h'p'+hp, p'h' ) (4.9) (4.10)

In (4.9) we have dropped, in keeping with the ap-
proximation discussed above, some of the nonlocal
terms introduced by the energy dependence of the
irreducible vertex function U(co). Equation (4.9) is

exact for the direct terms of the RPA summation
and also for the local approximations introduced in
the next section.

The "no-energy-denominator" term (4.9) has a
fairly obvious interpretation in terms of the varia-
tional energy expectation value: The first term plus
the kinetic-energy terms in X' subtracts from the
variational energy the chain contributions to the
kinetic-energy operator. The potential terms cancel
all chain diagrams involving the Jackson-Feenberg
interaction, starting at second order. Remaining are
Hartree-Fock-type terms, obtained from, say, the
FHNC approximation for IIoc by omitting all chain
diagrams.

Thereby, we have established a direct correspon-
dence between the ring diagrams summed by the
RPA equations and the chain diagrams of the vari-
ational description of the ground-state wave func-
tion. The degree to which the correspondence can
be exploited depends, of course, on the technology
available to produce the ingredients of the theory.
To some extent the task of computing nonlocal con-
tributions has been simplified, since many of these
terms are not present in the irreducible vertex func-
tion U.

The computation of energy corrections due to the
inclusion of the (C)RPA diagrams is presumably
the least demanding problem to be attacked by the

By E we mean the sum of all ring diagrams in
terms of the irreducible vertex U, i.e., the sum (4.3)
starting at n =1. It is worth noting here again that
the second term in Eq. (4.10) subtracts pieces con-
tained in u„(k). Since the Hartree-Fock-type terms
are usually smoothly varying functions which de-

pend only little on the approximation used, one can
obtain the combination

u„(k)+5[(EE)o]/5n (k)

with satisfactory accuracy from the CBF single-
particle energies by taking out the chain diagrams.
A similar argument applies to the last term in Eq.
(4.10): The irreducible vertex U is a more "highly
connected" quantity than, for example, the opera-
tors %(12) or M(12) entering the original CBF
self-energy. The variation of U with respect to the
occupation number generates genuine three-body
terms, whereas the variation of M(12) and ~(12)
can also generate products of two-body operators.
It is also worth noting that all contributions to u (k)
are real. Unless these terms are singled out and
treated individually, the real part of the self-energy
cannot be obtained from the imaginary part using a
Kramers-Kronig relation. The argument applies
quite generally to CBF calculations of the self-
energy, irrespective of whether RPA summations
were performed or not. Currently' physically most
interesting effects are, of course, expected from the
complex portions of the self-energy which may, us-

ing the irreducible vertex function U, be computed
with conventional methods.
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V. IRREDUCIBLE VERTEX FUNCTION

Our last task is to provide explicit expressions for
the irreducible vertex function U J ~~. Here of
course, we have to specify the correlation operator.
We restrict ourselves to the Jastrow choice (2.2), but
expect structurally similar results for state-
dependent correlations.

The construction of the configuration-space rep-
resentation of the energy-independent part of U [cf.
Eqs. (3.16) and (3.17)] amounts, in essence, to the
repetition of the analysis of Ref. 4. We shall refrain
here from such a general construction as it involves
the study of the elementary structures and a fairly
tedious and unrewarding diagrammatical analysis.
Rather, we will restrict ourselves to making the gen-
eral result plausible using a simplified model in
which all calculations can be carried out analytical-
ly. Also, we will only present the relevant working
formulas to an order which has been found to be
tractable, but also indispensable, for most applica-
tions in nuclear systems' and in liquid He. ' At
this level of accuracy, the exchange terms of X' and
X are identical to the exchange terms of P" and M.

Concerning our notation and the definition of the
relevant quantities, we rely on Ref. 5 and our recent
work on the optimized variational description of the
many-fermion ground state. ' The reader may find
it necessary to consult these references for notation-
al and technical matters. Following the notations
introduced there, we denote the diagrams used in
the FHNC summation technique with X,J and X,&,

where X refers to "non-nodal" and X refers to "no-
dal" (or chain) diagrams. The subscripts (ij) [equal
to (dd), (de), (ee), and (cc)] characterize the exchange
structure at the external points.

The solution of the FHNC equations is suffi-
cient for the construction of the two-body operator.V(12). For the calculation of //"(12) we have to
solve another set of linear integral equations, the
so-called FHNC' equations, which are constructed
from the FHNC equations by linearization and
which use the Jackson-Feenberg interaction (2.20)
as the driving term. The solution of these equations
is required anyway if the Jastrow function is deter-

mined by minimization of the energy expectation
value.

Owing to their close resemblance to our approxi-
mations for the effective interactions in the next
section, we display here the FHNC' equations. The
dimensionless three-dimensional Fourier transform
is denoted by a tilde as

f(k)=p f d'r f(r)exp(kk r) . (5.1)

I.et v denote the degeneracy of the single-particle
levels. It is helpful to introduce the quantities

L (r) =1(r,kF) vN„(—r),
rdd(~) =Xdd(~)+Ndd(~),

I dd(r) =Xdd(r)+Ndd(r),

(5.2)

(5.3)

[1+X„(k)]Sd(k)S(k)=-
[1+Xd, (k) ]

(5.5)

in terms of the basic ingredients of FHNC theory.
The FHNC' equations may now be obtained by
linearization of the FHNC equations, i.e.,

N J(k)= g [5N J(k)/5X~(k)]X„', (k), (5.6)

where the driving terms are determined by diagram-
matical analysis. One obtains two sets of four
linear equations, one being algebraic in momentum
space, the other one in coordinate space. While the
momentum-space equations are exact, the
coordinate-space equations require the specification
of "elementary" diagrams Ez(r), which are set to
zero in the simplest version of the FHNC' equa-
tions. However, a minimum estimate of elementary
exchange diagrams is required' to include "Pauli-
blocking" effects which are necessary for some of
the applications discussed below.

The coordinate-space equations are

[1+[1+X„(k)]Idd(k) }Sd(k) =
[1+Xd,(k)]

and the representation of the static structure func-
tion

Xdd( ) [I+~dd(r)][UJF(~)+Edd(r)]+~dd(r)Ndd(~)

Xd (P') =I dd(v)[Nd (r)+Ed (r)]+[1+Pdd(P)]Ed (r)+I dd(P)Ndd(P)

X,', (r)= I dd(r)[ L(r)/v+[Nd, (r—)+Ed, (r)] +N„(P)+E (P)}+Idd(P)N' (P)

+2[1+Idd(r)] [L (r)[N,', (r)+E,', (r)]+[Nd, (r)+Ed, (r)][Nd, (r)+Ed, (r)] }

+[1+I"dd(r)]Edd(r) —(R /2mv)[1+ I dd(r)] [L (r) V'2l (rkp )+ [Vl(rkF )]2},

(5.7)

(5.8)

(5.9)
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X,', (r) = —I dd(r)L (r)/v+ [1+I dd(r))E,', (r)+ I dd(r)N, ', (r) (—A l4mv)I'dd(r)V l(rkF) . (5.10)

[» Eq. (5.9) we correct a misprint of Eq. (A14) in Ref. 14.] The momentum-space equations (or, the equa-
tions for the nodal diagrams) read

Ndd(k} = [Sd(k) —1]Xdd(k)+2I dd(k)Sd(k)Xd, (k)+ I dd(k)X„(k),

Nd (k) Sd(k)[S(k} Sd(k)]xdd(k)+ [rdd(k}[S(k) Sd(k)]+Sd(k)[S (k) —r (k)]]X (k)

+ rdd(k}[Sd(k) —rdd(k)]X,', (k),

N,', (k) = [S(k)—Sd(k)] Xdd(k)+2[S(k) —Sd(k)][Sd(k) —I (k)]X',(k)

+ [[Sd(k)—I'«(k)]' —1IX,', (k),

N,', (k)= [[1—l(k)/v]/[1 —X„(k)] —1IX,', (k) .

(5.11)

(5.12)

(5.13)

(5.14)

Finally, it is useful to introduce the quantity

s'(k) = g [ss(k)/sx, ,(k)]x,,'(k)
f,J

= S'(k)Xdd(k)+2S(k}Sd(k)Xd, (k)

I

with

D = [ [1—x„(p, )][1—x„(p,)]

x [1—x.,(pk }1[1—x;(pr) ] I
'"

+Sd(k)X,', (k) . (5.15)

[5HOO(f)/5 lnf ](r)=0

reads, in Fourier space, '

(5.18)

Q(k)=s'(k)+(R k /4m)[S(k) —1]=0 .
(5.19)

The form (5.19) of the optimization condition for
the two-body correlations would be unaffected by
an additional three-body correlation factor, which

can be absorbed in the elementary quantities EJ(r)
appearing in Eqs. (5.7)—(5.10).

The FHNC quantities introduced above are the
basic building blocks for the variational single-

particle energies ' and the two-body operators
~(12) and P"(12). For example, the "local" ap-
proximation for ~(12) is

&V I

~- (12}
I

kI & =D &ij
I
r«(r}

I

kI &

(5.20)

The quantities X„(k)and X,', (k) have leading terms

which are present even in the absence of correla-

tions:

X„(k)=SF(k)—1+0(f 1), —(5.16)

X,', (k)= —(A' k /4m)[SF(k) —1]+O(f 1) . —

(5.17)

In terms of the structure function S (k) and the gen-
eralized structure factor S'(k), the optimization
condition for the two-body correlation function

(5.21)

For the two-body operator K(12) one finds similar-

ly

&ijI &~..(12) Iki&

'&~'j
I

rdd(r)+(4'/4m)V'r«(r)
I

kt & .

(5.22)

A complete discussion and explicit expressions for
more complicated contributions to K (12) and

M(12) may be found in Ref. 14.
Following the construction of the particle-hole

correlation matrix X in Sec. 2, and using the basic
building blocks of the FHNC quantities introduced
here, we find, e.g.,

xp/, p I, =xdd(q)/A —&ph'
I
M(12)

I
p'h & .

(5.23)

[Note that the direct term Xdd(q) in (5.23) is nor-
malized with the particle number A, not with the
volume. This is due to the fact that the Fourier
transform contains a density factor. ] Again,

q =
I p —h

I
is the momentum transfer in the direct

channel.
From (5.23) it is straightforward to obtain the

portion of the corresponding matrix element of X'
originating from the Jackson-Feenberg interaction

by "diagrammatical differentiation. " The kinetic-

energy terms require some additional attention.
Here we have to combine the term (A' /4m)V I dd(r)
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in Eq. (5.22} with the kinetic-energy terms of (3.16)
and (3.17),

{X(t —th )X},"= g (A' p /2m —A' h /2m )

p, h

+ (Xi phXphj +Xi,hpXhpj ) .
(5.24)

The calculation may be performed by an order-by-
order expansion starting from the definitions (2.18),
(2.22), and (3.16). Special cases can a!so be verified
analytically in all orders, for example, if we neglect
all exchange terms, and use the chain approxima-
tions for the FHNC equations. Since this calcula-
tion is very similar to the one given in the next sec-
tion, we display here only the end result.

The direct terms of the irreducible vertex func-
tion are given in terms of the FHNC quantities in-

troduced above as

AUd"(q)= Xdq(q) (fi q /4m—)Xdd(q)

X I 1 —[1—m /m*(q)]Xdd(q) I,
(5.25}

where m*(q) is an average momentum-dependent
effective mass defined by

A' q /2m*(q)=A 'g n(h)[1 n(
~
h+q —)]

X[e(
~
h+q

~

) —e(h)] .
(5.26)

It is possible, of course, to go beyond the simplest
approximation (5.25) for U(q) by, for example, in-
cluding terms where the single-particle potential
u„(k) couples direct and exchange diagrams in the
quadratic terms (3.15) and (3.16). However, much
care is needed in such a case since it will generally
be necessary to include elementary diagrams in or-
der to guarantee the correct Landau limit. Past ex-
perience' has shown that it is much more impor-
tant to keep the correct combination of diagrams to
CBF quantities than to calculate a part of them,
which happens to have a simpler analytical struc-
ture. We anticipate that the expression (5.25) will,
when supplemented with the exchange term of
M(12), be a satisfactory starting point for numeri-
cal applications.

VI. LOCAL APPROXIMATIONS

In principle, the (C)RPA equations formulated in
the original work' or in the irreducible form
presented here may be solved numerically on a suit-
able mesh. They contain all the information needed
to study the single-particle spectrum and collective

modes. In fact, the brute-force diagonalization ap-
pears to be the most promising treatment in finite
nuclei, and is also feasible for infinitely extended
nuclear systems. However, such studies remain
limited to the computation of the spectrum and to
the study of collective modes. To study the cou-
pling of excited states to the particle-hole and col-
lective modes of the medium, for example, requires
additional manipulations. Substantial simplifica-
tions are possible if reliable approximations for the
solutions of the CRPA equations are available in
closed form. Moreover, theoretical understanding is
usually promoted by formal studies and analytically
solvable models. It will also provide contact with,
for example, the pseudopotential model of Aldrich
and Pines, " or to "local-field corrections. "' We
turn in this section to the study of solvable models
of the (C)RPA equations.

To motivate the choice of our local approxima-
tions, let us turn to a simplified description of co1-
lective excitations within the variational framework.
Such a study depends to some extent on the explicit
form of the correlation operator F. To be definite,
we assume for the ground-state correlation operator
E the Feenberg form

r

F=exP g u(rj)+ g u(r;, rj, rh)+
i&j i&j&k

(6.1)

For the study of collective density fluctuations, a
symmetrized operator product or an exponentia1 in-
volving spin, isospin, and tensor correlations may
also be used. We include "backflow" correlations
only to the extent that these can be rewritten in
terms of multiparticle correlation functions. This
can always be done in a boson system. For a Fer-
mion system, this amounts to neglecting the action
of the backflow correlation operator on the Slater
function. To include these type of correlations, a
separate study of the optimization of the backflow
correlation operator is required, which is presently
not available and beyond the scope of this paper.

The variational nature of the wave function (2.2)
suggests that it is also well suited to the description
of coherently excited states, in which all particles
are equally involved. In fact, we will see that the
spectrum of collective modes is already built into
the variational wave function.

On the other hand, one expects that additional
considerations are required to correctly describe
single-particle excitations. Already the work of Tan
and Feenberg indicated that substantial correc-
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(6.2)

where p& is the density operator

Pq ~& k+q&k
k

With this wave function, we carry out manipula-
tions like those leading to the CRPA equations.
However, we can now perform all summations over
hole states explicitly. The matrices A, 8, and M are
replaced by their hole-state averages which depend
only on the wave vector q of the collective mode.
They may be written in the form

&(q)=Joo'&((lo
I

F'(H Hoo)Fpqpq —
I 0o&

(6.3)

A(q)=Ioo'(0o
I pqF (H Hoo)Fpq I

4o—)

=8(q)+Pi q /2m,

~(q)=J~ (0o IF Fp,p, I
do&=S(q) .

(6.4)

(6.5)

tions to the single-particle spectrum are to be ex-

pected from going beyond the variational, static
description of the wave function. These findings
were recently substantiated and broadened, ' '
using present technology for the computation of the
relevant CBF quantities.

In a collective mode, the particle-hole amplitudes

czar(t) describe a coherent state, i.e., they are to a
good approximation functions of the momentum
transfer q =

I p —h
I

alone. The trial wave func-
tion (3.2) may in this case be written in the simpli-
fied form

I P„s(t))=exp iHoo—t/h+ g cq(t)pq I Po),

which leads us immediately to the well-known Bijl-
Feynman dispersion relation for the zero-sound
mode

irico(q) =A' q /[2mS(q)] . (6.8)

Note that the S(q) in Eq. (6.8) is the static structure
function obtained from the Uariational tcaue func
tion. The result that optimal variational wave func-
tions lead to this dispersion relation is not new
and was already implicit in Feenberg's work. ' In
essence, it shows again that the RPA is, in a collec-
tive sense, already built into the variational theory
of the ground state. This is consistent with the fact
that the summation of the chain diagrams is a
minimum requirement to obtain a physically mean-

ingful solution of the variational problem (5.18). In
essence, the collective model amounts to the con-
traction of the cut in the Lindhard function to a
single pole describing a collective mode; it is exact
in Boson systems. We do not see much point at
present in a numerical application for the helium
liquids, since the Bijl-Feynman dispersion relation
gives a poor description of the experimental situa-
tion. This is, however, a fault of the linearized
treatment of the excitations within the RPA, and
not a shortcoming of the Jastrow wave function.

The collective model (6.2) is implicit in recent
studies of the response function in the electron gas
and in liquid He. Embedding the theory of Refs.
30 in the more general framework of the correlated
RPA is therefore not only of pedagogical value, it
also allows one to relax systematically some of the
underlying approximations and to study dynamical
effects and the influence of single-pair excitations.
Relying on the general analysis of the dynamic
response function in Sec. IV, and in Refs. 2 and 3,
we find, in the collective model,

irtco(q) = [irt q /2mS(q)]

)& [1+(4m /fi q )8 (q) ]'~ . (6.6)

We note also that, if we have chosen to determine
the central (Jastrow) part of the correlation operator

f(r) by the variational principle (5.18), we find'4

Equations (6.4) and (6.5) require the above-
mentioned locality of the correlation operator F
(more generally the commutation property

[pq, F]=0),
The simplifications (6.3)—(6.5) turn the CRPA

equations into a set of algebraic equations with the
solution

G,,o(q, co ) = (iri q /m)

X f [iri q /2m+A(q)]

—0 (q) —irt co S (q))

and the density-density response function

11(q, ~ ) = —[r'q'S'(q)/m]

~ [ [ii'q'/2m+ Q(q)]'

—0 (q) —A' co S (q)]

(6.9)

(6.10)

&(f„,)(q) =&(q)=0, (6.7)
In the case of optimal correlations, (6.10) simplifies
to
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&& [ [A2q /2mS(q)] —R co j (6.11)

One does not expect that the response function in
the collective model contains as a leading term the
Lindhard function, since the present approach
amounts to the approximation

g n (k)[1 n—(
I
k+ q I

)]/[e (
I
k+ q I

) e—(k) R—co ]

g n (k)[1.—n (
I
k+ q I )]

g n ( k)[1 n—(
I
k+ q I

)]
k

g t n (k)[1 n(
I

k—+ q I )][e( I
k+ q I

) —e (k) —fico] J

(6.12)

The above example substantiates our argument
that the collective modes are naturally built into the
variational description of the ground state. It also
motivates our suggestion that the hole-state average
involved in Eqs. (6.3)—(6.5) is an approximation
that is sympathetic with the use of correlated wave
functions. Let us therefore go beyond the collective
model (6.3)—(6.5) and consider, in concert with our
studies of Sec. III, the single-particle spectrum and

the energy-numerator terms individually. In princi-
ple, any approximation for the matrix elements of
~(12) and %(12) or of the irreducible vertex U,
which is a function of momentum transfer alone,
will generate a closed-form solution of the (C)RPA
equations. However, some care must be exercised in
order to preserve the accuracy of the HNC calcula-
tion of the ground-state properties. To see this, we
write the static structure function as

S(q}=A 'g ($0 I
F Fa k, -a k, a-„+-a k I Po)/Ioo

kk'

—S+(q)+A i gz „„zp, p, (k, k' I& (12)
I k+q, k —q },

k, k'
(6.13)

where the sums over k and k' are restricted to k (kz and
I
k+ q I

}k~. The most general configuration space
contributions to K(12) are four-point functions, the computation of K(12) remains therefore practically limit-
ed to the leading, local terms. The computation of S(q) from M(12) via Eq. (6.13) will consequently be less
accurate than the direct computation of S(q}by means of the FHNC equations. If we envision the calculation
of an improved structure function via the CBF and/or RPA equations, we must take care that we do not lose
much of the calculational accuracy due to approximations dictated by the complicated structure of M(12). In
other words, we have to devise a systematic approximation scheme for the matrix elements of M(12) which
preserves the relation (6.13) order by order. Relying on this argument, the adequate local approximation will
be

zzszj, 's &hh'1~~12)
I
pp'& =A '&(

I p —h
I
N(p+ p' —h —h'» &(q)= [S(q) SF(q)1/SF(q) . —(6.14)

Similar considerations are required for the in-
teraction matrix elements. Here, the preservation of
the optimization condition (5.19) and (6.7) provides
the necessary guidance. Local approximations for
the second particle-hole channel may be derived
correspondingly. However, if we wish to have the
same local approximation for both particle-hole
channels of M(12) and ~(12) (and, hence, for the
irreducible vertex U), the relation (6.4) forces us to
absorb the variational average field u„(k) (2.6) seen

x(p +p' h h' )N(
I p ——h

I

—)]

X5(p+ p' —h —h'), (6.15)

l

by a single particle in the local approximations for
the matrix elements of M(12). Thus we arrive at

A~q~a, .= (A' /2m)(p —h )5(p —p')5(h h')

+A '[ W(
I p —h

I
)+(A /4m)
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a„„„,=W -'[ W(
~ p —h

~

)+(A'/4~)

~(p'+p' —h' —h')N(
~ p —h)

~ ]

X5(p+p' —h —h'), (6.16)

where

W(q) =[Q(q) fi q S—F(q)N(q)/2m]/SF(q) .

(6.18)

We note that the full single-particle spectrum may
also be retained, this leads still to a closed-form, but
less transparent representation of the Green's func-
tion. These studies will be necessary for actual nu-

merical applications in nuclear many-body systems,
where the variational single-particle energies give
most of the effective mass. In He, most of the ef-
fective mass is due to the CBF perturbation correc-
tions. ' Here, the variational single-particle ener-

gies are close to the noninteracting spectrum, and
the neglect of the average field is a reasonable first
approximation.

Owing to our averaging, the correlation matrix
becomes local, and can be inverted explicitly. After
some algebraic manipulations, we find

Uij
——A 'U(q),

[W(q) —(fi q /4m)N (q)]
[1+N(q)SF(q)]

= Q(q)/S (q)

+.(KPq /m4) [1 S/(q) —1/SF(q) ] . (6.19)

We note that the manipulations are identical to the
ones performed for the chain approximation, but
here we included exchange effects in an average
way. Equation (6.19) becomes particularly simple
for the optimal f(r). Then the Q(q) term vanishes,
and the averaged irreducible vertex may be deter-
mined from the structure function alone:

U,~,(q) =(iii q /4m)[1/S (q) —1/SF(q)] .

(6.20)

The assumption of optimal correlation functions
closes the circle: We have reconstructed a very

MFi, F i, = 5(p —p')5(h —h')

+A 'N(
i p —h

i
)5(p+p' —h —h'),

(6.17)

familiar result, namely, the RPA connection be-
tween a weak, local interaction and the structure
function S(q) in the fluid-dynamic approxima-
tion ' (or in the "uniform limit"' ). However, the

meaning of Eq. (6.20) is totally different. Whil'e

(6.20) is usually employed to derive the static struc-
ture function from a weak, local vertex function, we
have shown here that we can use, in turn, the struc-
ture function obtained in a preceding variational
calculation to determine weak, local interaction.

It is clear that our identification (6.20) offers a
wide field of applications of results obtained by
variational ground-state calculations without having
to derive a new, "variational" theory of the physical
observable under considerations. For example, we
may use this local interaction to calculate the
density-response function, which assumes in this
approximation the familiar form

II '(q, co)=IIO '(q, co) —U(q), (6.21)

or to calculate the self-energy,

X(k,E)= u (k)

+i J ~ G (k —q,E —flu)
(2m )

XU (q)II(q, co) . (6.22)

S(q,co) =ImII(q, co)/m. .

In the "fluid-dynamic" approximation we obtain

SRpA(q)=S (q)+4mQ(q)l(fi q ) . (6.23)

As expected, the RPA does not give rise to a correc-
tion to the variational S(q) in the case that the
two-body correlations were optimized. At this junc-
ture it is worth recalling the argument that the local
approximations should be chosen such that the rela-
tions between the matrix elements of M(12), M(12),

IIp(q N ) is the Lindhard function.
The connection to the collective model discussed

earlier is readily made through the additional ap-
proximation (6.12) for the Lindhard function,
which reproduces Eq. (6.10). While (6.12) is exact
for large frequencies, one does not expect that low-

frequency excitations are adequately treated by the
simple collective model (6.12).

A further application is the determination of
CBF corrections to the (variational) static structure
function, which may be calculated from the
density-response function (6.21) via the dynamic
structure factor
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the (variational) static structure function and the
optimization condition are preserved. Otherwise, it
would not be clear if additional approximations for
the relevant two-body operators introduce larger un-
certainties in the variational S(q) than what is
gained by the improvement for the propagator
through the RPA.

The local approximation discussed here is, in
some respect, oversimplified in comparison with the
usual sophistication of variational CBF calcula-
tions. It leaves out some dynamic screening ef-
fects ' which appear to be important in the electron
gas at metallic densities. Presumably, it will also
not be adequate to study the momentum depen-
dence' of the self-energy (and, hence, the effective
mass) in liquid He. On the other hand, it provides
a straightforward microscopic foundation of
theories of comparable structure.

Among these, the polarization potential model"
for liquid He appears to be one of the most suc-
cessful ones. Clearly, U(q) should be identified
with f» given by Aldrich and Pines. The compar-
ison is shown in Fig. 4; the "theoretical" curve was
obtained from an optimized variational calcula-
tion' for the HFDHE2 potential at experimental
equilibrium density. The agreement with the results
of Aldrich and Pines is quite satisfactory. The

20

l0

0.5 l.0 l.5
k/kF

2.0

FIG. 4. Polarization potential Nfq of Aldrich and
Pines (AP) {Ref. 11) (curve labeled with AP) is compared
with the variational result from Eq. (6.20) {unlabeled
curve). The underlying variational S(q) is taken'from a
ground-state calculation with the HFDHE2 potential of
Aziz et al. (Ref. 32) at experimental equilibrium density.

reader is reminded that the calculated equilibrium
density in a Jastrow variational calculation is ap-
proximately 25% below. the experimental one. This
has the effect that one is actually considering the
system at finite pressure, which causes U(q) to be
pushed up at small values of q.

Another case of interest is the determination of a
local screening function' in the electron gas, which
was recently treated within the collective model.
Unfortunately, the relations (6.18) and (6.19) are ex-
tremely sensitive functionals of S(q), so that incon-
sistencies of a few percent result in substantial vari-
ations in U(q). The direct evaluation of a local
screening function from the irreducible vertex,
without relying on the optimization condition, may
provide a more robust algorithm, although the
structure of the theory becomes somewhat obscured.
One may also envision making a local approxima-
tion directly for the irreducible vertex U(q). The
present studies present only the general theory and
the simplest applications. Future studies and nu-
merical applications will have to solve some of the
technical aspects.

VII. DISCUSSION

A number of formal and practical consequences
of our investigations need to be mentioned. Our
considerations have pointed out a way for the mi-
croscopic determination of the basic ingredients of
the RPA and linear response theory and, because of
their resemblance to phenomenological theories,
offer a wide field of applications. In general terms,
the road between the microscopic description of
many-body systems and their macroscopic proper-
ties has been broadened.

It occurs to us that this road should be used in
both directions. Coming from a microscopic theory
for the irreducible vertex function, we are able to
determine the general structure and estimate the
type and relevance of nonlocalities. We may also
use the theory to give microscopic foundation for
more phenomenological approaches like the polari-
zation potential model and to extend their field of
application. An immediate application would be to
use the pseudopotentials of Aldrich and Pines in
Eq. (6.21) to determine the mass operator in He.

Incidentally, our considerations also offer a way
to attack problems occurring in the microscopic
description of the most interesting terrestrial quan-
tum liquids, liquid He at zero temperature and the
electron gas. In these systems, the convergence of
cluster expansions for the relevant CBF quantities is
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usually poor, due to either the high density of the
system or the long range of the correlations. The
evaluation of four-point functions ~(12) and
M(12) remains limited naturally to the simplest,
leading terms. The "separable" approximation used
in Ref. 14 appears to be optimal within practical
numerical effort. To confirm a sufficiently accu-
rate treatment of the nonlocal contributions to the
effective interaction, estimates for their size are
called for.

Similarly, it is hard to confirm the convergence
of the CBF perturbation expansion by numerically
exhausting the array of tractable perturbation
corrections. Again, solvable models will provide es-
timates for higher-order CBF perturbation correc-
tions. We anticipate that the local approximations
discussed in the preceding section can be used as a
tool to attack both of the above-mentioned conver-
gence problems: They give estimates for higher-
order CBF corrections that are inaccessible to direct
numerical evaluation. They may also be used as a
starting point for perturbative expansions in terms
of the nonlocality of the effective interactions. A
number of formal and conceptual consequences of
our analysis are worth pointing out at the end.

(1) Our result, that optimized Jastrow correla-
tions lead to the Bijl-Feynman dispersion relation, is
independent of the possible additional presence of
discretely state-dependent or multiparticle correla-
tions. These affect the result only because a better
approximation for the ground-state wave function
leads to a better static structure factor.

(2) We have encountered an example where the
use of optimized Jastrow correlations actually leads
to appreciable changes in the results. With the use
of, e.g. , Schiff-Verlet correlation functions, for
liquid He, the factor

[I+(4m lfi q )Q(q)]'~

causes maximum corrections of as much as 15/o to
the Bijl-Feynrnan dispersion relation, even though
the optimization does not lead to a significant
lowering of the energy expectation value nor to sig-
nificant changes in S(q) except at low momenta. In
fact, after the influence of the optimization condi-
tion has been identified, it is a better approximation
to the dispersion relation always to assume an op-
timized correlation function, even if the actual cal-
culation has not been carried through.

(3) We have again encountered the significance
of the "average-zero" condition for the effective in-

teraction, which led to the Bijl-Feynman dispersion

relation for the density mode. More generally, it al-
lows in the local approximation of the effective in-
teraction to be expressed in terms of the static
structure function. One would like to carry the
same analysis through for different (iso)spin chan-
nels. Unfortunately, none of the presently available
state-dependent correlation operators leads to a gen-
eralization of (6.3) and (6.7) with an operator-
weighted-average-zero property.

(4) We have discovered the intimate relationship
between the effective interactions in CBF theory
and the variational calculation of ground-state
properties. The cancellation of the chain diagrams
described in Sec. IV works correctly, of course, only
if the chain diagrams are originally built into the ef-
fective interaction 1/ (12). It goes without saying
that the same argument applies in any finite order
of the CBF expansion. Our investigations also
show a way how to overcome this problem: Carry-
ing out the RPA summations studied here, and us-

ing the irreducible vertex function, should largely
eliminate the need to sum chain diagrams with
state-dependent correlation operators.

(5) Our investigations seem to be only the begin-
ning of a wide array of further explorations in the
field of microscopic theories of quantum systems.
Previous studies have considered either the varia-
tional wave functions or the CBF perturbation ex-
pansion independently. The present study of ring
diagrams has revealed the first example of the inti-
mate relatioriship between both. One expects that
similar studies will be feasible for other familiar di-
agrammatical substructures of perturbation theory,
like ladder diagrams or hole-line insertions.
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