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Phase transitions in lattice gases of orientable molecules
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An extension of the Peierls argument due to Heilmann is used to prove the existence of
an ordered phase in two lattice-gas models of orientable molecules. The first model is a lat-
tice gas of tetrahedral molecules on a body-centered-cubic lattice. The second model is a
lattice gas of trigonal planar molecules on a triangular lattice. A lattice site in either model
can be vacant or occupied by a molecule in either of the two orientations in which the
molecular bonds point toward neighboring lattice sites. Two neighboring molecules attract
if one points a bond toward the other and repel if both molecules point bonds toward one
another. The ordered phase in the three-dimensional model has the same orientational or-
dering that has been proposed to exist in liquid carbon tetrachloride. The ordered phase in
the two-dimensional version has the structure indicated by Monte Carlo studies to exist in a
system of methane adsorbed on graphite.

I. INTRODUCTION

Phase transitions in lattice gases composed of
molecules having nonspherical molecular shapes
have been the subject of several recent investiga-
tions. Systems of linear molecules have been stud-
ied as models for liquid crystals. ' Lattice gases
of orientable molecules have been used to model the
properties of water, ' hydrogen-bonded sol-
vents, ' carbon tetrachloride, ' and adsorbed mono-
layers. '

In the present paper, we prove the existence of or-
dered phases in two lattice gas models. Model 1

consists of a three-dimensional lattice gas of
tetrahedral molecules on a body-centered-cubic (bcc)
lattice. Model 2, a two-dimensional analog of
model I, consists of trigonal planar molecules on a
triangular lattice. In both models, a lattice site can
bc either vacant or occupied by a molecule in either
of the two orientations in which the molecular
bonds point toward neighboring lattice sites. '

One such orientation is illustrated for model 1 in

Fig. 1 and for model 2 in Fig. 2. Two molecules on

neighboring sites attract with an energy e (0 if one
molecule points a bond toward the other, and repel
with a steric bond-bond repulsion energy y) 0 if
both molecules point bonds toward each other.

The ground state for sufficiently large chemical
potential p consists of an ordered structure in

which every lattice site is occupied by a molecule in

a single orientation. For both models 1 and 2, the
special case of hard-core repulsion (y —+Do and

e =0) has been studied by series techniques' ' and

has been previously proved to undergo an order-

disorder transition.
On the basis of x-ray diffraction studies, liquid

carbon tetrachloride has been recently proposed to
exhibit local orientational ordering in a body-
centered-cubic (bcc) structure in which the carbon
atoms occupy lattice sites and the chlorine atoms
point toward carbon atoms of neighboring mole-
cules. As such, model 1 should provide a
reasonable model for liquid-vapor equilibrium in
carbon tetrachloride. The ground-state structure
models the local orientational ordering proposed to
exist in liquid carbon tetrachloride, except that the
complete translational order, which is present in the
lattice gas, is of course absent in the true liquid.
(Recently, however, lattice-gas models for liquid

FIG. 1. One possible orientation of a tetrahedral
molecule on the bcc lattice is shown. A tetrahedron is
illustrated which contains one vertex from each of the
four fcc sublattices of the bcc lattice.
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FIG. 2. One possible orientation of a trigonal planar
molecule on the triangular lattice is shown. The shaded

triangular region is referred to in the Peierls argument.

crystals have been introduced which have orienta-
tional order without the translational order of a
crystal. s)

Model 2 has also been studied using
renormalization-group methods. ' The ordered
structure in model 2 was recently indicated by
Monte Carlo studies to exist in a system of methane
adsorbed on graphite.

In the next section we will use an extension of the
Peierls argument, due to Heilmann, to prove the
existence of an ordered phase in the two models at
sufficiently low temperature and sufficiently high
chemical potential. The Ruelle theorem can be
used to show that the models are transition free,
both at sufficiently high temperature and at suffi-
ciently low chemical potential. As such, the models
exhibit order-disorder phase transitions.

II. PEIERLS'S ARGUMENT

trated in Fig. 3.
The triangular lattice is composed of three tri-

angular sublattices. The lattice is also composed of
triangles having edges of first-neighbor length and a
vertex from each of the three sublattices. One such
triangle is illustrated in Fig. 2.

The seven different types of molecular configura-
tions which can occur about a given triangle are il-
lustrated in Fig. 4. The ground state for model 2 is
composed entirely of triangles of type 1, as illustrat-
ed in Fig. 4.

These triangles and tetrahedra are examples of v-

dimensional simplexes. We shall consider simplexes
of type i@1 to be contour segments. A (v —1)-
dimensional surface element of a simplex (an edge
for v=2 and a triangle for v=3) will be called a
face of a simplex. A face will be said to be ordered
if the molecular configuration at the v vertices of
the face could be the same as the configuration of v
vertices of a face of a simplex of type 1. Otherwise,
the face is said to be disordered. An inspection of
Figs. 3 and 4 indicates that a contour segment can
contain at most one ordered face. Two contour seg-
ments will be said to be connected if they share a
disordered face. A simply connected set of contour
segments shall constitute a contour. A contour
shall be said to be closed if its border contains only
ordered faces.

The use of such simplexes as contour segments
has been previously used in a Peierls argument for
phase transitions in lattice-gas models for water. '

In the models for water, however, the ordered
ground-state structures were translates of one
another. In the present models, the ground-state
structures are related by reflection.

Since the notion of a contour is a central part of
the Peierls argument, we shall now define what we
mean by a contour segment in each of the two
models.

The bcc lattice is composed of four interlocking
face-centered-cubic (fcc) sublattices. The lattice is
also composed of tetrahedra, each having one vertex
from each of the four fcc sublattices. One such
tetrahedron is illustrated in Fig. 1. Two of the
edges are of second-neighbor length, and the other
four edges are of first-neighbor length.

The 15 different molecular configurations which
can border a tetrahedron in the lattice-gas model are
illustrated in Fig. 3. The tetrahedra are represented
as squares, an edge representing a first-neighbor dis-
tance, and a diagonal representing a second-
neighbor distance. The ground state for model 1 is
composed entirely of tetrahedra of type 1, as illus-
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FIG. 3. Fifteen principally different types of molecu-
lar configurations which can border a given tetrahedron
(see Fig. 1) on the bcc lattice. Tetrahedra are represent-
ed as squares, an edge representing a first-neighbor dis-
tance, and a diagonal representing a second-neighbor
distance.
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FIG. 4. Seven different types of molecular configura-
tion which can border a given triangle (see Fig. 2) on the
triangular lattice.

Certain models which contain exactly two or-
dered structures related by reflection can be proved
to have an ordered phase using an extension of the
Peierls argument due to Heilmann. The argu-
ment requires that a specification of the contours
must uniquely specify the configuration, and that
the contours must have a Hamiltonian such that the
total Hamiltonian is a sum of the Hamiltonians of
the contours.

In the present models, if the outer boundary of
the lattice is composed of one of the two ordered
ground-state structures, then regions consisting of
molecules in either of the two ordered ground-state
structures are separated by closed contours. More-
over, a configuration is uniquely specified by a
specification of the contours.

We associate with each of the tetrahedra of
model 1 a quantity H; equal to the sum of —p/24
for each molecular bond, e/6 for each attractive in-

teraction, and y/6 for each repulsive interaction.
The values of H; are given in Table I for each of the

15 types of tetrahedra, as illustrated in Fig. 3.
Similarly, we associated with each of the triangles

of model 2 a quantity H; equal to the sum of —p, /6
for each molecular bond, e/2 for each attraction,
and y/2 for each repulsion. The values of H; are
given in Table II for each of the seven types of tri-

angles, as illustrated in Fig. 4.
For either model, the Hamiltonian H(g) for a

configuration g is then given as the sum of the H;
for each simplex in the lattice A. The grand-
canonical partition function for.the system is given
as

+exp
—H(g)

If, instead, the quantity H; —H~ is associated
with each simplex in a configuration, then the
Hamiltonian (except for a constant term

~

A
~
Hi) is

given as the sum of the H; Hi for —each contour

segment in the configuration.
In either model, closely spaced reflection planes

(lines) exist which map the lattice onto itself while

interchanging the orientation of the mollies in a
configuration.

The above properties ensure that the refiection

principle of Heilmann can be used to show that an
outer contour occurs with sufficiently low probabil-

ity to prove that there is an ordered phase at suffi-

ciently low temperature if

a=minH; —Hi &0, i+I .

A consideration of Tables I and II indicates

min(JM/6 —2e/3, p/24 —e/3, y/6 —e/3), model 1

min(p/2 —3e/2, p/6 —e,y/2 —e ), model 2

TABLE I. Values of the Hamiltonian restricted to
tetrahedra of type i as illustrated in Fig. 3.

I

As such, a &0 if p, &4e in model 1, and a &0 if
IM p 3e in model 2.

l

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15

H;
—p/6+2@ /3
—p/6+ e/3+ y/6
—p/6+ e/3+ y/6
—p/6+ y/3
—3p/24+ e /3
—3p/24+ e /6
—3p/24+ e /6+ y/6
—3p/24+y/6
—p/12+@/6
—p/12
—p/12
—p/12
—p/12+ y/6
—p/24
0

III. DISCUSSION

The Peierls argument indicates that at sufficient-
ly low temperature and sufficiently high chemical

TABLE II. Values of the Hamiltonian restricted to
triangles of type i as illustrated in Fig. 4.

3e/2 —p/2
e/2+ y/2 —p/2
y/2 —p/3
e/2 —p/3
—p/3
—p/6
0



26 PHASE TRANSITIONS IN LATTICE GASES OF ORIENTABLE. . . 3531

potential, the models exist in an ordered structure in
which all the lattice sites are occupied by molecules
in a single orientation.

Using an analysis essentially the same as given
previously for a lattice-gas model for water, ' the
Ruelle theorem can be used to show that the two
models are analytic (transition free), both at suffi-

ciently high temperatures and at sufficiently low

chemical potential. As such, an order-disorder
transition is present in each of the two models.
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