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Reciprocity conditions for a quasilinear uniform barrier
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We consider the steady flow of K interacting currents through a uniform barrier com-

posed of material satisfying a linear flow equation J =y „(p)(dp„/dx).pk is the affinity
associated with the current Jk. Using nonlinear reciprocity relations previously derived

from microscopic time reversibility we derive a set of nonlinear constraints involving the
derivatives of the conductivity matrix yj with respect to the affinities pb. . . , px. The
constraints are verified with the use of a model of ideal-gas flow through a porous plug.

I. INTRODUCTION

We shall consider the steady, one-dimensional
flow of E conserved quantities (e.g., energy and

electric charge) through a barrier composed of uni-

form material. We shall assume that the local
current of the ith conserved quantity J;(x) is exactly
proportional to the gradients of the affinities of all

E quantities

J;=y;,(P)Pj(x) .

[In Eq. (1) summation over j is understood. ] For a
system satisfying time-reversible dynamics the
linear conductivity matrix y,j, which usually de-

pends on the local values of the affinities

p =(pi, . . . , px ), can be shown to be symmetric. '
For a material that satisfies a linear flow equa-

tion [i.e., Eq. (1)] it might be supposed that the On-

sager reciprocity relation y;j =yji, exhausts the
consequences of the time reversibility of the under-

lying dynamics. We shall show that this is not so
and that one can derive conditions on the deriva-

tives, with respect to the p„ofthe elements of
ytj(p). Some of these conditions will involve

derivatives of the diagonal elements, about which
the linear Onsager relation says nothing.

In standard mathematical terminology, Eq. (1) is
a system of quasilinear equations, not a system of
linear equations. Because of the dependence of ytj
on p the sum of two solutions is in general not a
solution. This nonlinearity manifests itself in a
nonlinear relationship between the currents through
the barrier and the imposed affinity differences
across the faces of the barrier. Let us define the
constants o; and p; by

P —P; =2cr;R L

and

y;(x)=p;(x) —p; . (4)

As a result of the uniformity of the barrier compo-
sition the steady-state currents through the barrier
are odd functions of the o s; that is,

J;(P;, , Px tri — crt )—
From now on we shall suppress the writing of the

average affinities. We assume that J; can be ex-
panded in a power series in the affinity differences.
We shall keep only the first nonlinear term. The
generalization to an arbitrary number of terms is
obvious but tedious:

Ji Aij O~ +Bijkl rj +k+1 (6)

We shall also expand the conductivity matrix ytj(p)
about the value P:

k klyjPJ+Qjyk+Rq&yl+
When the nonlinear term in Eq. (6) can be neglected
the Onsager reciprocity theorem shows that A,j is a
symmetric matrix. In a previous paper it was
shown that B;jkl is also a completely symmetric ten-
sor. By solving the differential equations [Eq. (1)]
by a perturbation method we shall express B in
terms of P, Q, and R. The symmetry requirements
on B will then impose restrictions on the Q and R
coefficients. We imbed Eq. (1) in a family of equa-
tions dependent on a parameter e with 0&@&1.
We let

k 2 klytt'=Ptj+eQtjyk+& R J'ykyI+ ' ' '

PI~+ Pi~ =2'
where p; and p;" are the imposed affinities on the
left and right faces of the barrier. We define E
functions y;(x) as deviations of p;(x) from p;:
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and look for a solution of the form

yn(x) =f„(x)+eg„(x)+eh„(x)+
with

J J0+~J ~ +~2J2+ . . ~ (10)

of g we must have

f„(+1)=+cr„

and

For simplicity we shall assume that the barrier
material extends from x = —1 to 1. In order for
the boundary conditions to be satisfied at all values

g„(+1)=h„(+1)= - =0 . (12)

Putting these assumed forms into Eq. (1) we obtain

ge Ji" [P;;+—eQj(fk+&gk+ . . )+«pj'(fk+ . )(fl+ . )](f +egj+e h + )=0. (13)

Setting to zero the coefficients of separate powers of
e and using the boundary conditions on f;, g;, and

h; we obtain equations that allow the determination

The zero-order term gives

Using the boundary conditions one gets

gj(»= 2 (1 x'—)Pjl Qlmokom

and

(20)

Jio P,jfj =—0, (14)

fj(x)=oJx (15)

which implies that fj(x)=const. The boundary
condition then gives

Jk ——0.

In a similar way the next term gives

2 & bc k a —1 c
i 3 [~ia +(Qia Qik)Pkl Qlb]on&birn ~

(21)

(22)

0JI. ——P;qaj. .

The first-order term is

1 kJ; —P;,g, Q;,fkf, =0,—
which yields

(16)
II. CONSEQUENCES OF RECIPROCITY

That B,jk~ is a completely symmetric tensor im-
plies that

k
gj (X) jk Jk X j! QlmOk&m

BJ.

Bo'J

8JJ =0.
BO I.

(23)

and finally

gj(x)=C+xPjk'Jk —, x Pjl Qlmoko—m . (19)
Using Eq. (22) in Eq. (23) gives our basic constraint
on the expansion coefficients of yj.

[2(~/m ~jm ) (Qfk Qjk)Pkl Qlm +(Qim Qjl Qjm Qil )Pkl '+(Qi'm Qfn Qjm Qin
—)Pkl

+(Qi Q.k —Qf Q.k)Pk! ]« =0 (24)

+
[ouija ]ij =ouija ++jia

we can write Eq. (24) in the form

[[2~/m + ( Qjk Qlm +Qim Qjl +Qim Qln

+QkmQgi)Pkl ]mn]ij =o

(25)

which should be valid for arbitrary values of
oi, . . . , oir and allis

Introducing the notational device

I

For a system involving two interacting currents, Eq.
(26) gives three independent linear relations, one for
each of the combinations (ij,m, n) =(1,2, 1,1),
(1,2, 1,2), and (1,2,2,2).

III. GAS FLO%' THROUGH A POROUS PLUG

As a system on which to test the predictions of
Eq. (26) we shall use the following model of ideal-
gas flow through a porous plug. We model the
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FIG. 1. A model of a porous plug.

P „=Ap2'e

= —Qmn

P2 2

2 6/P2

P2 3

Qmn =2~p2 e '
3 l2lp

The needed elements of R are

R12=R11——Ap2 e11 12 —3 ~]

(29}

(30)

(31)

-P, ~Pl ~P2
J1—e '

2 +2
P2 P2

(27}

and

porous plug by a sequence of closely spaced per-
forated baffles (Fig. I). For each baffle the sum of
the areas of all the holes is A. The two conserved
quantities whose flow we study are particle number
and energy. The associated affinities are

p, =dSIBN= I2lkT—and p =asldE = llkT.
Assuming that the affinity differences b pl and b,p2
across any one baffle are very small a straightfor-
ward calculation shows that the rate of fiow of par-
ticles and energy through the baffle are given,
respectively, by

and

R22 ——R12 ——3A,p2 e11 22 —4 (32)

R22 ——R12 ——12Ap2 e12 22 —4

The 2&(2 matrix P can be inverted, giving

3lP,
Pmn =~ p2e I p l2

(33)

(34)

Equation (26) yields the three independent relations

R 11 R12+(Q2kQll+ 2 Q11Q2l+ 2 QllQll
12 11 1 1 & k 1 & k 2

Qlkgll Q12Q ll }Pkl

R 11 R22+(Q11Q2I+Q2kQ2I QlkQll
22 11 k 2 1 1 2 2

—Q»g II )Pkl
' =0, (36)

P, ~Pl ~P2
J2 ——2' '

3 +3 4p' p' (28)
and

R12 R22+(Q2kQ2I+Q12Q2l QlkQ2I
22 12 1 2 k 2 2 2

where A, =9A j4e5~2V31rm. Thus the elements of
2 —P)

the conductivity matrix are y 1 1
=A p 2

y12
—

y21 ——2Ap2 e, and y22 ——6Ap2 e
—P) 4 —P)

From this we can obtain the arrays P, Q, and R de-

fined in Eq. (7):

2 Q22Q ll 2 Q22Q2I }Pk!

A short calculation confirms that these three rela-
tions are satisfied by the arrays P, Q, and R given
above.
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