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A numerical experiment is conducted on the decay of a sine-Gordon breather under
simple dissipation. Both the spatial configuration and the (nonlinear) spectral configura-
tions are measured numerically. The spectral configuration establishes that the breather
is annihilated in finite time and that the annihilation process is accomplished by the gen-
eration of a long-wavelength packet of dispersive radiation. The nonlinear radiation den-
sity, which is measured numerically, is seen to be order 1 and is extremely well approxi-
mated by a sech profile in k space. Finally, a representation of the spectral configuration

by “resonance” states is investigated.

I. INTRODUCTION

Processes which change the number of solitons
in a nonlinear wave (either through annihilation or
creation) are not well understood. These processes
proceed by conversions between collective soliton
modes and radiation modes; unfortunately, radia-
tion modes are difficult to describe analytically.

In this paper we describe one simple numerical
experiment in which a soliton is destroyed—the an-
nihilation of a sine-Gordon breather by dissipation.
Primarily, we chose this experiment because its
simplicity should permit an analytical description.
The experiment would then provide insight and
numerical facts for such a description. In addi-
tion, it is related to a fundamental problem in the
statistical mechanics of nonlinear Klein-Gordon
fields, namely, should both breathers and radiation
be treated as fundamental excitations’? in a statist-
ical description of the field.

In Sec. III we describe a numerical experiment
which measures both the spatial and spectral repre-
sentations of the wave at different times during the
annihilation process. Although equivalent, these
two representations provide complementary infor-
mation. In particular, the spectral representation
provides a direct numerical measurement of the
number and type of solitons and the density of
nonlinear radiation which comprises the wave at
time ¢t. For example, the spectral representation
provides a precise mathematical rule which deter-
mines the presence or absence of solitons in the
wave. In addition, most analyses of solitons under
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perturbations®~> work directly with the spectral

representation. Our numerical experiment, in con-
trast with most other numerical calculations, mea-
sures directly the (nonlinear) spectral representa-
tion.

The numerical experiment demonstrates the ac-
tual annihilation of the breather in finite time (as
opposed to a gradual relaxation to zero amplitude).
The numerical measurement of the nonlinear radia-
tion density shows that long-wavelength radiation
becomes an order 1 [as opposed to O (€)] effect
during times near the annihilation time. The mea-
surement depicts the actual k-space profile of the
radiation density at different times. These mea-
surements indicate that the annihilation process oc-
curs by the breather state transferring into radia-
tion, which is then lost to dissipation.

In Sec. IV we analyze the spectral numerical
data. We are motivated by a desire to characterize
the radiation modes which participate in the an-
nihilation process in terms of a few (physical)
parameters, just as solitons are characterized by
their location and velocity. We show, for all calcu-
lated values of time, the radiation density is ex-
tremely well approximated by a sech profile in k
space. This sech profile seems very suggestive for
an analytical representation of the radiation. Then
we consider a second possibility, a rational-func-
tion approximation to the radiation profiles. This
approximation would characterize the radiation in
terms of poles of the spectral representation in the
lower half plane (“resonances”) just as solitons are
characterized by poles of the spectral representa-
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tion in the upper half plane (“eigenvalues”). This
approach is certainly consistent with our numerical
data, which shows breather annihilation occurs by
the motion of the breather poles across the real
axis into the lower half plane. In Sec. IV we find
that such a resonance approximation can be accu-
rate and then we study the motion of the leading
resonances during the annihilation process.

Our studies indicate that either the sech profile
or the resonances could provide accurate descrip-
tions of the radiation, which depends upon a few
parameters and thus are candidates for low-
dimensional representations of the radiation pack-
ets which participate in the annihilation process.
In addition to stimulating analysis of the annihila-
tion of solitons, this simple experiment illustrates
the useful information that can be obtained by a
numerical evaluation of the nonlinear spectral rep-
resentation. We believe this representation should
be used more frequently to display the results of
numerical experiments of perturbed soliton equa-
tions.

II. PRELIMINARIES

The sine-Gordon equation
Uy — Uy +sinu =0, (2.1

admits a “breather” solution which, when at rest in
the laboratory frame, is given by

uP(x,t;v)= tanh~!

tanv cos[ (cosv)t]
cosh[(sinv)x]

(2.2)

Such a breather is sketched in Fig. 1 for v=20°,
which is the initial condition to be used in the
remainder of this paper. Notice it is a solitary
(particlelike) wave which breathes periodically in
time. The parameter v fixes the frequency of the
breather (cosv) and its amplitude (4v). The spatial

FIG. 1. Pure breather solution, Eq. (2.2) with v=20°,
at times t =m /(4 c0s20°) for m =0 (top curve), 1, 2 (x
axis), 3, and 4 (bottom curve).

width is parametrized by 1/sinv and its energy is
16 sinv.
As the parameter v goes to zero,
¥
2

u® ~4v sech(vx)cos t

)

thus, as v—0, the amplitude and energy decrease
to zero, the frequency increases to 1, while the
temporal period decreases to 27r. Moreover, the
spatial extent of the wave increases. These charac-
teristics should be contrasted with those of near-
linear radiation states. In particular, the linear
dispersion relation w?(«x)=1+«? shows that only
long-wavelength (k~0 or “plasma”) radiation has a
frequency near 1. Thus under perturbations,
small-amplitude breathers should resonate with
long-wavelength plasma radiation.

Next, we consider the addition of simple dissipa-
tion

Uy —Uyy +SINU = — €U, ,
t>0,0<e<<1 (2.3)
with breather initial conditions,
u(x,t)=u®(x,1), t<0. (2.4)

This dissipation will certainly cause the breather to
decay.>® More drastically, it could annihilate the
breather. Topological stability arguments do not
forbid annihilation. In addition, an asymptotic
calculation indicates annihilation. The argument is
as follows. A small-amplitude sine-Gordon breath-
er reduces to a nonlinear Schrodinger soliton. This
asymptotic reduction, when applied to the per-
turbed equation (2.3), yields a nonlinear Schrod-
inger equation for the amplitude,

—T
2iA¢=AXX+e—2—AA*A .

The breather initial conditions (2.4) reduce to

A(X,7=0)=2sechX .

Here, u~2ede ~"?cost, X =ex, r=¢€’t. For 7~0,

this nonlinear Schrédinger equation supports a sol-
iton; for larger 7 it reduces to the linear Schrod-
inger equation and the soliton disperses into a
packet of radiation. The numerical experiment
will confirm these expectations that the breather
will be annihilated.

The numerical experiment will measure both the
spatial configuration U (¢),

U)={u(x,t),u(x,t)|Vx}, (2.5)
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and the spectral configuration U(t). We close this
preliminary section with a brief definition of the
spectral configuration. For more details, we refer
to Refs. 6 and 7.

The integration of the sine-Gordon equation
(2.1) is accomplished through the auxillary linear
problem

0 —1 d i 01
1 0 |zxt2 1o
1 eiu 0 N N
+ 5 [0 e-in||T=T. (2.6)

Here u(x,t) and w(x,t)=u, +u, are the “poten-
tials” and A denotes the eigenvalue parameter. Us-
ing this linear problem (2.6), one transforms from
the spatial configuration U (¢) (functions of x) to
the equivalent spectral configuration U(t) (func-
tions of the spectral parameter A).

The actual definition of the spectral configura-
tion U begins with the spectrum of the linear prob-
lem (2.6). Its eigenvalues { A; } live in the upper
half A plane and correspond to solitons in the wave
u (x,t); the real A axis is continuous spectrum and
is related to radiation in u (x,#).. Thus, the spectral
configuration is

O={ Aj,m; forj=1,2,...,N;r(A)VAeR]} ,
.7

where A; denotes the eigenvalues and m; denotes a
normalization of the bound-state eigenfunctions.
The function 7(A) can be interpreted as the density
of radiation at wavelength near «(A)=2k(A),

_L
161

r(A) is defined as follows: fix an eigenfunction

—

f(x,t;A) by the asymptotic behavior as x — + oo,

k(L) =A (2.8)

f(x,t;)»)z

1] .
; etk(k)x’ x>>0.

Then its behavior as x — — o0 defines the coeffi-
cient a(A) and b(A):

1

l

Fx,t:M)~a(d) |, |e kM=

1 .
+b(A) [_i Je——tk(k)x ,

x <<0.
r(A) is then defined by the ratio
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b(A)
a(d) -’

Several points should be emphasized. (i) 7(A) is
a (nonlinear) measurement of the density of non-
linear radiation at wave number near k(A)=2(A
—1/16A). (ii) Under perfect sine-Gordon flow, the
radiation density |7(A)| and the eigenvalues A;
are constant in time. (iii) The spectral configura-
tion of the breather u‘® is given by

r(A)= (2.9)

0P ={ klzée"",}q:——%e".",ml,mz; r(A)=0}.

The breather (2.2) has two bound states, on a circle
of radius ;:— in the upper half A plane, whose posi-
tions are fixed by the parameter v (Fig. 2). As the
breather amplitude (4v) decreases, the two eigen-
values approach the real axis at A=+ % The
breather U'®) has no radiation component since
r(A)=0.

III. NUMERICAL EXPERIMENT
A. Spatial configuration

We solve numerically the sine-Gordon equation
under dissipation using breather initial data, Eqgs.
(2.3) and (2.4). Typical spatial profiles are dis-
played in Fig. 3 for x >0. The dissipation parame-
ter is €=0.1 and the initial frequency parameter is
v=20°. These profiles are plotted at the unit of
time nearest the maximum and minimum values of
v in each period.

Since dissipation is present, the wave is no
longer periodic in time. However, since the dissi-
pation is weak (0 <€=0.1 << 1), the wave may be

FIG. 2. Location of the zeros (A,A,) of a(A) for a
pure breather at rest in the laboratory frame.
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FIG. 3. Solution of the perturbed equation u (x,?) at
various integral times which are closest to the maximum
and minimum excursions. (a) From the top curve to the
x axis, £ =0,6,13,19,25 and from the bottom curve to
the x axis, t =3,10,16,22. (b) t =19, 22,25,28 with ex-
panded u axis and contracted x axis to show the oscilla-
tions which are building up as ¢ increases.

viewed as nearly periodic with slowly modulating
period. We compute this period as twice the time
between successive zeros of u (x =0,¢) and summa-
rize the results in Table I. (The initial period is
calculated as four times the time of the first zero
crossing.) Notice that the period decreases from
6.91 for ¢ between 0 and 1.6 to a value of 6.24
(<2m=6.28) by t =18. At this time the ampli-
tude, which initially was 1.4, is still ~0.5. A per-
fect breather has period 27 /cosv=(6.69 > 27) and
amplitude 4v. Thus, had the wave decayed as a
pure breather, it would have had no amplitude
when the period reached 2m=6.28. As shown in
Fig. 3 there is a substantial amount of wave left at
this time.

TABLE I. Period of u(x =0,¢) calculated from each
Zero crossing.

Times Period
0—1.6 6.91
1.6—5 6.48
5—-8 6.36
8—11.2 6.29

11.2—14.2 6.26
14.2—-17.7 6.24

Period remains 6.24 for times of 17.7—36.3

At later times, the wave which remains has a
nearly constant period just slightly less than 2.
The residual radiation is primarily long-wavelength
plasma radiation which continues to decay because
of dissipation and spreads in space due to disper-
sion.

In summary, the numerically generated spatial
configuration shows that the breather does not de-
cay as a pure-breather waveform. Rather, as it de-
cays, it generates substantial plasma radiation and
by a time of 16 the breather seems to have entirely
disappeared and only plasma radiation remains.

B. Numerical evaluation
of the spectral representation

Now we consider the spectral representation for
the numerical experiment just described. In partic-
ular, we interpret

b (k,t)

| r(k,t) | = a(k.0)

_ | b(k,t)|
[1—|b(k,t)|?]'2

(3.1)

as the density of radiation at wave number «(\)
=2[A—1/(16))] at time t.

Initially, the perfect breather has a spectral rep-
resentation given by

k —0.5i sinv
a(k)=———k 0.57si
4-0.5i sinv (3.2)
b{k)=0.

As dissipation causes the breather to decay the ra-
diation density |7 | increases from zero and, as we
will show later in this section, v decreases through

- 0. Numerical values for | b(k,t)| are plotted in

Fig. 4. We only display k >0 since |b | is even in
k.

From Fig. 4 it can be seen that |r(k,t)| initial-
ly increases from 0, goes to infinity for ¢ ~ 14 (as
|b|-—1andso |a|—0), and finally decays back
to zero because of the effect of dissipation. Note
that | 7| reaches its peak at about the same time
as the period of the waveform passes through 27
(see Table II) and that |r| is certainly not of or-
der € for ¢t >2. The most important feature of the
radiation density is its sharp peaking about k=0.
For all times te (0,30) the density is practically
zero beyond k =0.5 with a half-width k,,, =0.3.
Plasma radiation (k =0) is certainly the predom-
inant mode of radiation which is excited as the
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(b)
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FIG. 4. |b(k,t)| at various times. (a) From the k
axis to the top curve, t =0 (k axis), 2,4,6,8,10,14 (12 is
nearly indistinguishable from 14). (b) From the top
curve to the k axis, t =16 (18 is nearly indistinguishable
from 16), 20,22,24,26,28,30.

breather decays.

To show that the breather pole of 7 (zero of a)
actually crosses into the lower half plane, we have
plotted v versus time in Fig. 5. v was calculated
by solving the linear problem, Eq. (2.6), for a (k)
and b (k) with various complex k and then interpo-
lating to find where @ =0. Notice that the zero of
a crosses the real axis at ¢t ~ 15, which.is when the
period decreases past 27 and the radiation r (1)
reaches its peak.

We emphasize that these numerical experiments
measure the population of the nonlinear modes of
the sine-Gordon equation. They establish that, for
t > 15 the wave no longer contains the breather. In
Sec. IV, we discuss two methods for analyzing the
(nonlinear) radiation density.

20° 7

0 o] +— L } |

[

FIG. 5. Location of the zero of a moving down from
v =20, calculated numerically from Eq. (2.6) every 0.25
units of time.

-10°

IV. ANALYSIS OF THE SPECTRAL
NUMERICAL DATA

Consider | b(k,t)| depicted in Fig. 4. For times
te (0,30) |b(k,t)| appears as a slowly varying sech
profile,

| b(k,t) | =p(t)sech[8(t)k] . 4.1)

At each time ¢, we use two points, A=0.25 (k =0)
and A=0.4 (k=0.24375), to determine these
parameters and then consider the accuracy of the
sech representation, (4.1) at other values of k. The
values of ¢(¢) and 8(¢) are listed in Table II and
the accuracy of the sech fit is listed in Table III.
For 0 <k <0.25 this sech fit is accurate to within
3% for 0<t <14 and 8% for 18 <t <30. This
striking accuracy seems very suggestive for analyti-
cal descriptions of the radiation.

Finally, we investigate the possibility of repre-
senting the radiation in terms of resonances in the
spectral representation, that is, in terms of poles
(and their residues) of #(A) in the lower half A
plane. This approach is consistent with our nu-
merical study, which shows breather annihilation
takes place by the breather poles crossing the real

TABLE II. Coefficients of the sech representation
for | b(k,t)|[ =ysech(8k)], where the coefficients are
calculated by requiring equality at k =0 and 0.243 75.

t=0 y=0

t=2 y=0.322 8=9.11

t=6 y=0.751 5=9.14

t=10 ¥=0.929 §=9.31

t=14 y=0.998 86=9.68

t=18 y=0.963 86=9.67

t=22 y=0.870 8=9.79

t=26 y=0.783 6=10.20
t =30 y=0.677 §=10.17
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TABLE III. Comparison of |b(k,t)| calculated numerically from Eq. (2.6); the sech rep-
resentation with coefficients given in Table II; the N =1 and the N =2 rational-function ap-

proximations.
t=2
Numerical
k value sech N=1 N=2
0 0.3220 0.3220 0.3220 0.3220
0.0385 0.3030 0.3031 0.2950 0.3024
0.0916 0.2346 0.2351 0.2121 0.2325
0.1714 0.1290 0.1293 0.1145 0.1269
0.2437 0.0690 0.0690 0.0690 0.0690
0.3750 0.0213 0.0211 0.0333 0.0243
0.6667 0.0032 0.0015 0.0113 0.0039
0.9375 0.0012 0.0001 0.0058 0.0012
t=6
0 0.7506 0.7506 0.7506 0.7506
0.0385 0.7064 0.7064 0.6872 0.7047
0.0916 0.5474 0.5471 0.4930 0.5410
0.1714 0.3007 0.3002 0.2655 0.2944
0.2437 0.1599 0.1599 0.1599 0.1599
0.3750 0.0470 0.0487 0.0770 0.0563
0.6667 0.0020 0.0034 0.0262 0.0091
0.9375 0.00007 0.0003 0.0135 0.0027
t=10
0 0.9295 0.9295 0.9295 0.9295
0.0385 0.8747 0.8728 0.8473 0.8705
0.0916 0.6773 0.6703 0.5998 0.6622
0.1714 0.3688 0.3621 0.3181 0.3545
0.2437 0.1903 0.1903 0.1903 0.1903
0.3750 0.0484 0.0566 0.0912 0.0660
0.6667 0.0015 0.0038 0.0309 0.0105
0.9375 0.00008 0.0003 0.0159 0.0031
t=14
0 0.9982 0.9982 0.9982 0.9982
0.0385 0.9379 0.9327 0.9007 0.9266
0.0916 0.7200 0.7030 0.6188 0.6927
0.1714 0.3798 0.3667 0.3174 0.3578
0.2437 0.1817 0.1817 0.1817 0.1817
0.3750 0.0442 0.0530 0.0886 0.0630
0.6667 0.0008 0.0032 0.0299 0.0098
0.9375 0.00005 0.0002 0.0153 0.0028
t=18
0 0.9632 0.9632 0.9632 0.9632
0.0385 0.9041 0.9001 0.8693 0.8972
0.0916 0.6913 0.6787 0.5976 0.6688
0.1714 0.3642 0.3543 0.3068 0.3457
0.2437 0.1808 0.1808 0.1808 0.1808
0.3750 0.0357 0.0513 0.0857 0.0609
0.6667 0.0007 0.0031 0.0289 0.0095
0.9375 0.00005 0.0002 0.0148 0.0027
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TABLE III. (Continued.)
t=22
0 0.8696 0.8696 0.8696 0.8696
0.0385 0.8182 0.8113 0.7822 0.8085
0.0916 0.6177 0.6081 0.5325 0.5987
0.1714 0.3385 0.3140 0.2705 0.3059
0.2437 0.1588 0.1588 0.1588 0.1588
0.3750 0.0299 0.0443 0.0750 0.0530
0.6667 0.0006 0.0026 0.0252 0.0082
0.9375 0.00005 0.0002 0.0129 0.0023
t =26
0 0.7833 0.7833 0.7833 0.7833
0.0385 0.7371 0.7266 0.6957 0.7235
0.0916 0.5671 0.5330 0.4572 0.5231
0.1714 0.2877 0.2648 0.2241 0.2568
0.2437 0.1296 0.1296 0.1296 0.1296
0.3750 0.0234 0.0342 0.0605 0.0419
0.6667 0.0027 0.0017 0.0202 0.0063
0.9375 0.00003 0.0001 0.0104 0.0018
t=30
0 0.6773 0.6773 0.6773 0.6773
0.0385 0.6344 0.6285 0.6021 0.6259
0.0916 0.4778 0.4618 0.3967 0.4533
0.1714 0.2381 0.2300 0.1950 0.2231
0.2437 0.1128 0.1128 0.1128 0.1128
0.3750 0.0197 0.0229 0.0528 0.0366
0.6667 0.0004 0.0015 0.0176 0.0055
0.9375 0.00002 0.0001 0.0090 0.0016
axis into the lower half A plane. Presumably the |6k, | = [ b (K, |
N . U y(1)
approximation would permit the annihilation pro- ==w —; (4.2)
cess to be described mathematically by a coupled D=0 L [8()k] /(2 }%
system of ordinary differential equations for a few The accuracy of these approximations for N =1
of these poles and their residues. Here, after and N =2 is listed in Table III. Near k =0 both
checking that such an approximation could be an are very good, although of course neither algebraic
accurate description, we describe the motion of the decay agrees with the exponental decay of the sech
poles as a function of time. for k >1. (N =2 is certainly better than N =1.)
To obtain these resonances, we begin with the Then to make the zero-pole structure of |by |
very accurate sech profile, and approximate it by a more apparent, we write the approximations for
rational function . N =1 and 2 in a more useful form:
(1)
p () . N=1
k2+[BV(]
[ (k1) | = @) 4.3)
p () N=2
(K2 +[BPOP K2+ [BX0T )
T
Where PP =249(1)/8%1) ,

D(r)=2p(2) /8%(12) ,
;”() V2/8(t) BP(1)=(6+2V3)12/8(1)
t)= t),

and B =(6—2V3)72/8(1) .
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From general spectral theory a (k) can be constructed from |b(k)

We obtain

(k —ia{")(k +ial?)
(k +lB(” 2

a(k,t)~a)(k,t)=

(k —ia®)k +ia )k +iad )k +iad)

| and the upper half-plane zeros of a (k).

(4.4)

(k +iBP)(k +iBs)

where a{"? is the zero of a corresponding to the

breather and can be either positive (0 <t < ~15) or
negative (¢ > ~15). The rest of the a’s are all pos-
itive. Recalling that |a(A) |2+ |b(A)|2=1 for A
real (or eigenvalently for k real), we obtain the fol-
lowing conditions on a and 3 for N =1,

a(11)=i[(B(l))2__p(1)]1/2 ,

a(zl)zl(ﬁ(l))2+p(l)]1/2 4.5)
and for N =2,
1/2
o=+ B, — (B} +4p®)'?
1 T ) ’
172
@ Bl-—(B%——-4p(2))V2
a; = ) ’
2 @n/2 112 “.6)
(2) B1+(BZ_4P )
ay = ’
2
1/2
@ Bl+(B%+4p(2))l/2
a; = ’
2
where
Bl=(ﬂ(12))2+(ﬁ(22))2
and

Bz=(ﬁ(12))2__(ﬂ(22))2

Thus, for this problem, all of these resonance
parameters are fixed by the two parameters of the
sech profile, y(¢) and 6(¢).

To understand the zero-pole structure of these
resonances, let us concentrate on N =1. At time O
the waveform is a perfect breather with the spec-
tral representation for a and b given by (3.2) where
v=20°". This agrees with the a and b given in (4.4)
if p=0 and, from (4.5),

a3 (1 =0)=B"(t =0)
=a{(t =0)=0.55in20° .

Thus a zero of order 1 and a pole of order 2 coin-
cide at k = —0.5{ sin20° (i.e.,, v=—20°). At time

, N=2

I
increases the breather decay and emits radiation so
b5£0 and thus p5%0. From (4.5) it follows that the
pole and zero in the lower half plane split apart.

In Table IV we give a and 3 for N =1 and 2
corresponding to the y’s and &’s listed in Table II.
To check on the accuracy of these rational func-
tions, in Table V we compare !’ and a{?’ with the
zero of a in Fig. 5 which was calculated numeri-
cally by solving the eigenvalue equation (2.6).

Note that the zero from (2.6) and the N =2 zero
agree quite closely for 0 <t~ 16, which is when the
sech is a very good approximation to r (see Table
III).

In Fig. 6 we plot the zeros and poles of a(A) for
N =2. Since the sech profile is such a good ap-
proximation to | (k) |, we would obtain better ap-
proximations to the zero and pole structure of the
breather decay by using higher-degree rational
functions. However, the essential details can be
seen in Fig. 6. Namely, zeros and poles split apart
in the lower half plane and the upper half-plane
zero travels into the lower half plane. [Since u is
symmetric about the x axis, a point A, at which a
zero or pole exists, either satisfies |A | =‘1‘ or
there is another zero or pole, respectively, at
1/(16A*).]

V. CONCLUSION
In conclusion, we emphasize a few points.

(i) This numerical experiment provides quantita-
tive measurement of the spectral configuration dur-

= 6 10 14 18 22 26 30

ﬁﬁﬁ?ﬁﬁﬁ%

FIG. 6. Locations of the zeros (circles) and poles (as-
terisks) of a(A) for the N =2 rational-function approxi-
mation. (The poles are of order 2.)
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function approximation. (A representation.)

TABLE IV. Locations of the zeros and poles of a(A) from the N =1 and N =2 rational-

N=1
t Zeros Pole Zeros Poles
2 (0.244, 0.052) (0.242,—0.064) (0.241, 0.067) (0.235,—0.085)
(0.239,—0.073) (0.226,—0.107) (0.187,—0.166)
(0.198,—0.153)
(0.180,—0.174)
6 (0.248, 0.032) (0.242,—0.063) (0.246, 0.039) (0.235,—0.085)
(0.236,—0.084) (0.187,—0.117) (0.188,—0.165)
(0.240,—0.150)
(0.172,—0.182)
10 (0.249, 0.016) (0.242,—0.062) (0.249, 0.020) (0.236,—0.084)
(0.235,—0.086) (0.182,—0.112) (0.191,—0.162)
(0.249,—0.154)
(0.172,—0.181)
14 (0.250, 0.002) (0.243,—0.059) (0.250, 0.003) (0.237,—0.080)
(0.236,—0.083) (0.184,—0.108) (0.196,—0.155)
(0.253,—0.148)
(0.179,—0.175)
18 (0.250,—0.011) (0.243,—0.059) (0.250,—0.014) (0.237,—0.080)
(0.236,—0.082) (0.185,—0.109) (0.196,—0.155)
(0.251,—0.148)
(0.179,—0.174)
22 (0.249,—0.021) (0.243,—0.058) (0.249,—0.026) (0.237,—0.079)
(0.237,—0.079) (0.189,—0.107) (0.197,—0.153)
(0.248,—0.134)
(0.183,—0.171)
26 (0.249,—0.025) (0.244,—0.054) (0.248,—0.032) (0.238,—0.076)
(0.239,—0.072) (0.200,—0.106) (0.202,—0.147)
(0.246,—0.133)
(0.190,—0.162)
30 (0.248,—0.031) (0.244,—0.055) (0.247,—0.040) (0.238,—0.076)

(0.240,—0.071)

(0.201,—0.108)
(0.241,—0.130)
(0.191,—0.161)

(0.202,—0.147)

ing the annihilation of a breather by simple dissi-
pation. In particular, it establishes that the breath-
er is annihilated in finite time. We believe this
qualitative effect deserves an analytical description,
which should be feasible in this simple situation.
(ii) Intuition indicates, and these measurements
confirm, that long-wavelength radiation plays a
fundamental role in this annihilation process.
Most perturbation calculations ignore radiation
when computing the solitons’s response to perturba-

H(u)= f_: [-;—(u,z—f-u,f)—i—l—cosu]dx .
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tions and then use the soliton’s response to com-
pute the radiation which is generated. This ap-
proach will not predict annihilation in finite time,
as the following simple argument shows. Let H
denote the sine-Gordon Hamiltonian,

If u satisfies the sine-Gordon equation with dissi-
pation (2.3), one computes
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TABLE V. Location of the zero of a moving down
from v=20°, calculated numerically from (2.6) and cal-
culated from the N =1 and the N =2 rational-function
approximations.

Zero

t From (2.6) N =1 N=2
2.0 15.7° 12.1° 15.6°
4.0 13.7° 10.7° 13.5°
6.0 9.1° 7.3° 8.9°
8.0 7.3° 5.7° 7.0°
10.0 4.8° 3.8° 4.6°
12.0 1.8° 1.4 1.7°
14.0 0.8° 0.6° 0.7°
16.0 —1.8 —1.4 —1.7°
18.0 -3.3 —2.6° -3.1°
20.0 —4.4 —3.2° —-3.9°
22.0 —6.4° —4.8° —5.9°
24.0 -7.r° —5.3° —6.6°
26.0 —8.5° —5.8 —74°
28.0 —9.8° —6.9° —8.8°
30.0 —10.3° -7.1° —9.1°

. © u,z
H(u)=—26f_ de

Uy
——41—cosu |dx .

2

=—2eH (u)+2¢ f_w

Therefore,
H(u)+2€H(u)20 .

If, in order to compute the response of the breather
parameter v to dissipation one assumes

u =u(B)[x,t;v(t)] ,
this inequality yields

dH (u'®))
dt

Thus, the energy of the breather lies above an ex-
ponentially decaying curve and never reaches zero
in finite time. Apparently, one needs radiation to
“pull the breather parameter across the real axis.”

(iii) There is some analytical work on the genera-
tion of a shelf as a Korteweg —de Vries soliton
responds to dissipation®° by a pole crossing the
real axis. Perhaps these techniques would apply
here.

(iv) A simple analytical description of the an-
nihilation process needs a leading description of
the wave which includes both the breather and

+2eH (u'®)>0.

long-wavelength radiation. The sech profile of the
radiation density could be useful here.
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APPENDIX: COMPUTER CODE

The sine-Gordon equation was solved numerical-
ly using the leap-frog method in time, i.e,

Uy —u(t +A1)—2u(t)+u(t—At)

with Az=0.025, and Fourier transform in space,
ie, uy—F "(—k2F (u)) with Ax =0.075.
Periodic boundary conditions were used with the
period being 76.8. The program was started using
Euler in time with At =0.025/2% and then dou-
bling the time step using leap-frog until Az =0.025
was attained. All calculations were done in double
precision on a DEC-10 at the University of Pitts-
burgh.

The calculations of a(A) and b(A) were done by
solving the scattering equation (2.6) for —//2<x
<1/2 where I =50.0 and for various complex A.
The initial condition was

flx=1/2;A)= k(W12

i

and a and b were found by solving

1 )
fx==1/ZM)=a}) |, e ~HkMI/2

+b(A) [ Ll
—i

As [ increases, more of u will be contained in
[—1/2,+1/2] but the calculations of a and b will
be less accurate due to roundoff errors (especially
when the zero is in the lower half plane). As a
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check on the accuracy a was calculated at 1 =0
and A=0.25¢"% for all integral values of  in
[0°,40°] and was found to agree with the analytical
solution, Eq. (3.2), to 5 decimal places.

As a check on the accuracy of the time evolu-
tion the unperturbed sine-Gordon equation, Eq.
(2.1), was run to £ =20. At k =0 a changed from
(—1.000000, —0.000002) at ¢t =0 to

(—1.000000, —0.0000006) at t =20 and b
changed from (0.00693, 0.000015) to (0.000 351,
0.000580). At k =0.9375 a changed from
(0.935595, —0.353074) to (0.935594, —0.353076)
and b changed from (0.000 008, 0.000004) to
(—0.000053, —0.000026). The analytical values
of a are (—1.0, 0.0) at k =0 and

(0.935596, —0.353073) at k =0.9375 and b=0.0.
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