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A numerical experiment is conducted on the decay of a sine-Gordon breather under

simple dissipation. Both the spatial configuration and the {nonlinear) spectral configura-
tions are measured numerically. The spectral configuration establishes that the breather
is annihilated in finite time and that the annihilation process is accomplished by the gen-

eration of a long-wavelength packet of dispersive radiation. The nonlinear radiation den-

sity, which is measured numerically, is seen to be order 1 and is extremely we11 approxi-
mated by a sech profile in k space. Finally, a representation of the spectral configuration

by "resonance" states is investigated.

I. INTRODUCTION

Processes which change the number of solitons
in a nonlinear wave (either through annihilation or
creation) are not well understood. These processes
proceed by conversions between collective soliton
modes and radiation modes; unfortunately, radia-
tion modes are difficult to describe analytically.

In this paper we describe one simple numerical
experiment in which a soliton is destroyed —the an-
nihilation of a sine-Gordon breather by dissipation.
Primarily, we chose this experiment because its
simplicity should permit an analytical description.
The experiment would then provide insight and
numerical facts for such a description. In addi-

tion, it is related to a fundamental problem in the
statistical mechanics of nonlinear Klein-Gordon
fields, namely, should both breathers and radiation
be treated as fundamental excitations' in a statist-
ical description of the field.

In Sec. III we describe a numerical experiment
which measures both the spatial and spectral repre-
sentations of the wave at different times during the
annihilation process. Although equivalent, these
two representations provide complementary infor-
mation. In particular, the spectral representation
provides a direct numerical measurement of the
number and type of solitons and the density of
nonlinear radiation which comprises the wave at
time t. For example, the spectral representation
provides a precise mathematical rule which deter-
mines the presence or absence of solitons in the
wave. In addition, most analyses of solitons under

perturbations work directly with the spectral
representation. Our numerical experiment, in con-
trast with most other numerical calculations, mea-
sures directly the (nonlinear) spectral representa-
tion.

The numerical experiment demonstrates the ac-
tual annihilation of the breather in finite time (as
opposed to a gradual relaxation to zero amplitude).
The numerical measurement of the nonlinear radia-
tion density shows that long-wavelength radiation
becomes an order 1 [as opposed to 0 (e)] effect
during times near the annihilation time. The mea-
surement depicts the actual k-space profile of the
radiation density at different times. These mea-
surements indicate that the annihilation process oc-
curs by the breather state transferring into radia-
tion, which is then lost to dissipation.

In Sec. IV we analyze the spectral numerical
data. We are motivated by a desire to characterize
the radiation modes which participate in the an-
nihilation process in terms of a few (physical)
parameters, just as solitons are characterized by
their location and velocity. We show, for all calcu-
lated values of time, the radiation density is ex-
tremely well approximated by a sech profile in k
space. This sech profile seems very suggestive for
an analytical representation of the radiation. Then
we consider a second possibility, a rational-func-
tion approximation to the radiation profiles. This
approximation would characterize the radiation in
terms of poles of the spectral representation in the
lower half plane ("resonances") just as solitons are
characterized by poles of the spectral representa-
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(2.6)

and the spectral configuration U(t) .We close this
preliminary section with a brief definition of the
spectral configuration. For more details, we refer
to Refs. 6 and 7.

The integration of the sine-Gordon equation
(2.1) is accomplished through the auxiliary linear
problem

0 —1 d )~ 0 1'
1 0 d~ 4 10

~lQ 0+0 fg f kf

r(A, )= b(A, )

a(A, }
(2.9)

U' '=
I A, i ——~

e",A2 ———
&

e m i rn2' r(A) =0

Several points should be emphasized. (i) r(A, ) is
a (nonlinear) measurement of the density of non-

linear radiation at wave number near i~(A, ) =2(A,
—1/16K, ). (ii) Under perfect sine-Gordon flow, the
radiation density

~

r(A, )
~

and the eigenvalues AJ

are constant in time. (iii) The spectral configura-
tion of the breather u' ' is given by

where Az denotes the eigenvalues and m~ denotes a
normalization of the bound-state eigenfunctions.
The function r(A, ) can be interpreted as the density
of radiation at wavelength near a(A, ) =2k(A, ),

k(A, )=A, —
16A,

(2.8)

r(A, ) is defined as follows: fix an eigenfunction
f(x, t;k. ) by the asymptotic behavior as x~+ ao,

1
f(x,t;X)=,. e'"'"", x»0.

Here u (x,t) and w (x, t) —=u„+u,are the "poten-
tials" and A, denotes the eigenvalue parameter. Us-
ing this linear problem (2.6), one transforms from
the spatial configuration U(t) (functions of x) to
the equivalent spectral configuration 0(t) (func-
tions of the spectral parameter A,).

The actual definition of the spectral configura-
tion U begins with the spectrum of the linear prob-
lem (2.6). Its eigenvalues I AJ. I live in the upper
half A, plane and correspond to solitons in the wave
u (x, t); the real A, axis is continuous spectrum and
is related to radiation in u (x,t). Thus, the spectral
configuration is

U=t Az ,mj. for j. =1,2, . . . ,N;r(A, )VAeRI,

(2.7}

The breather (2.2) has two bound states, on a circle
of radius 4 in the upper half A, plane, whose posi-
tions are fixed by the parameter v (Fig. 2). As the
breather amplitude (4v) decreases, the two eigen-

1

values approach the real axis at A, =+ 4. The
breather U' ' has no radiation component since
r(A, ) =0.

III. NUMERICAL EXPERIMENT

A. Spatial configuration

We solve numerically the sine-Gordon equation
under dissipation using breather initial data, Eqs.
(2.3) and (2.4). Typical spatial profiles are dis-

played in Fig. 3 for x )0. The dissipation parame-
ter is @=0.1 and the initial frequency parameter is
v=20'. These profiles are plotted at the unit of
time nearest the maximum and minimum values of
v in each period.

Since dissipation is present, the wave is no
longer periodic in time. However, since the dissi-
pation is weak (0 & e=0.1« 1},the wave may be

Then its behavior as x~ —ao defines the coeffi-
cient a(A, ) and b(A, ):

2 1

1
+b(g) e ik(A,)x-—l

r (A, ) is then defined by the ratio
FIG. 2. Location of the zeros (A, ~, A,2) of a(A, ) for a

pure breather at rest in the laboratory frame.



A OVERMAN0 ~.McM LAUGHLIN AN 263500

10

the wave which rem ains has aA.t later times
1' htl less t~gn 2nearly constant P

'1 long-wavelength

eriod just s ig
The residual radia

s to decay because
iation is primari y

which continues 0p
s reads in space

asma radiation w

due to disper-f d. sipatjon and sp
sion

e numerica en erat ed spat ia1In summ ry'
b ther does not de-con figuration shows that t e

. Rather, as it de--breather wave orm.cay as a pure-br
'

1 1 ma radiation and
to have entirely

substantia p asm
6 the breather seems o

d tnl lasma ra ia
'

disappeared and on y p20

—O. S-
the perturbed equatio

'
n u(x, t) atp

ral times whic are closes
rve to thersions. a r

5 and from t e0, 6, 13,19,2
t ex

xls and con tracted x axisxi
tions w ich' h are building up as

8. Numerical evaluation
of the spectral represeesentation

the s ectral representation forN w we consider the spec
ent ust descri'bed. In partic-the numerical experimen j

ular, we interpret

b(k, t)
~
r(k, t)

~

=

'th slowly modulatingview yp1 eriodic wit s
this perio as

between successive zeros

'dd fotice that the perio
6 t a value of 6.24

h -h 1

n 0 and 1. o a

, h dth d ed
h d".- l.d.

Thus, ha
ould have a

h
pur

Ched 277=
b

p
Fig. 3 there is a su s an
this time.

T1I11es Period

0—1.6
1.6—5

5 —8
8 —11.2

11.2 —14.2
14.2 —17.7

6.91
6.48
6.36
6.29
6.26
6.24

17.7—36.36.24 for times o 1 . —Period remains

x =O, t) calculated from eachTABLE I. Period of u(x =,
zero crossing.

/
b(k, t)

/

I 1 —
/
b (k, t)

J

']'" (3.1)

number a(A, )as the density o ra iaf diation at wave num

h 1Initia y,
' '

ll the perfect breather as a
resentation given by

k —0.5i sine
a(k)=i, +05l sinv

(3.2)
b(k) =0 .

g

Fi'0111 Fig. 4 it cail be seeil
0 oes to in inl y

d fi 11 d b k
y

a ~0), an ina
fdi i tio. Notof the effect o iss't zero because o0

its eak at a oub t the same timethat
~

r
~

reaches its p
sses through 2m.of the waveform passes

rt i 1 otofo-H
'

o f of 11

nd that ~r is ce
der e for t& 2. The most importan

=0.sit is its sharp pea
te 0,30) the densi y

'

=0.5 with a a -w'

rti 1 th do
'

tion (k=0) is ce ai
hich is excited as theinant mo ede of radiation w ic is

auses the breather to decay the ra-
fr increases romdiation density r m

ter in this section, v e
ues for

~
b(k, t)

~

are plotted in

~b~ i inFi . 4. We only display k &0 since



26 BREATHER ANNIHILATION BY SIMPLE DISSIPATION 3501

Do

—10

~ I
I I

FIG. 5. Location of the zero of a moving down from

v =20', calculated numerically from Eq. (2.6) every 0.25
units of time.

IV. ANALYSIS OF THE SPECTRAL
NUMERICAL DATA

Consider
~

b (k, t)
~

depicted in Fig. 4. For times
te (0,30)

~

b(k, t)
~

appears as a slowly varying sech
profile,

~
b(k, t)

~
=y(t)sech[5(t)k] . (4.1)

I I
I I

FIG. 4.
~

b(k, t)
~

at various times. (a) From the k
axis to the top curve, t =0 (k axis), 2,4,6,8,10,14 (12 is
nearly indistinguishable from 14). (b) From the top
curve to the k axis, t =16 (18 is nearly indistinguishable
from 16), 20,22,24,26,28,30.

breather decays.
To show that the breather pole of r (zero of a)

actually crosses into the lower half plane, we have
plotted v versus time in Fig. 5. v was calculated
by solving the linear problem, Eq. (2.6), for a (k)
and b (k) with various complex k and then interpo-
lating to find where a =0. Notice that the zero of
a crosses the real axis at t =15, which. is when the
period decreases past 2n. and the radiation r(A),
reaches its peak.

We emphasize that these numerical experiments
measure the population of the nonlinear modes of
the sine-Gordon equation. They establish that, for
t & 15 the wave no longer contains the breather. In
Sec. IV, we discuss two methods for analyzing the
(nonlinear) radiation density.

TABLE II. Coefficients of the sech representation
for

~
b(k, t}

~

[=ysech(5k}], where the coefficients are
calculated by requiring equality at k =0 and 0.24375.

t=0
t=2
t=6
t =10
t =14
t =18
t =22
t =26
t =30

X=O.322
y=0.?51
y=0.929
7=0.998
7=0.963
y=O. 870
7=0.783
7=0.677

5=9.11
5=9.14
5=9.31
5=9.68
5=9.67
5=9.79
5= 10.20
5= 10.17

At each time t, we use two points, A, =0.25 (k =0)
and A, =0.4 (k =0.243 75), to determine these
parameters and then consider the accuracy of the
sech representation, (4.1) at other values of k. The
values of y(t) and 5(t) are listed in Table II and
the accuracy of the sech fit is listed in Table III.
For 0& k &0.25 this sech fit is accurate to within
3% for 0&t&14 and 8% for 18&t&30. This
striking accuracy seems very suggestive for analyti-
cal descriptions of the radiation.

Finally, we investigate the possibility of repre-
senting the radiation in terms of resonances in the
spectral representation, that is, in terms of poles
(and their residues) of r(A, ) in the lower half A,

plane. This approach is consistent with our nu-
merical study, which shows breather annihilation
takes place by the breather poles crossing the real
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TABLE III. Comparison of
~

b (k, t)
~

calculated numerically from Eq. (2.6); the sech rep-
resentation with coefficients given in Table II; the N =1 and the S=2 rational-function ap-
proximations.

t=2
Numerical

value sech

0
0.0385
0.0916
0.1714
0.2437
0.3750
0.6667
0.9375

0.3220
0.3030
0.2346
0.1290
0.0690
0.0213
0.0032
0.0012

0.3220
0.3031
0.2351
0.1293
0.0690
0.0211
0.0015
0.0001

0.3220
0.2950
0.2121
0.1145
0.0690
0.0333
0.0113
0.0058

0.3220
0.3024
0.2325
0.1269
0.0690
0.0243
0.0039
0.0012

0
0.0385
0.0916
0.1714
0.2437
0.3750
0.6667
0.9375

0.7506
0.7064
0.5474
0.3007
0.1599
0.0470
0.0020
0;00007

t=6
0.7506
0.7064
0.5471
0.3002
0.1599
0.0487
0.0034
0.0003

0.7506
0.6872
0.4930
0.2655
0.1599
0.0770
0.0262
0.0135

0.7506
0.7047
0.5410
0.2944
0.1599
0.0563
0.0091
0.0027

0
0.0385
0.0916
0.1714
0.2437
0.3750
0.6667
0.9375

0.9295
0.8747
0.6773
0.3688
0.1903
0.0484
0.0015
0.00008

0.9295
0.8728
0.6703
0.3621
0.1903
0.0566
0.0038
0.0003

0.9295
0.8473
0.5998
0.3181
0.1903
0.0912
0.0309
0.0159

0.9295
0.8705
0.6622
0.3545
0.1903
0.0660
0.0105
0.0031

0
0.0385
0.0916
0.1714
0.2437
0.3750
0.6667
0.9375

0.9982
0.9379
0.7200
0.3798
0.1817
0.0442
0.0008
0.00005

t =14

0.9982
0.9327
0.7030
0.3667
0.1817
0.0530
0.0032
0.0002

0.9982
0.9007
0.6188
0.3174
0.1817
0.0886
0.0299
0.0153

0.9982
0.9266
0.6927
0.3578
0.1817
0.0630
0.0098
0.0028

0
0.0385
0.0916
0.1714
0.2437
0.3750
0.6667
0.9375

0.9632
0.9041
0.6913
0.3642
0.1808
0.0357
0.0007
0.00005

t =18

0.9632
0.9001
0.6787
0.3543
0.1808
0.0513
0.0031
0.0002

0.9632
0.8693
0.5976
0.3068
0.1808
0.0857
0.0289
0.0148

0.9632
0.8972
0.6688
0.3457
0.1808
0.0609
0.0095
0.0027
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0
0.0385
0.0916
0.1714
0.2437
0.3750
0.6667
0.9375

0.8696
0.8182
0.6177
0.3385
0.1588
0.0299
0.0006
0.00005

TABLE III. (Continued ).
t =22

0.8696
0.8113
0.6081
0.3140
0.1588
0.0443
0.0026
0.0002

0.8696
0.7822
0.5325
0.2705
0.1588
0.0750
0.0252
0.0129

0.8696
0.8085
0.5987
0.3059
0.1588
0.0530
0.0082
0.0023

0
0.0385
0.0916
0.1714
0.2437
0.3750
0.6667
0.9375

0.7833
0.7371
0.5671
0.2877
0.1296
0.0234
0.0027
0.00003

t =26

0.7833
0.7266
0.5330
0.2648
0.1296
0.0342
0.0017
0.0001

0.7833
0.6957
0.4572
0.2241
0.1296
0.0605
0.0202
0.0104

0.7833
0.7235
0.5231
0.2568
0.1296
0.0419
0.0063
0.0018

0
0.0385
0.0916
0.1714
0.2437
0.3750
0.6667
0.9375

0.6773
0.6344
0.4778
0.2381
0.1128
0.0197
0.0004
0.00002

t =30

0.6773
0.6285
0.4618
0.2300
0.1128
0.0229
0.0015
0.0001

0.6773
0.6021
0.3967
0.1950
0.1128
0.0528
0.0176
0.0090

0.6773
0.6259
0.4533
0.2231
0.1128
0.0366
0.0055
0.0016

axis into the lower half A, plane. Presumably the
approximation would permit the annihilation pro-
cess to be described mathematically by a coupled
system of ordinary differential equations for a few
of these poles and their residues. Here, after
checking that such an approximation could be an
accurate description, we describe the motion of the
poles as a function of time.

To obtain these resonances, we begin with the
very accurate sech profile, and approximate it by a
rational function

I
b« t)

I
=

I b(N)(k t)
I

(4.2)
yt)

0 I [5(t)k]/(2j)! j21

The accuracy of these approximations for N = 1

and N =2 is listed in Table III. Near k =0 both
are very good, although of course neither algebraic
decay agrees with the exponental decay of the sech
for k & 1. (N =2 is certainly better than N =1.)

Then to make the zero-pole structure of
~
bz

~

more apparent, we write the approximations for
N = 1 and 2 in a more useful form:

I b(~)« t)
I

= k 2+ [p(1)(t)]2

(4.3)

where

p"'(t) =2y(t)/5 (t),
P' "(t)=~2/5(t),

and

p"'(t) =24y(t) /5'(t),

p&"(t)=(6+2' 3)'"/5(t),

PP'(t) =(6—2~3)'~'/5(t) .



3504 D. W. McLAUGHLIN AND E. A. OVERMAN II 26

From general spectral theory a (k) can be constructed from
~

b(k)
~

and the upper half-plane zeros of (2 (k).
We obtain

(k+iP"') , %=1

(k i a—' ')(k +i ' ')(k +i ' ')(k +i ' ')
%=2

(k + ip(2))2(k +ip(2))2

(4.4)

where ai' ' is the zero of a corresponding to the
breather and can be either positive (0 & t & —15) or
negative (t & —15). The rest of the a's are all pos-
itive. Recalling that (a(A, )

~
+ ~b(A, )

~

=1 for A,

real (or eigenvalently for k real), we obtain the fol-
lowing conditions on a and P for N =1,

(1) +[(p(1))2 (1)]1/2

(1) [(p(1))2+ (1)]1/2

and for N =2,

(4.5)

a) =+(2)
(+2+4 (2))1/2

2

(2)a2

(2)a3

(2)a4 ——

Bi —(82 —4P )
(2) &/2

2

+(g2 4 (2))l/2

2

+ (g 2 +4p( 2)
)
1/2

2

(4.6)

where

and

(p( ))2 (p(2))2

Thus, for this problem, all of these resonance
parameters are fixed by the two parameters of the
sech profile, y(t) and 5(t).

To understand the zero-pole structure of these
resonances, let us concentrate on X=1. At time 0
the waveform is a perfect breather with the spec-
tral representation for a and b given by (3.2) where
v=20'. This agrees with the (2 and b given in (4.4}
if p=0 and, from (4.5),

a',"(t=0)=p"'(t =0)

=ai"(t =0)=0.5sin20 .

Thus a zero of order 1 and a pole of order 2 coin-
cide at k = 0 5i sin20' —(i.e.., v= —20'). At time

CONCLUSION

In conclusion, we emphasize a few points.
(i} This numerical experiment provides quantita-

tive measurement of the spectral configuration dur-

t= 2 6 10 14 18 22 26 30

pQ

0

0 QQ 0

~o
FIG. 6. Locations of the zeros (circles) and poles (as-

terisks) of a(A, ) for the N =2 rational-function approxi-
mation. (The poles are of order 2.)

I

increases the breather decay and emits radiation so
b+0 and thus p@0. From (4.5) it follows that the
pole and zero in the lower half plane split apart.

In Table IV we give a and P for N = 1 and 2
corresponding to the y's and 5's listed in Table II.
To check on the accuracy of these rational func-
tions, in Table V we compare a~" and a&

' with the
zero of a in Fig. 5 which was calculated numeri-
cally by solving the eigenvalue equation (2.6).
Note that the zero from (2.6) and the N =2 zero
agree quite closely for 0 & t -16, which is when the
sech is a very good approximation to r (see Table
III).

In Fig. 6 we plot the zeros and poles of a(A, ) for
N =2. Since the sech profile is such a good ap-
proximation to

~

r(k) ~, we would obtain better ap-
proximations to the zero and pole structure of the
breather decay by using higher-degree rational
functions. However, the essential details can be
seen in Fig. 6. Namely, zeros and poles split apart
in the lower half plane and the upper half-plane
zero travels into the lower half plane. [Since u is
symmetric about the x axis, a point A, , at which a
zero or pole exists, either satisfies

~

)(,
~

= —, or
there is another zero or pole, respectively, at
I /(16K; ).]
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TABLE IV. Locations of the zeros and poles of a (A, ) from the N =1 and N =2 rational-

function approximation. (A, representation. )

Zeros Pole Zeros Poles

(0.244, 0.052)
(0.239,—0.073)

(0.242, —0.064) (0.241, 0.067)
(0.226, —0.107)
(0.198,—0.153)
(0.180,—0.174)

(0.235,—0.085)
(0.187,—0.166)

(0.248, 0.032)
(0.236,—0.084)

(0.242, —0.063) (0.246, 0.039)
(0.187,'-0, 117)
(0.240, —0.150)
{0.172,—0.182)

(0.235,—0.085)
(0.188,—0.165)

10

14

(0.249, 0.016)
(0.235,—0.086)

(0.250, 0.002)
(0.236,—0.083)

(0.242, —0.062)

(0.243, —0.059)

(0.249, 0.020)
(0.182,—0.112)
(0.249,—0.154)
(0.172,—0.181)

(0.250, 0.003)
(0.184,—0.108)
(0.253,—0.148)
(0.179,—0.175)

(0.236,—0.084)
(0.191,—0.162)

(0.237,—0.080)
(0.196,—0.155)

18 (0.250,—0.011)
(0.236,—0.082)

(0.243, —0.059) (0.250,—0.014)
(0.185,—0.109)
(0.251,—0.148)
(0.179,—0.174)

(0.237,—0.080)
(0.196,—0.155)

22

26

(0.249, —0.021)
(0.237,—0.079)

(0.249,—0.025)
(0.239,—0.072)

(0.243, —0.058)

(0.244, —0.054)

(0.249,—0.026)
(0.189,—0.107)
(0.248, —0.134)
(0.183,—0.171)

(0.248, —0.032)
(0.200, —0.106)
(0.246, —0.133)
(0.190,—0.162)

(0.237,—0.079)
(0.197,—0.153)

{0.238,—0.076)
(0.202, —0.147)

30 {0.248,—0.031)
(0.240, —0.071)

(0.244, —0.055) (0.247, —0.040)
(0.201,—0.108)
{0.241,—0.130)
(0.191,—0.161)

{0.238,—0.076)
(0.202, —0.147)

ing the annihilation of a breather by simple dissi-

pation. In particular, it establishes that the breath-
er is annihilated in finite time We believ. e this
qualitative effect deserves an analytical description,
which should be feasible in this simple situation.

(ii) Intuition indicates, and these measurements
confirm, that long-wavelength radiation plays a
fundamental role in this annihilation process.
Most perturbation calculations ignore radiation
when computing the solitons's response to perturba-

tions and then use the soliton's response to com-
pute the radiation which is generated. This ap-
proach will not predict annihilation in finite time,
as the following simple argument shows. Let H
denote the sine-Gordon Hamiltonian,

H(u)= I [—,(u, +u, )+I—cosu]dx .

If u satisfies the sine-Gordon equation with dissi-

pation (2.3), one computes
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TABLE V. Location of the zero of a moving down
from v=20', calculated numerically from (2.6) and cal-
culated from the N = 1 and the N =2 rational-function
approximations.

Zero

long-wavelength radiation. The sech profile of the

radiation density could be useful here.
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APPENDIX: COMPUTER CODE

The sine-Gordon equation was solved numerical-
ly using the leap-frog method in time, i.e,

2

H(u)= 2e f —'
dx

2
ux=—2'(u)+2@ +1—cosu dx .

00

Therefore,

H(u)+2'(u) &0 .

If, in order to compute the response of the breather
parameter v to dissipation one assumes

u =u' '[x,t;v(t)],

this inequality yields

(B)dH(u ) 2 H( (ti)) ()
dt

Thus, the energy of the breather lies above an ex-
ponentially decaying curve and never. reaches zero
in finite time. Apparently, one needs radiation to
"pull the breather parameter across the real axis."

(iii) There is some analytical work on the genera-
tion of a shelf as a Korteweg —de Vries soliton
responds to dissipation ' by a pole crossing the
real axis. Perhaps these techniques would apply
here.

(iv) A simple analytical description of the an-
nihilation process needs a leading description of
the wave which includes both the breather and

u„~u(t+ht) 2u (t)+u—(t 1kt)—
with ht =0.025, and Fourier transform in space,
i.e., u ~P '( —k P(u)) with M=0.075.
Periodic boundary conditions were used with the
period being 76.8. The program was started using
Euler in time with b, t =0.025/2 and then dou-
bling the time step using leap-frog until b,t =0.025
was attained. All calculations were done in double
precision on a DEC-10 at the University of Pitts-
burgh.

The calculations of a(A, ) and b (A, ) were done by
solving the scattering equation (2.6) for —1/2 &x
&1/2 where 1 =50.0 and for various complex A,.
The initial condition was

1
I(x 1/2. g) eik(k)l/2

i

and a and b were found by solving

1f(x = 1/2 g) = a ()(,}
l

1
~ik(A, )l/2—l

As 1 increases, more of u will be contained in

[—1/2, +.1/2] but the calculations of a and b will
be less accurate due to roundoff errors (especially
when the zero is in the lower half plane). As a
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check on the accuracy a was calculated at t =0
and A, =0.25m's for all integral values of 8 in
[0',40'] and was found to agree with the analytical
solution, Eq. (3.2), to 5 decimal places.

As a check on the accuracy of the time evolu-
tion the unperturbed sine-Gordon equation, Eq.
(2.1), was run to t =20. At k =0 a changed from

( —1.000000, —0.000002) at t =0 to

( —1.000000, —0.0000006) at t =20 and b

changed from (0.00693, 0.000015) to (0.000351,
0.000580). At k =0.9375 a changed from
(0.935 595, —0.353074) to (0.935 594, —0.353076)
and b changed from (0.000008, 0.000004) to
( —0.000053, —0.000026). The analytical values
of a are ( —1.0, 0.0) at k =0 and

(0.935 596, —0.353 073) at k =0.9375 and b —=0.0.
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