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An experimental study of the chaotic states and the routes to chaos in the driven pendu-
lum as simulated by a phase-locked-loop electronic circuit is presented. For a particular
value of the quality factor (Q =4), for which the chaotic behavior is found to be rich in
structure, the state diagram (phase locked or unlocked) is established as a function of driv-
ing frequency and amplitude, and the nature of the chaos in these states is investigated and
discussed in light of recent models of chaos in dynamical systems. The driven pendulum is
found to exhibit symmetry breaking as a precursor to the period-doubling route for chaos.
Although period doubling is found to be fairly common in the phase-locked states of the
pendulum, it does not always manifest itself in complete bifurcation cascades. Intermittent
behavior between two unstable phase-locked states is also commonly observed.

I. INTRODUCTION

Recently a large number of theoretical calcula-
tions, simulations, and experiments have been car-
ried out on various nonlinear systems in an effort to
understand chaos and the routes to chaos in such
systems. In this paper we present the results of an
investigation of the forced pendulum, for which the
control parameters are the driving amplitude and
frequency. As is well known, the forced pendulum
is isomorphic to many other familiar nonlinear sys-
tems, such as Josephson junctions and the phase-
locked-loop configuration of a voltage-controlled
oscillator, or VCO. In fact, the experimental work
reported here was carried out using a phase-locked
loop. Our study was stimulated by the earlier work
of Huberman, Crutchfield, and Packard' and of
Kautz? who have also studied this problem in the
context of Josephson junctions.

It is essential to point out right at the outset that
the seemingly simple situation of a forced pendu-
lum is quite complex due to the fact that the space
of variables is large. Besides the driving amplitude
(which can have a dc component or bias in addition
to the ac drive) and the driving frequency, one has
the resonant frequency Q, and the quality factor Q
of the pendulum as important parameters. Indeed,
it is the interplay between the driving force and the
natural modes of the pendulum that results in
chaos. Moreover, because of the periodic nature of
the restoring potential, both running and oscillatory
motions are possible. In order to deal as simply as
possible with such complexity in this paper, we first
establish the “state” diagram of the forced pendu-
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lum as a function of the driving amplitude and fre-
quency for a particular value of Q where the chaotic
behavior is found to have rich structure. We then
establish the nature of these states (e.g., phase
locked or not, periodic or chaotic) and investigate
the nature of transitions between them.

In broad outline our results are in agreement with
the earlier work of Huberman et al.,! and Kautz,
but much more complete in the zero-bias case. In
particular, we have found some new results of in-
terest. They are as follows:

(a) Prior to going chaotic the pendulum is found
to break its spatial symmetry and oscillate with a
larger amplitude to one side than the other. This
symmetry-breaking phenomenon appears to be an
inherent part of the period-doubling cascade in this
particular system.

(b) The period-doubling cascade is found to be a
generic phenomena for the forced pendulum. It oc-
curs in the oscillating states of the pendulum but
also in the rotating regime where the pendulum ro-
tation frequency is phase-locked to the driving fre-
quency. In these cases the chaotic behavior is
characterized by a power spectrum S (w) peaked at
each subharmonic of the drive frequency but
S(w)—0 as @ —0, implying that phase locking is
maintained at dc.

(c) Another chaotic state commonly observed ap-
pears to be related to random transitions between
two phase-locked states that have become unstable.
The two states may be oscillating or rotating. In
this case the chaotic behavior is characterized by a
mean white-noise spectrum and hence is associated
with the loss of phase locking.
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(d) A third kind of chaotic behavior arises when
the driving frequency is much smaller than the
low-amplitude resonance frequency of the pendu-
lum (Q <<Qg). If the amplitude of the driving
force becomes larger than the critical value at
which the pendulum begins to rotate, the motion is
a combination of positive and negative rotations in
between which the pendulum undergoes damped os-
cillations. The ensuing sensitivity on initial condi-
tions for every rotation leads to a chaotic state with
a white-noise spectrum.

The main body of this paper is organized as fol-
lows. In Sec. IT we review the equations of motion
of the forced pendulum, establishing notation and
providing a correspondence between several useful
isomorphisms. Next, we establish the state diagram
(Sec. III) followed by a discussion of the various
transitions between these states and the routes to
chaos we observed (Secs. IV and V). The details of
the actual experimental equipment and procedures
are contained in the appendixes, along with some of
the mathematical details of the theoretical interpre-
tations.

II. EQUATIONS OF MOTION
FOR THE FORCED PENDULUM

The equation of motion for the forced pendulum
is of the form
b +b6 +csind=T(1) (1)

where a is the moment of inertia, b the damping
constant, c¢sin@ the restoring torque, and I'(¢) the

driving torque. The corresponding variables for
pendula, Josephson junctions, and phase-locked
loops are given in Table I for convenience, as it is
frequently helpful from the physical point of view
to use the “language” of these various systems in
discussing our results. Specifically, for a phase-
locked loop, such as the one used in our experimen-
tal work, the accessible variables are the summing
voltage V and the feedback current Igg, which are
proportional to 8 and sinf, respectively.

As usual, it is convenient to transform this equa-
tion into dimensionless form. The two characteris-
tic times are 7o=b/c and Qg '=(c/a)~'/% where
7o is the exponential damping time for the highly
viscous pendulum (i.e., when the 6 term can be
neglected) and Q is the low-amplitude natural os-
cillatory frequency of the undamped pendulum.
This leads to two possible dimensionless equations:

Bé+é+sin6=1/(’r) (2)

or
é+—é—é+sin0=y(f) , (3)

where B=0%=ac/b? y(r)=I(r)/c, and the time
7 has been normalized by 7, and Q5! in Egs. (1)
and (2), respectively. In general, the forcing term
(torque) is given by

y(t)=vo+7cosoT+yn(T), 4)

where o is the normalized frequency, y, the dc
forcing term, y; the amplitude of the ac driving
force, and yy is a noise term. In this work Q is fin-

TABLE 1. Corresponding variables for pendula, Josephson junctions, and phase-locked

loops.
Pendulum Josephson junction Phase-locked loop
6 Angular position Quantum phase Phase difference
difference between the
oscillators
6 Angular velocity 3%3’. kV
a Inertia momentum #C /2e C/k
b Viscous damping #i/2eR 1/kR
¢ sin@ Restoring torque Josephson current Feedback current
I J I FB
c Critical current Vi/Rs
I
L(2) Applied torque Applied current Applied current
I(t) Ve(t)/Rg
Qy=V'c/a Natural frequency (2el,. /#C)!/? (kV,/RsC)'/?
To=b/c Damping time #i/2eRI, Rs/kRV,
Q =(ac/b*)'"? Quality factor (el R*C /#)'/? (kV,CR?/R)""?
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ite and we shall use Eq. (3). However, in the limit
of large damping B=Q%—0, Eq. (2) is more ap-
propriate.

III. STATE DIAGRAM OF THE FORCED
PENDULUM

In order to provide a simple framework in which
to understand our results, we present here the state
diagram of the forced pendulum for the particular
conditions we studied most carefully. The diagram
was obtained directly from experiment by taking
traces of the summing point voltage of our phase-
locked loop (see Appendix A) as a function of the
drive frequency for various amplitudes. A typical
sequence of traces is shown in Fig. 1.

As can be readily seen, the pendulum exhibits
two basic types of states: phase-locked states in
which there are no fluctuations in 6 o« V in the dc
limit and unlocked states for which fluctuations are
evident near dc. For example, consider the trace for
v1=1.5, i.e, 1.5 times the critical torque. As the
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FIG. 1. Voltage fluctuations of the simulator circuit
near dc as a function of the driving frequency for vari-
ous driving amplitudes. Note pattern of phase-locked
and -unlocked states. Straight lines indicate phase-
locked steps satisfying the relationship ¥V =nk ~'o.

driving frequency is reduced, the system, initially in
an oscillatory state phase locked to the driving fre-
quency, breaks its symmetry and jumps to a new
state in which it is still phase locked but now with a
nonzero (0). (As we shall see later, the symmetry
is actually broken before the state change takes
place.) The motion in this new state corresponds to
a periodic running solution in which the pendulum
rotates 27 successively each period of the driving
force. The other phase-locked states are similar, in-
volving only different numbers of net rotations in
each driving period. These states are analogs of the
zero-bias ac Josephson steps seen in Josephson junc-
tions and follow the relation 8 « ¥V =k ~!nw indi-
cated by the straight lines in the figure, where n is
an integer and k is the voltage-to-frequency conver-
sion factor of the VCO. They are stable in the pres-
ence of small dc bias. Some higher-order steps are
also seen at lower frequencies, as are occasional
steps of the form 8 « V=k ~!(p /q)w, where p and ¢
are integers. The hysteresis present between de-
creasing and increasing frequency is shown by the
arrows.

The unlocked states are clearly chaotic as shown
by the finite noise power spectral density at dc evi-
dent in the figure. We should point out that they
are not unrelated to the phase-locked (V =k ~'nw)
states, however. For w <1 they serve as the transi-
tions between phase-locked states of different », and
at low frequencies the steps themselves (n=0 and 1
for y;=1.5) appear chaotic. The undulatory
behavior seen at low frequencies in Fig. 1 persists to
very low drive frequencies as is illustrated in Fig. 2,
which shows the behavior in this region on an ex-
panded scale. The overall state diagram that em-
erges from a complete family of traces such as these
is shown in Fig. 3 for the particular case Q=4.

It is important to note that, whereas this state di-
agram is closely related to the bifurcation diagram

Vgc (arbitrary units)

1 I
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FIG. 2. Extension of the data of Fig. 1 to lower fre-
quencies.
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FIG. 3. State diagram for the driven pendulum with
Q=4 and y,=0.

of Huberman et al.,! it is not exactly the same.
Period-doubling cascades (pitchfork bifurcations)
and their associated chaos are not seen in Figs. 1—3
because they have a noise power spectral density
such that S (w)—0 as @ —0. They do exist, howev-
er, and arise in the phase-locked states shown in
Fig. 3. We shall return to this point later. The
structure seen in Fig. 3 does clarify the content of
the generally chaotic region noted by Huberman
et al.,! although, as seen here, that region extends
to much lower frequencies than found by those au-
thors. Recent numerical simulations by Pedersen
and Davidson® yield a similar qualitative picture.

IV. PHASE-LOCKED STATES

As seen in Fig. 3, phase-locked states occur at
low ac drive and high frequencies (n =0) and in the
form of stripes (n >0;n =p /q) throughout the gen-
erally chaotic region at high drives and low fre-
quencies. In this section we discuss the nature of
the chaos observed in these phase-locked regions
and of the transitions observed between the phase-
locked states and the intermittent regions in Fig. 3.

A. Phase-locked oscillating states (n =0)

Consider first the large portions of n=0 region at
low v, and large o where the motion is entirely
contained in the first potential minimum. As dis-
cussed by Huberman et al.,! the basic response of a
pendulum in this regime is that of a highly non-
linear oscillator for which, in the presence of suffi-
ciently strong ac drive, the system exhibits chaos
preceded by the period-doubling cascade analogous

to that present in a single-well anharmonic oscilla-
tor.* This behavior is best understood by consider-
ing the response of a pendulum as a function of fre-
quency of various ac drive amplitudes. The filtered
(fundamental) amplitude response of our simulator
as a function of w for various ¥, is shown in Fig. 4.
The evolution of the phase-space portraits 6 vs sinf
(i.e., the signals I'rg and V from the phase-locked
loop) for increasing y; at fixed @=0.67 are illus-
trated in Figs. 5 and 6 along with the noise power
spectra for those cases (y;=0.54 and 0.68) where
the response is chaotic.

In order to interpret these results it is helpful to
compare them with those expected from classical
perturbation theory. In a linear analysis the solu-
tion to Eq. (3) can be written in the form

0= —asin(ot —¢), (5)
where
i Y1
—ig__ 6
T i1 e —w/Q ©

leading to a resonance for Q > 1/V'2 at a frequency
o =(1—1/20%"? with a maximum amplitude

719

a=——————~———(1_1/4Q2)V2 . (7)

When the nonlinearity is included the problem be-
comes less trivial, but for small y, it can still be
described by a perturbation expansion. We consider
solutions of the type

0= — i Qo 4180 (21 + DT — ), ] @)
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FIG. 4. Observed filtered (fundamental) amplitude
response of the simulator circuit for various driving am-
plitudes. Dashed line shows domain of broken symme-
try in the pendulum motion. Insert shows the observed
bifurcation diagram similar to that reported in Ref. 1.
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FIG. 5. (a) Evolution of the phase-space portraits 6
vs sinf) for increasing driving amplitude 7, at fixed fre-
quency ©=0.67. (b) Note the symmetry breaking, (c) fol-
lowed by period doubling, (d) followed by chaos.
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FIG. 6. (a) Phase-space portrait corresponding to the
intermittent domain of Fig. 3 at w=0.67. (b) and (c)
show the spectral power density corresponding to Figs.
4(d) and 5(a). Note different behavior as w —0. Note
also that in this figure and all other power spectra the
frequency axis is normalized to the drive frequency.

as it is easy to show that for small amplitudes the
even terms do not appear. Limiting ourselves to the
first-order terms we obtain

—w?a+2J(a)=y;sing , 9)
aow

———=vc08¢ , (10)
0 Y1c0s$

where the J, are Bessel functions of the first kind.
In Fig. 7 we show the numerical solution of Egs. (9)
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FIG. 7. Calculated fundamental response using per-
turbation theory as described in text.

and (10) for the amplitude of the velocity term 6
[i.e., 1w as 0= —a o cos(wT—¢ )] as a function
of o for various drive amplitudes.

Comparing Figs. 4 and 7 we see that for
71 <0.385 there is good agreement between the ob-
served behavior and the results obtained with per-
turbation theory. We observe the usual nonlinear
resonance shape, with a shift of the resonance peak
to lower frequencies. Above a critical value y;~0.3
the resonance becomes S shaped with three solu-
tions, only two of which are stable, and hysteresis
develops in the experimental curve.

Clearly, however, for y; >0.39 the simple analyt-
ical solution is no longer valid, since even including
higher-order odd terms, it is not possible to explain
the following two important phenomena which ap-
pear in the experiment:

(1) For @ <1 at the higher driving amplitudes the
resonance curve shows a small distortion which is
related to the generation of second harmonics. In
fact, that is just the signature of a bifurcation of the
pendulum at which an asymmetry appears in the
angular motion. This asymmetry is clearly evident
in the phase-space portrait of Fig. 5(b) and exists
above the dashed line shown in Fig. 4. This sym-
metry breaking of the pendulum oscillations ap-
pears to be an unavoidable precursor of the period-
doubling cascade for this system. This phenomena
has been overlooked or ignored in previous discus-
sions of chaos in symmetric anharmonic potentials.
It is possible to analytically derive the onset of the
symmetry breaking as shown in Appendix B.

(2) The period-doubling cascade also leaves its
signature. In Fig. 4 it corresponds to the small re-
gion before the instability point of the S-shaped
curve. The period-doubling cascade itself is shown

both in the phase portraits of Fig. 5 and in the
power spectrum of Fig. 6(b). For the sequence
shown in these figures (increasing y,; at fixed
©=0.67), the transition at the end of the chaotic re-
gion associated with the period-doubling cascade is
into an intermittent state [e.g., Figs. 6(a) and 6(c)].
The nature of this intermittent state will be dis-
cussed in greater detail in Sec. V.

We should note that in Figs. 5 and 6 the period-
doubling cascade is incomplete, presumably due to
noise in the phase-locked loop. Specifically, the
asymptotic evolution of the cascade is not observed
and the system goes directly into the chaotic region
where the inverse cascade takes place. The signa-
ture of this inverse cascade can be seen in the power
spectrum shown in Fig. 6(b), i.e., a noise spectrum
peaked at each subharmonic of the drive frequency
which goes to zero as w —0, as expected.

In general, we found that for low y; and
0.62w <Z 1, where the motion of the pendulum is
entirely in one well, the n=0 state became unstable
via the period-doubling route as found by Huber-
man et al.! (see inset of Fig. 4). The results of Fig.
5 are typical, although it was found that the appli-
cation of a small dc bias often allowed us to go fur-
ther into the cascade (e.g., to w/8). The reason for
the greater stability in the presence of a bias is not
completely understood but appears to reflect (at
least in part) the effect of external symmetry break-
ing in preventing noise-driven transitions between
the two equivalent symmetry-broken states at zero
bias. At lower frequencies the transition from the
n=0 state was discontinuous and not preceded by
period doubling.

Within the generally chaotic regime of the state
diagram, the striped regions with #=0 correspond
to phase-locked oscillations with amplitudes suffi-
cient to go beyond the first well, but in a symmetric
fashion so as to result in (6 )=0. Two phase-space
portraits and power spectra (0=0.67; y;=0.76 and
v1=1.94) typical of these regions are presented Fig.
8. The particular cases correspond to situations in
which the pendulum rotates one time 27 and one
time — 21, respectively, during three [8(a) and 8(b)]
and one period [8(c) and 8(d)] of the ac drive, as
shown by the corresponding noise spectra. Note
that, as in Rayleigh-Bernard experiment,’ or for the
parametric pendulum,® the period tripling showed
Figs. 8(a) and 8(b) occurs not in the chaotic region
following the period-doubling cascade, but as an in-
dependent route to chaos. However, the transitions
away from this period three state were observed to
follow a period-doubling pattern (i.e., 3X2").
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FIG. 8. Phase-space portraits and associated spectral
power for two symmetric (n=0) large-amplitude rotat-
ing states. (a) and (b) correspond to a period-tripled
state. (c) and (d) correspond to a simple period-one
state. Note that the spectral lines with slash marks are
due to 50-Hz pick-up.

B. Phase-locked rotating states (n > 1)

There are many phase-locked rotating (i.e.,
periodic running) states evident in Fig. 3. In gen-
eral, we find that the behavior of the pendulum as
one crosses such states (either in driving frequency
or amplitude) is not universal in that no single pat-
tern is observed. Period doubling is common place
but not necessarily in the form of fully developed
cascades. Consider, for example, the phase-space
orbits shown in Fig. 9, which illustrate the evolu-
tion of the system as ¥, is increased across the n=2
state at =0.67. The basic structure of these orbits
is very typical, other states differing essentially only
in the number of loops on the top (or bottom) of the
orbit. Each loop corresponds to a 27 rotation of the
pendulum. Note, however, that as y; increases
monotonically, the orbits exhibit the sequence
o /2—o—w/2. This type of behavior is not un-
derstood but may simply reflect a nonmonotonic re-
lationship between the physical control parameter
71 and that governing the pitchfork bifurcations in
the Feigenbaum’ theory based on the logistic equa-
tion.

In any event, it is clear from the phase-space or-
bits that the dynamics associated with period dou-
bling is essentially the same for the n=0 and n40
states (compare Figs. 5 and 9.) The orbits differ
only in the existence of loops on the orbit for n > 1.
In particular, without exception period doubling is
seen to arise when the velocity of the pendulum
(V «6) goes through zero just as the pendulum ap-
proaches the “up” position (I « sinf —0).

In order to put the above ideas on a more
mathematical basis, consider a perturbation-
expansion solution of Eq. (3) for a phase-locked ro-
tating state. Because of the phase locking, the solu-
tions have the form

0=nw—o ipapcos(pw‘r—cpp) ((0)=no)
p=1

(11)
and thus

0=00+nwr— 3, apsin(por—¢,) . (12)
p=1

To first order, the solution has been found by
Pedersen et al.®:

0 =0+ nor—a sin(lor—4¢) . (13)
Writing 6,, =6+ n¢ one obtains
Yo=J,(a)sinb, +new /Q , (14)
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FIG. 9. Phase-space portraits of phase-locked period-
ic running states (n>1) illustrating nonmonotonic
period-doubling pitch fork bifurcations.

2
i___ “9 1 2n” _Z_n
Yie a Q + a2 a2 Yo
2J, (a)
+i|w?4+—"—cosb, ] . (15)

Thus, we arrive at a set of three implicit equa-
tions [(14) and (15)] that cannot be solved analyti-
cally to obtain the unknowns a, ¢, and 6,,. Howev-
er, considering Eq. (13), we see that it implies that
under the oscillating constraint the pendulum ro-
tates with an angular frequency which is n times

the driving frequency but with an angular velocity
which is sinusoidally modulated by the term
asin(wT+¢). It is this term that is associated with
the complex behavior of the pendulum, i.e., the
period-doubling cascade.

One can develop this picture further and relate it
to the period-doubling cascade of the phase-locked
oscillating pendulum for n=0 and y,=0 [6,=0
and Eq. (15) reduce to Egs. (9) and (10)] described
previously. Indeed, in Eq. (15) there are resonance
terms for the imaginary and real parts of y,e™.
These nonlinear resonance terms presumably lead to
the period-doubling cascade for reasons similar to
the nonlinear resonance effects of the oscillating
pendulum. .

Going one step further we can analyze the stabili-
ty of the solution (13). As shown in Appendix B
such an analysis leads to Mathieu’s equation. The
essential point here is that both parameters a and ¢
of the Mathieu equation depend in a complex
manner on ¥, the amplitude of the driving force.
This is why one usually observes period-doubling
phenomena which evolves in a nonmonotonic
manner such as illustrated in Fig. 9. The forced
pendulum is in this respect strikingly different from
the parametric pendulum,® where the period-
doubling cascade evolves fully. In this case, in the
Mathieu equation for the stability of the solution,
only the g term depends on the forcing amplitude
and varies linearly with it. Thus, except for the
n=0 state, the forced pendulum is not, in general, a
simple system for displaying the period-doubling
cascade.

V. NONPHASE-LOCKED STATES
A. Low-frequency regime

As seen in Fig. 3, the generally chaotic region of
the state diagram extends down to low frequencies
such that @ << 1. This is in contrast to the original
result of Huberman et al.,' in which there was
found to be a cutoff at ~Q ~!. Although the ex-
act reason for this discrepancy is not known, it ap-
pears likely to be due to the simulator circuit used
in Ref. 1, which was restricted in the number of 27
rotations it could simulate. We should point out,
however, that some role of noise in inducing a
chaotic response in this region can not be complete-
ly ruled out. In a similar vein, it is possible that
transients due to the frequency sweep also play a
role in the behavior observed. Finally, it should be
noted that we did not determine exactly how low in
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frequency this region extends.

On the basis of the traces in Fig. 2, we surmise
that any structure in the state diagram in this re-
gion must be on a very fine scale and associated
with the undulations between the n=0 and 1 states
evident in the figure. This extreme sensitivity to
the control parameters is also shown in Fig. 10,
which shows the real-time response of our circuit
and the associated noise spectra for two nearly iden-
tical values of y,. Note the striking 30-dB noise
rise in going from 10(c) to 10(d) in a power spec-
trum that is otherwise the same. Note also the
slight differences in the ringing down transients
from cycle to cycle in Fig. 10(b) but not in Fig.
10(a).

Better insight into the nature of this behavior can
be obtained by considering first the response of the
pendulum to an applied dc bias. Since we are con-
sidering low ac drive frequencies, the motion of in-
terest should be closely related to that at dc. This
problem has been analyzed by McCumber’ in the
context of the resistively shunted junction (RSJ)
model of Josephson junctions. The dc I-V (e,
(@) —y,) curves obtained on our simulator corre-
sponding to the situation studied by McCumber are
shown in Fig. 11. The main features are as follows.

The asymptotic behavior for large 7, is such that
(6)=7,0. In effect, for yo>>1 the pendulum ro-
tates at a high angular velocity, thus the nonlinear
sinf term can be neglected in Eq. (1), and it is easy
to show that the pendulum reaches a limiting angu-
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FIG. 10. Observed temporal voltage traces and asso-
ciated spectral power of the chaotic and nonchaotic
states observed at low driving frequencies. Note that in
this figure the frequency is normalized to the driving
frequency (w=0.034), not the natural frequency of the
circuit and that the spectral lines with slash marks are
due to 50-Hz pick-up.
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lar velocity.é=1/0Q in a time of order 1/Q. For
Q > 1 the (6) vs y, curve exhibits hysteresis, which
can be simply understood. When the torque is in-
creased from zero to the critical value yo=1 be-
cause of the inertia term, the pendulum starts
abruptly to rotate at an angular average velocity
(0)~Q. Upon decreasing the torque, the inertia of
the pendulum causes it to keep rotating even for
Yo < 1 down to a critical value yoc. At this critical
value of 7, the pendulum reaches the unstable posi-
tion with zero velocity; from there it relaxes toward
a stable equilibrium position through a damped lim-
it cycle with a characteristic time 7=0/Q,. The
critical torque value y(c has been calculated numer-
ically by McCumber as a function of B=Q? The
asymptotic behavior of yoc for Q—ow is
Yoc~V2/2Q. '

Let us return now to the driven pendulum at low
driving frequencies @ <<Q ~'. In this limit the pen-
dulum responds adiabatically and experiences the
motions described above. Thus, for ¥; >1 the pen-
dulum successively rotates and oscillates as shown
in Fig. 10(a) or 10(b) (evidently with positive and
negative rotations). Since the driving period is
much longer than the damping time of the oscilla-
tions, as the drive amplitude passes through zero
the pendulum almost reaches its equilibrium posi-
tion before the next rotation. Paradoxically, in this
low-frequency region where the pendulum follows
the excitation in a more or less adiabatical way, a
chaotic state exists.

As already intimated above, the crucial point in
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FIG. 11. Traces of the dc response of the simulator
circuit as a function of finite dc bias y, for various
values of Q.
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the dynamics of the pendulum associated with the
observed chaos at these low frequencies is the tran-
sition from rotation to ringing down. More specifi-
cally, it is the occasional “‘extra” rotations [see tran-
sition on the far right of Fig. 10(b)] that lead to the
observed noise. Apparently, for particular values of
71, the ringing-down portion of the cycle becomes
very sensitive to the exact manner (i.e., the “initial
conditions”) in which the ringing down begins.
Moreover, as for the period doubling seen on the
phase-locked steps, the “dangerous” part of the or-
bit is when the pendulum approaches the unstable
position with small angular velocity. Unfortunate-
ly, none of the general modes of chaos with which
we are familiar seem able to describe this type of
chaotic state.

B. Intermediate frequencies—intermittency
between unstable phase-locked states

As shown in Fig. 3, in between the phase-locked
states there are chaotic regions where, as seen in
Fig. 1, the noise spectrum is finite even at dc. The
chaotic stripes appear to be associated with inter-
mittency between unstable phase-locked states.
Similar intermittent behavior has been noted by
Kautz? and by Ben-Jacob and co-workers'®!! in the
present of a dc bias.

A typical noise spectrum of one of these regions
was shown in Fig. 6(c). The spectrum has two im-
portant characteristics. First of all, it extends down
to dc, as already noted. Second, it has an amplitude
which is much larger than the noise associated with
the period-doubling cascade. [Compare Figs. 6(b)
and 6(c).] Finally, it exhibits broad ‘“resonances”
centered around the unstable periodic phase-locked
orbits, the width of which are presumably related to
the lifetime of the periodic states.

In Fig. 12 we show the phase-space portrait of
one of these chaotic states [Fig. 12(b)] compared
with those of the phase-locked states between which
it is observed [Figs. 12(a) and 12(c)]. It is clear
from the figure that in this particular type of chaot-
ic state, the motion involved can be viewed as an in-
termittency between two unstable phase-locked
states as asserted above. Figure 13 shows another
example of such a chaotic state [Fig. 13(a)], along
with its associated Poincaré section [Fig. 13(b)] and
those of the closest phase-locked states [Fig. 13(c)],
with y, adjusted so as to bias them in a chaotic con-
dition. In our experiment, the Poincaré section of
the intermittent states was always found to have the
structure illustrated in this figure, namely, two

FIG. 12. Phase-space portraits of an intermittent state
(b) along with the two nearby phase-locked states [(a) and
(c)] to which it is related.

strange attractors connected by an important tran-
sient, even if the intermittent state was entered
directly from a purely periodic state. Hence, Fig.
13 illustrates the important role phase noise plays in
this intermittent state. Specifically, the presence of
the strange attractors of phase-locked states could
be the signature of an important phase randomiza-
tion after each change of state. Note, however, that
careful examination of Fig. 13(b) shows that the
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{b)

- {c)

FIG. 13. Another example of the (a) phase-space por-
trait of an intermittent state, (b) along with its corre-
sponding Poincaré section, (c) and the Poincaré sections
of the two phase-locked states to which it is related.
Note also the twofold structure in the Poincaré -section
of (b). These Poincaré sections were obtained directly
from oscilloscope traces by means of a z-axis modulation
synchronized to the drive signal.

Poincaré section of the full intermittent state has a
double-line structure like that found in strange at-
tractors derived from two-dimensional mappings of
the Henon-type.!? This double-line structure is not

present in the related Poincaré sections of Fig. 13(c).
To date we have not found a model or mapping

that properly describes this intermittent state. The
model of Ben-Jacob, Goldhirsh, and Imry'' has
many of the features we observe but does not in-
clude the random-phase noise at the start of each

laminarlike segment that is seen experimentally.
We feel this phase noise is an essential feature of
the observed behavior. This intermittency may be
related to tangent bifurcations such as discussed by
Yorke and Yorke'> and Manneville and Pomeau'*
but it does not agree with the particular case
analyzed in detail by Hirsh, Huberman, and Scalapi-
no,'> which deals with the familiar one-dimensional
map with a quadratic maximum. In this latter case,
as the control parameter is increased, the intermit-
tency is followed by an odd period-doubling
cascade—a behavior not seen in our experiments.
The connection between the observed behavior and
the sinusoidal map (which does exhibit periodic
running solutions and multiwell diffusion) discussed
recently by various authors,'®~!® is also not yet
clear. Finally, in a somewhat unrelated vein, we
note that nowhere in our experiment have we ob-
served the quasiperiodic route to chaos proposed by
Ruelle and Takens.!’

VI. EFFECT OF dc BIAS

The presence of a dc bias y, strongly influences
the response of the pendulum to a periodic driving
force, but to the extent that we have been able to es-
tablish, it does not introduce any fundamentally dif-
ferent states or new types of chaos. That is, there
are both phase-locked and -unlocked states of the
type found in zero-bias as shown in Fig. 3. The
phase-locked states correspond to ac Josephson
steps and the unlocked states can be intermittent.
Smooth transitions between phase-locked states are
also observed under some conditions as the dc bias
is increased, but they correspond to the uninterest-
ing situation where there is no interaction (i.e., lock-
ing or tendency to lock) between the drive frequency
and the average rotation frequency of the pendu-
lum. The power spectrum under these conditions
consists of lines at the drive frequency, the rotation
frequency, their harmonics and mixing products,
with no subharmonics or broadband noise.

The effect of a small dc bias (i.e., biasing within a
given potential well) is simple and easy to under-
stand. It has four principal effects. External sym-
metry breaking is introduced, the resonant frequen-
cy is lowered, the quality factor is decreased, and
the critical ac torque required to produce rotation is
reduced. This behavior can be understood trivially
in terms of the linear ac response expected for a
biased pendulum. The equilibrium position is given
by 6p=sin"ly,, from which it follows that
wo—(1—y3)"* and Q—Q(1—73)"/%. The net ef-
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fect of all this is, roughly speaking, simply to scale
the state diagram of Fig. 3 along the y; and w axes.
Note, however, that as yo—1, Q—0 and one ex-
pects the structure in the state diagram to be strong-
ly modified and eventually all chaotic behavior to
cease. This limit was not carefully explored in our
study.
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APPENDIX A: SIMULATOR CIRCUIT

To simulate a driven pendulum we have used an
analog circuit of the phase-locked-loop variety
described by Bak? in the context of a simulator for
the resistively shunted junction model of a Joseph-
son junction. The basic functional diagram of the
circuit is shown in Fig. 14 and the detailed circuit
diagram in Fig. 15. In the circuit the output of a
voltage-controlled oscillator (VCO) is mixed with a
reference oscillator, passed through a low-pass fil-

I
B MIXER
+ P R REFERENCE
FILTER v, coslugt-¢,)
c .
i B4 Vo cos [wgt+k [ Vit)ar']
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FIG. 14. Schematic diagram of the phase-locked loop
used in our simulations. Typical circuit values are
R=11kQ, C=100 nF, k=41 X 10> s~!/V which lead to
a natural frequency Q,/27=600 Hz and a Q=4. We
also used Rg=Rs=10 kQ and a reference frequency
w, /27m=100 kHz.
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FIG. 15. Detailed circuit diagram for phase-locked
loop.

ter, and then fed back to the input of the VCO
through an operational amplifier. The ac and dc
bias inputs are applied at the summing point of the
operational amplifier. The resistor and capacitor in
the feedback circuit of the operational amplifier
provide the inertia and damping of the loop.

In practice, the actual circuit we used was pat-
terned after that developed by Henry and Prober,?!
in which the mixing and low-pass filtering func-
tions are accomplished using a sample-and-hold
(SH) circuit. The merits and demerits of this ap-
proach have been discussed by those authors.

If the reference signal is ¥ sin(w,t +4¢g), the out-
put of the sample-and-hold circuit sampled at the
time 7, is Visin(wgm, +@¢). During the hold time
between 7, and the next sampling time 7, , ;, the in-
put V(t) of the VCO is given by

1dv 1 Vi . Ve(t)
C ar +R V+ RS sin(ws 1, +¢o)=— R,
(A1)

The sampling time 7, ; is related to 7, and to the
input of the VCO by

Oylty 1 —1)+k [T Vndt=2m . (AD)
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Writing
0,=02n + 1) —w,m, —do (A3)
one gets
0y 41=0,+27m —ws(1y L1 —T))
=0u+k [ "yt (A4)

If o, is larger than the highest frequency of V' (¢)
during the time between 7, and 7,,, V(¢) can be
considered as constant and written

‘9n+1_6n

Th+1—Tn

V()= lim |+

@y —> 00

)
=2 &y

So, if one could neglect the time between sampling,
one gets

é=kV(t), (A6
dav Vi VE(t)
CrtR L Rss1 nf=— R, (A7)
or
Vi Ve(t)
k0+ kR0+—1 nf=— R, (A8)

where V; is the peak amplitude of the reference.
With the notations of Sec. II one gets

a=C/k, b=1/kR, ¢=V,/Ryg,

It is also interesting to note, referring back to Eq.
(A4), that for a periodic V(t) the integral of V(¢)
can be calculated explicitly and then Eq. (A4) be-
comes a discrete mapping reflecting the actual
behavior of an ideal VCO fed back through an ideal
sample-and-hold circuit.

From the simulation point of view, this circuit
has two drawbacks associated with the detailed
operation of the sample-and-hold circuit. Specifi-
cally, because of the finite aperture time and an
overshoot in the response of the SH, the sampling
transient leads to an error in Igg that depends on
the phase between the VCO and the reference sig-
nal. An important consequence of this problem is
the introduction of two discontinuities in the slope
of Irg near its extrema and of an asymmetry in the
amplitude of Ixg between its positive and negative
half-cycles. Note, however, that while such asym-
metries may dictate which way the symmetry
breaking of the simulated pendulum goes, by care-
fully studying the effects of an applied dc bias, we
conclude that the observed symmetry breaking is in-

trinsic to the forced pendulum and not an idiosyn-
crasy of our simulator circuit.

APPENDIX B: STABILITY
OF PHASE-LOCKED STEPS

In Sec. IV we have investigated solutions of Eq.
(3) of the form

0*=0,+n(or—¢)—asin(lor—4¢) (B1)

with 0, a, and ¢ related to y,, ¥, and n by Eqgs.
(13)—(15). Such solutions will be observed only if
they are stable, i.e., only if any small perturbation
80 of 6* is damped. Writing 6 =60* +380, for
660 << 1 one gets

56+ éae’ 4 cos6*60 =0 . (B2)

Limiting the cos@* expansion to the first two terms,
one obtains the following Mathieu equation:

Z )2) +(a —2q cos2z)y =0, (B3)
where
4 1
a=— |J,(a) 9—[— (B4)
3 a )cos 120 ] l
4 2
n
q= 7l —J,(a)cosB,
172
+ [ (a)sing, ]? , (BS)
z=%(w7'——¢ +Vn) (B6)
y==80e~"22, (B7)
tanv, =aJ, (a)tand, /nJ,(a) . (B8)

However, if n=0 and y,=0, then 6,=0, Eq. (B5)
leads to g=0, and the expansion of cos@* must be
taken one order higher in which case (B4) —(B6) are
replaced by

1 1
= Jola)—
a=—s Pot@ 0 ] , (B9)
g=—Jya), (B10)
(0]
zZ=0T—¢ . (B11)

Hence, we find that the stability of 6* will have the
same kind of behavior?? as the solutions of the cor-
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responding Mathieu equation. If @ and g belong in
the stability domain of the Mathieu equation,?® 6*
is stable. If, on the other hand, the solutions of Eq.
(B3) are unstable, only two kinds of bifurcations can
occur, either with period 7 or 27 for z. Now the in-
terpretation of these bifurcations depends on the
symmetry of 6*. If n=0 and y,=0, z and wT are
related by Eq. (B11) and the bifurcations occurs
with periods w or 2. The first case corresponds to
a jump toward another stable state still given by Eq.
(B1) (if one exists). A vivid illustration of this bi-
furcation is given in Figs. 4 and 7, where the nega-
tive slope part of the S-shaped resonance is un-
stable, leading to the hysteretic behavior in Fig. 4.
When the other bifurcation occurs, the solution of
(B2), which grows, has a frequency twice the drive

frequency and, as a consequence, a dc component.?
Hence, in this case, the system goes to a state where
(0) is nonzero and this bifurcation corresponds to
a symmetry breaking of the pendulum motion for
Y0=0. If n=£0 or y(=40, then the motion of the
pendulum is already asymmetric, z and o7 are relat-
ed by Eq. (B6), and the bifurcations occur with
periods @ or w/2. The first one was described
above. The second corresponds to a growth of solu-
tion with frequency half the drive frequency, i.e., to
period doubling.

From this analysis we conclude that, for the
forced pendulum, before any period-doubling bifur-
cation the symmetry of the motion must be broken
either with an external torque y, or by a previous
bifurcation.
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Stanford University, Stanford, California 94305.
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FIG. 12. Phase-space portraits of an intermittent state
(b) along with the two nearby phase-locked states [(a) and
(c)] to which it is related.
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FIG. 13. Another example of the (a) phase-space por-
trait of an intermittent state, (b) along with its corre-
sponding Poincaré section, (c) and the Poincaré sections
of the two phase-locked states to which it is related.
Note also the twofold structure in the Poincaré section
of (b). These Poincaré sections were obtained directly
from oscilloscope traces by means of a z-axis modulation
synchronized to the drive signal.
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FIG. 5. (a) Evolution of the phase-space portraits (8
vs sin@) for increasing driving amplitude ¥, at fixed fre-
quency w=0.67. (b) Note the symmetry breaking, (c) fol-
lowed by period doubling, (d) followed by chaos.
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FIG. 6. (a) Phase-space portrait corresponding to the
intermittent domain of Fig. 3 at @w=0.67. (b) and (c)
show the spectral power density corresponding to Figs.
4(d) and 5(a). Note different behavior as @ —0. Note
also that in this figure and all other power spectra the
frequency axis is normalized to the drive frequency.
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FIG. 8. Phase-space portraits and associated spectral
power for two symmetric (n=0) large-amplitude rotat-
ing states. (a) and (b) correspond to a period-tripled
state. (c) and (d) correspond to a simple period-one
state. Note that the spectral lines with slash marks are
due to 50-Hz pick-up.



FIG. 9. Phase-space portraits of phase-locked period-
ic running states (n>1) illustrating nonmonotonic
period-doubling pitch fork bifurcations.



