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Two-dimensional Fourier transforms of convection patterns are computed from data ob-
tained by Doppler scanning of the velocity field. This new technique is used to study the
time dependence of the wave-number distribution, and the variation of the mean wave
number k* with Rayleigh number R. We find that k* increases by about 15% during the
pattern evolution following a step change in R from below R, to 2R,. This increase is asso-
ciated with a reduction in the number of defects in the pattern. The dependence of k* on R
is characterized by a decline above R, and a steeper decline near SR, where the skewed var-
icose instability causes the flow to become time dependent. The peak in the wave-number
distribution does not shift significantly in the range 6—40R,, and still contains about half
of the spectral power at 40R.. The flow apparently remains largely two dimensional.

I. INTRODUCTION

Above the critical Rayleigh number R, a lateral-
ly infinite fluid layer between thermally conducting
boundaries can achieve a steady flow consisting of
parallel rolls, according to nonlinear stability
theory.! However, the existence of orientational de-
generacy and a band of stable roll wave numbers in-
dicates that processes of pattern selection, which are
not contained in the usual stability theory, must oc-
cur. Some theoretical progress in treating pattern
selection has been made recently.>—>

Earlier experiments in a large rectangular cell
showed that there are multiple stable patterns at a
given R.%" Furthermore, a state in which the rolls
are parallel everywhere in the cell is never reached.
Instead, they align approximately perpendicular to
all lateral boundaries in a large layer. This causes
curvature and defects in the patterns. A change in
R induces patterns with many defects which evolve
toward simpler patterns over periods much longer
than the natural hydrodynamic time scale for the
Rayleigh-Benard instability, the vertical thermal
diffusion time 7, across the fluid layer. In some
cases, the patterns remain slowly time dependent
for at least 100007,. This failure to reach a steady
flow may be related to earlier observations by
Ahlers and Walden® in which the effective thermal
conductivity of a layer of convecting liquid helium
was found to be noisy not far above R,.

In the present paper, we report experiments in
which spatial Fourier analysis was performed on
data obtained by Doppler scanning of the velocity
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field. Two-dimensional Fourier transforms have
not been previously used in experimental studies of
thermal convection or other instabilities. This
powerful technique allows quantitative study, for
example, of the wave-number distributions of con-
vective flows as a function of both time and Ray-
leigh number. It permits us to address questions
such as these: Does pattern evolution involve
changes in the mean wave number, changes in the
angular distribution in wave-number space, or both?
What changes in the wave-number distribution are
associated with particular instabilities? - How does
the wave-number distribution depend on the Ray-
leigh number or on the nature of the pattern?

In Sec. II we explain how two-dimensional
Fourier spectra were obtained, followed by presenta-
tion of results on pattern evolution and the depen-
dence of the wave-number distribution on Rayleigh
number in Secs. III and IV. The relation of our
work to theoretical studies and other experiments is
discussed in Sec. V.

II. OBTAINING FOURIER SPECTRA
OF PATTERNS

The apparatus and laser Doppler mapping tech-
nique have been described elsewhere,” and will be
only briefly summarized. The interior horizontal
dimensions of the cell are approximately 15X 10
cm?, the layer depth is d =0.5 cm, and the fluid is
confined between copper plates whose temperatures
are controlled electronically. The Rayleigh number
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is stable to better than 1% over periods of several
weeks. The working fluid is water at about 70°C
where the Prandtl number (the ratio of the kinemat-
ic viscosity to the thermal diffusivity of the fluid) is
2.5. The time 7, required for heat to diffuse verti-
cally across the fluid layer is 170 s, and the time for
heat to diffuse horizontally the full length of the
cell is 40 h. These are the natural hydrodynamic
time scales.

Laser Doppler velocimetry is used to map the lo-
cal velocity component parallel to the long cell edge
by translation in two dimensions under computer
control. The velocity field can be mapped in a hor-
izontal plane in about an hour (several thousand
measurements). Below S5R., where the time depen-
dence is exceedingly slow, the result is an effectively
instantaneous digital record of the flow field in a
plane.

One way to display the results of such a Doppler
scan is to plot contour maps of constant Doppler
shift (constant velocity parallel to the long cell
edge). An example is shown in Fig. 1(a), obtained
at 4.03R.. The diagram represents the flow in a
plane located a distance d /4 below the top of the
cell. Each dot is a location at which the velocity
component parallel to the long cell edge is found to
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be zero. The loci of these dots define the boun-
daries of the convective rolls. The actual flow
direction at the location of the dots is out of or into
the page, alternating from one row of dots to the
next. Equivalently, the vorticity is opposite in adja-
cent rolls. As noted earlier,>’ the rolls align per-
pendicular to the four lateral cell boundaries, caus-
ing roll curvature and a pair of localized defects in
the pattern. This particular pattern is only one of
several that can be obtained at the same Rayleigh
number.

The next step in the analysis is to construct the
two-dimensional power spectrum (the magnitude
squared of the Fourier transform) of the 2646
points in the data array of velocity measurements.
This is easily achieved in a few minutes on an LSI
11/23 computer with a one-dimensional fast
Fourier transform algorithm by first transforming
each row and then each column of the data array,
after application of a cosine taper. The power spec-
trum (magnitude squared of the Fourier transform)
corresponding to the velocity map of Fig. 1(a) is
displayed as a function of the x and y components
of the wave number in Fig. 1(b). (All wave numbers
in this paper have been divided by 27, so that the
critical wave number k., in these units is 0.95
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FIG. 1. (a) Doppler map of the velocity field for a stable symmetric convective flow at 4.03R,. The dots are locations
at which the flow is entirely vertical, i.e., the roll boundaries. (b) Two-dimensional Fourier spectrum P (kx,ky) of the
2946-point data array from which the map was made, on a linear scale. (c) Wave-number distribution S (k) formed by
integrating the Fourier spectrum along circular arcs. (d) Angular distribution Q(8) formed by integrating the Fourier

spectrum along radial lines in wave-number space.
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cm~!) In this case, there is clearly a peak on the
k, axis due to the alignment of rolls parallel to the
y axis in real space.

We have found it useful to change to circular
coordinates (k,0) in K space and to construct two
auxiliary functions by integrating along radial lines
and circular arcs. If P(k,,k,) is the power spec-
trum, we integrate along a circular arc at fixed ra-
dius k to obtain the function S (k) defined by

S(k)=fP(k sin(6),k cos(6))k dk .

Since the spectrum is only known at discrete
points in wave-number space, it is necessary to in-
terpolate in order to compute this integral. Note
that k can be larger than either k, or K, so that its
limit is somewhat larger than the Nyquist frequen-
cy in either direction (2.5cm™! in this case). The
resulting function S(k), which we call the wave-
number distribution, is plotted in Fig. 1(c). It has a
well-defined peak whose first moment is at 0.75
cm™!, and whose linewidth (square root of the
second moment) is 0.14 cm~!. This width is some-
what greater than the instrumental resolution deter-
mined by the inverse cell size, 0.10 cm~!, and is a
reflection of the fact that the roll spacing varies be-
cause of the defects or nonuniform spacing in the
pattern.

The second auxiliary function Q(0) is obtained
by integrating over radial lines in kK space:
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Q(6)= [ P(ksin(8),k cos(6))k d(6) .

The result, shown in Fig. 1(d), has a peak at
0 =90 deg (measured from the k, axis) as expected.
Its width reflects the curvature in the roll pattern.

Above 5R,, the Doppler maps are not instantane-
ous, since the flow changes significantly during the
mapping process. However, we find that the main
features of the flow are still correctly obtained, be-
cause the mapping is made in lines parallel to the
long cell axis; each line is acquired in about one
minute. In order to test for distortion in S(k) due
to the motion, we also performed one-dimensional
line scans parallel to (and near) the long cell edge,
where the rolls tend to be locally perpendicular to
the direction of the scan. The resulting spectral
density and wave-number distribution were quite
close to those obtained from two-dimensional scans
over the entire cell. We also found that wave-
number distributions computed from maps of dif-
ferent size, requiring different time intervals, were
essentially the same. Thus, we believe that the
two-dimensional spectral density is semiquantita-
tively correct even in the time-dependent regimes.
Obviously, it would be better to use a technique that
maps the velocity field more quickly. The limita-
tion on mapping speed is mainly in the time (about
1 s) required to accumulate a Doppler measurement
with adequate signal-to-noise ratio, not in the time
to move from one location to the next.
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FIG. 2. (a)—(d) Doppler map, spectrum, wave-number distribution S (k), and angular distribution Q () soon after the
Rayleigh number was increased to 2.0R,. See caption for Fig. 1.



III. PATTERN EVOLUTION

We studied the evolution of patterns by the fol-
lowing procedure. The Rayleigh number was left at
0.4R, overnight and then suddenly increased to
2.0R.. The flow was then mapped hourly over at
least 24 hours, and sometimes several hundred
hours, about 5 horizontal thermal diffusion times.
Many separate runs were made in this way.

The flow pattern an hour after the change in R is
typically complex with many defects, as shown in
Fig. 2(a). At this early stage, the rolls are not yet
perpendicular to the boundaries. The wave-number
distribution S (k), Fig. 2(c), has a well-defined peak
that is not significantly broader than the one in Fig.
1(c). However, the angular distribution Q(8), Fig.
2(d), is more spread out than the corresponding ex-
ample in Fig. 1(d) because of the disorder in the
pattern.

We followed the process of pattern evolution by
mapping the flow approximately once per hour.
The evolution is a noisy process, in which the local
velocity changes erratically over a period of a day
or two (roughly one horizontal thermal diffusion
time), as defects are expelled and the pattern be-
comes more orderly. (In some runs, slow time
dependence persists for at least a few hundred
hours, and perhaps indefinitely. However, the char-
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acter of this time dependence is different after the
first day or two. The simplification of the pattern
occurs during this earlier period.)

For comparison, we show in Fig. 3 the map and
spectrum 256 hours after the start of the run.
There are fewer defects and the rate of change is
quite slow, but a symmetric flow has not been
reached. The evolution in Fourier space is not
dramatic. Comparing Figs. 2 and 3, we find that
the first moment of the peak has increased from
0.75 to 0.86 cm ™! while the linewidth has changed
slightly (0.14 to 0.156 cm~!). The angular distribu-
tion Q(6) has narrowed in this case, from 0.29 to
0.21 cm~!. However, in other runs we do not find
a monotonic decrease in the width of Q(8), because
the boundaries cause orientations with positive k, in
some parts of the cell.

The major consistent feature of the pattern evolu-
tion in wave-number space is the increase in the
first moment k* of the peak as the number of de-
fects in the pattern decreases. That is, the wave-
number distribution shifts slightly to higher k.
This effect is shown more clearly in Fig. 4, where
the first moment is plotted as a function of time for
several different runs made at 2.0R,. The rise of
10—15% is not large, but is statistically signifi-
cant. Apparently, the excessive number of defects
found at early times forces the patterns to be less
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FIG. 3. (a)—(d) Doppler map, spectrum, wave-number distribution S(k), and angular distribution Q(6) 256 hours
after the Rayleigh number was increased to 2.0R.. The flow is now evolving quite slowly and the mean wave number has

increased somewhat. See caption for Fig. 1.
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FIG. 4. Time evolution of the mean wave number k*
of the peak in S(k) after the Rayleigh number was in-
creased to 2.0R, in several separate runs. Note the
change in the time scale used to show the latter part of
the longest run.
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compact than they are later. (However, even in the
long-time limit, the mean wave number is below the
critical value for Rayleigh numbers above R,, as we
discuss more extensively in Sec. IV.) We also find
that pattern evolution following a decrease from
40R. to 2R, shows a monotonically rising mean
wave number, but starting from a lower initial
value.

IV. RAYLEIGH NUMBER DEPENDENCE
OF THE WAVE-NUMBER DISTRIBUTION

In this section, we describe measurements of the
wave-number distribution after the transient pattern

y (cm)
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evolution, as a function of Rayleigh number.
Above SR, the patterns are always time dependent,
as we noted earlier.%” The onset of this faster (and
noisy) time dependence has been linked to the
“skewed varicose instability” of Busse and Clever.’
An example of a map made at 33R, is shown in
Fig. 5(a). A clearly defined characteristic scale is
visible, with a predominant wave vector along k.
This scale is also manifested by a region of high
spectral density on the k, axis of Fig. 5(b) and by
the peak in the wave-number distribution S (k), Fig.
5(c). There is significant noise at high wave num-
ber, but the peak at wave numbers comparable to
the inverse layer thickness dominates even at 40R,.

The angular distribution Q(6) in the time-
dependent regime is typically quite broad, as shown
in Fig. 5(d). However, this function is likely to be
distorted by the motion, and cannot be interpreted
quantitatively.

The first moment k* of the peak in the wave-
number distribution S (k) is shown as a function of
€=(R —R_)/R, in Fig. 6. We find that the varia-
bility in this quantity from one pattern to the next
is about +5% from the mean in either direction,
provided sufficient time is allowed before making
measurements, and we do not find clear evidence of
hysteresis in the ordinary sense. We typically aver-
age over several patterns at each Rayleigh number
to reduce the variability. The wave numbers have
been normalized by the predicted critical wave
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FIG. 5. (a)—(d) Doppler map, spectrum, wave-number distribution S(k), and angular distribution Q (6) at high Ray-
leigh number (33R,), where the flow is strongly time dependent. See caption for Fig. 1.
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FIG. 6. Mean wave number k* of the peak in S(k)
normalized by the critical wave number k., as a function
of Rayleigh number, on two different scales. There is a
steep decline at the onset of rapid time dependence, but

little further change at high R.

number k. for the onset of convection. In comput-
ing the first moment, a cutoff is applied to exclude
the high wave-number noise at high R. The curve
has a number of interesting properties:

(a) As R approaches R, k seems to approach
0.95k,, about 5% lower than the predicted value.
This reduction is probably due to defects in the pat-
tern, which are still noticeable at low R.

(b) The mean wave number declines monotonical-
ly as R increases. We are unable to say whether the
apparent leveling off near e=1 is real or is rather
due to inadequate averaging over different patterns.

(c) The rate of decline increases in the range
3 <€ <5, near the onset of the skewed varicose in-
stability, where rapid time dependence begins. This
decline in the mean wave number is related to the
pinching off of rolls which we detected earlier®’ by
repetitive mapping at 5R,.

(d) The mean wave number of the peak is approx-
imately constant from € =6 to € =40. There is no
detectable change at the onset of the oscillatory in-
stability, which occurs’® at about e=8 at the
Prandtl number used in these experiments. How-
ever, at € =40, the spectral power at wave numbers
above the peak is about half of the total power.
(This power has been excluded in computing the
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FIG. 7. Linewidth of the spectral peak in S(k) as a
function of Rayleigh number. For comparison, note that
k. is 0.95 cm™, so that the width is typically 10—20 %
of k..

mean wave number of the peak. The mean wave
number of the entire spectrum does increase at high
R.) We have also computed the linewidth of the
peak in S(k) (square root of the second moment).
This quantity is shown as a function of € in Fig. 7.
Though there are significant fluctuations from run
to run, the linewidth does not increase with R, and
it even decreases somewhat as the peak shifts to
lower wave number. Typical linewidths are
10—20 % of k..

V. DISCUSSION AND CONCLUSIONS

We find that the most significant change in
Fourier space during pattern evolution is a small in-
crease (about 15%) in the mean wave number k* as
the defects are eliminated. This change occurs in
about one day, a time comparable to the horizontal
thermal diffusion time. The pattern evolution typi-
cally continues after that, but at a reduced rate and
with out further reproducible change in the wave-
number distribution S (k) or in the angular distribu-
tion Q(0). The small magnitude of the observed in-
crease in k* may be related to the long-time scale of
the evolution. If k* were to shift dramatically, the
process would presumably occur more quickly.

The mean wave number declines with Rayleigh
number, with much of the decline apparently asso-
ciated with the approach to the skewed varicose in-
stability, a long-wavelength deformation that causes
the flow to be time dependent above 5R.. Accord-
ing to the calculations of Busse and Clever,” the
wave number of stable rolls must lie in a “balloon”
bounded by the neutral stability curve (R vs k) and
the stability boundaries of various secondary insta-
bilities, especially the skewed varicose (SV) instabili-
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ty. The fact that the SV onset shifts to lower k as R
increases may account for the basic decline in k*
with R.1°

The width of the wave-number distribution does
not increase with R. In the range above 2R, both
the width of S(k) (about 0.15k*) and the variability
of k* from one pattern to another (+5%) are clear-
ly less than is permitted by the linear stability
theory for the infinite layer. Therefore, some form
of pattern selection is occurring. However, we are
unable to separate the roles of the boundaries and
the secondary instabilities in controlling this pro-
cess.

At high R, we find that much of the power in the
spatial spectrum is still in the peak located at about
0.5k., and the position of the peak does not shift
significantly between 6R, and 40R.. These obser-
vations suggest that the motion is largely two di-
mensional even at 40R., though time records made
at any location in the flow are extremely noisy.

Willis, Deardorff, and Somerville!! have reported
measurements of the mean roll wavelength for air

(Prandtl number 0.67) by manual analysis of photo-
graphs. Their results show a decline in the mean

wave number above R, (as Koshmieder'? has noted
at much higher Prandtl number), but there is no
evidence of the more rapid decline we find near the
onset of the skewed varicose instability. They also
found that the slope of the mean wave number
moderates at high R. These measurements did not
extend over periods comparable to the horizontal
thermal diffusion time.

Cross? has recently discussed a model based on a
Lyapunov functional F whose minimization governs
the relative stability of various possible patterns in
the regime asymptotically near R,. He showed that
there are three competing contributions to F: a
term associated with roll orientation at the lateral

boundaries, a term associated with roll curvature in
the bulk, and a term due to defects. The competi-
tion between these contributions is clearly visible in
the patterns we observe and may govern the evolu-
tion process. However, a potential theory of this
type is expected to apply quantitatively only near
R.?

Greenside* has recently done a numerical study
of the amplitude equation which can be derived
from this model. It gives the evolution in time and
two space dimensions of the local roll amplitude.
Computations were done for cell dimensions similar
to those of the present experiments. Greenside
finds that pattern evolution requiring many hor-
izontal thermal diffusion times occurs at €=0.1,
beginning with random initial conditions. However,
the evolution in the wave-number distribution is
minimal, and the mean wave number is always close
to k.. Unfortunately, a direct comparison with the
experiments is not yet possible because the model is
best where the experiments are difficult, very near
R.. Improvements in both the model and the ex-
periments may make a quantitative comparison
more meaningful in the future.

In conclusion, we note that spatial Fourier
analysis permits quantitative studies of pattern evo-
Iution resulting from hydrodynamic instabilities,
and might be effectively used in other nonlinear
problems involving time-dependent fields, provided
suitable instrumentation can be devised.
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