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%hen an electromagnetic field is quantized within a box of side L with periodic bound-

ary conditions, the total angular momentum J is not strictly a constant of the motion even

when L~ oo. As a result, the conditions for isotropy of such a field involve subtle differ-

ences from the usual conditions. The same constraints apply to the orbital part of J, but

not to the spin part. The expectation value of J for any monochromatic plane wave is

shown to vanish. Commutation relations are derived between J and an arbitrary field vec-

tor, which show explicitly how J generates rotation.

I. INTRODUCTION

The angular momentum of a quantized, free elec-
tromagnetic field is an important dynamical vari-
able. ' It acts as the generator of rotations and,
within the framework of optical coherence theory,
it provides a simple test for the isotropy of the
field. Moreover, the total angular momentum of
the free field is normally taken to be a constant of
the motion. 4

However, when the electromagnetic field is quan-
tized within a box of side I. with periodic boundary
conditions, as is frequently the case, the usual defi-
nition leads to certain difficulties. These difficulties
stem from the fact that the quantization imposes
preferred directions in space, which persist even
after the normalization volume is allowed to grow
to infinity. As a result, the total angular momen-
tum operator of the free field is no longer a con-
stant of the motion in the strict sense, and various
transformation properties are affected also. As the
use of periodic boundary conditions is so common
in problems in quantum optics, we thought it might
be worthwhile to summarize the special features
that the quantized angular momentum acquires
under those conditions. For example, we shall show
that, even though the angular momentum may not
be a constant of the motion, its rate of change is
reducible to normally ordered operators at the
boundary of the quantization volume, whose expec-
tations will of course be very small for an excitation
that is localized well inside the volume. Similar re-

marks apply to the orbital part of the angular
momentum, whereas the spin part is strictly a con-
stant of the motion for a free field. We derive com-
mutation relations between the total angular
momentum and an arbitrary field vector, and use it
to obtain the condition for isotropy of the field.
The constraints that prevent the total angular
momentum from being strictly constant do not,
however, prevent the field within a cube of side I.
from being isotropic as L~ oo. We illustrate this
by reference to blackbody radiation.

II. DEFINITIONS AND RATE OF CHANGE
OF ANGULAR MOMENTUM

We consider a free, quantized electromagnetic
field defined within a cube of side L, with periodic
boundary conditions. The quantized field vectors5

E( r, t) and 8( r, t ) obey Maxwell's equations

V.E( r, t) =0,
V 8( r, t) =0,

and they can be given expansions in plane-wave
modes in the form
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Iia k, e z, exp[i( k r —cot)]+H.cl, (2)

8( r, t)= I ia k, ( k X e k, ) exp[i( k r —cot )]+H. c. ] .

Here, k is the wave vector with components 2irni/I. , 2nn2/L, 2mn3/L (ni, nz, n3 ——0, +1,+2, . . . ), and co=ck
e k, (s =1,2) describes a pair of orthogonal, transverse, possibly complex, unit-polarization vectors, defined

up to a unitary transformation by

k.e- =0k,s

(4)

Ei, iXEk 2=k/k—:K .

a k, ,a k, are photon annihilation and creation operators, obeying the usual commutation rules. The total an-

gular momentum operator J ( ro, t ) with respect to point ro is defined as the integral of the angular momen-

tum density, just as in classical electromagnetic theory, except that the operator has to be symmetrized to
make it Hermitian. We then have

J( ro t)= —,eo I d3x( r —ro)X[K(r, t)XB( r, t) —8( r, t)XE( r, t)] .
L3

It follows immediately from the definition that

J( ro, t)= J(0,t) —roX —,eo J,d x[E( r, t)XB( r, t) —8( r, t)XE( r, t)]

= J(0,t) —roXP,

where P is the total momentum operator of the field. From the mode expansions for E( r, t) and 8( r, t) we

readily find that P is expressible in the form

P= gRknq, , (7)
't

k,s

where n k,
——a k, a k, is the photon number operator. This shows explicitly that P is a constant of the

motion, because n k, is a constant of the motion. J ( ro, t ) therefore changes in time only if J (O, t) changes in

time.
From the definition of J (O, t ), and with the help of the third and fourth Maxwell equations (1), we immedi-

ately have

& J(ro&) Q J(0 t)
at at

= —,eo, d x r X XB( r, t)+E( r, t)X +H.c.BE( r, t) -" -" BB( r, &)

L3 at at

=—J,d x r X Ie&E( r, t) X [ V XF( r, t)]+(I/JMO)B( r, t) X [ V XH( r, t)]I .

In writing the last expression we have used the fact that all equal-time commutators of E with E and B with B
vanish. We expand the vector triple products under the integral by writing

EX( V XE)=k;VE; —E.V E=—,V E —V EE,

since V E=O, so that
AA

r X[EX(VXE)]=-—,( r X V)E —rX( V EE)=——, VX( r E )—V.(ErXE), (9)
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and similarly for the term in B. We now insert this under the integral in Eq. (8), and apply the generalized
Gauss theorem to convert the volume integral to an integral over the surface of the cube L W. e then obtain

i) J(r I), "2 1 "z
dS)(r EpE(r t)+ B(r t)

Bt

+III, dS epE( r, t)r XE( r, t)+ B( r, t)r)&B( r, t)L3 Po
(10)

The first surface integral vanishes, as is obvious if we combine contributions from surface elements
at ( ,L,y, z—) and ( , L,y—,z—);for example. The vector dS&& r points in opposite directions at these two sur-

face elements, whereas E ( —,L,y,z) =E(—, L,y, z—),and similarly for B. We are therefore left with the second

integral, and the relation can be expressed in component form

i)~l( rp t) 1
,de r~ epE„Ep + B„Bp (11)

with summation over repeated indices understood. The terms with m+p also vanish in pairs at the boundary
as before, and only those with m =p remain. Because of the presence of the antisymmetric tensor Ci~„, the
only nonvanishing contributions must therefore gome from terms with nQp.

We may decompose the Hermitian operators E and B into their positive and negative frequency parts by us-
ing the expansions (2) and (3), so that

( )

E( r, t)=E ( r, t)+E ( r, t),
~(+) ~(—)

where E ( r, t) and E ( r, t) contain only annihilation and creation operators, respectively. Hence,

E E =E(+)E(+)+E(-)E(-)+E(-)E{+)+E(+)E(-)
n p n p N p n p n p

Of the four terms on the right, the first three are in normal order but the last one is not. However, with the
(+) A( )help of the mode expansion (2) we can readily show that E„+ commutes with Ez when nQp, so that the or-

der of E '„+'E
z

' can be inverted. A similar argument also applies to the magnetic fields, and we have finally
r

Bt 13

pp
( $I+ Ig (+ I+/( —)$(—I+/( —)$(+)+$( )$(+ )

)n p n p n p p n (12)

We have therefore reduced the rate of change of the total angular momentum to a sudace integral over the
boundary involving only normally ordered operators.

It is clear from this relation that between any states
~ gi ),

~ f2) of the field for which

E ( r, t)
~ g; ) =0, B ( r, &)

~ i'; ) =0, i = 1,2

when r lies on the boundary, the matrix element

(13)

The states
~ QI ),

~ $2) have the property that the excitations of the field are localized, at least in an approxi-
mate sense, far from the boundary and they correspond roughly to a classical field that vanishes at the bound-

ary. It is in this limited sense that the total angular momentum J ( rp) of the field may be regarded as a con-

stant of the motion.
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III. DECOMPOSITION OF J ( r p) INTO SPIN AND ORBITAL PARTS
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(15)

It is well known from classical electromagnetic theory that the total angular momentum J( rp) may be
decomposed into the sum of two parts, one of which depends on rp, whereas the other one does not. We have,
in general, '

ep J,d x( r —rp) X[K( r, t) XB( r, t)]=epf,d xE;( r, t)[( r —rp) X V]A;( r, t)

60 3
S E r, t r —r0 XA r, t

+op J,d'x E( r, t) XA( r, t), (14)

in which A( r, t) is the vector potential. The first part, which depends on rp, is interpreted as the orbital part
L of the total angular momentum, and the second which does not contain ro, as the intrinsic or spjn part S.
When the field is quantized the same relation holds, and we can define Hermitian operators L and S by sym-

metrizing

L= —,ep J,d x I E ( r, t)[( r —rp) X V ]A;( r, t)+[( r —rp) X VA;( r, t)]E ( r, t)]

pf &[dS'E( r, t)( r —rp)XA( r, t)+( r —rp)XA( r, t)E( r, t) dS],

S=—,eo, x E r, t gA r, t —A r, t )(E r, t (16)

with

J =L+S . (17}

and left circularly polarized photons, and it is
strictly a constant of the motion since n k, is also.
As

The contribution of the surface integral over the
boundary in Eq. (15) can be written in normal or-
der, as before.

Let us examine S in a little more detaig. By mak-

ing use of the mode expansions for E( r, t) and

A( r, t) we readily obtain from Eq. (16), after in-

tegrating over the volume I. ,

S=ihip g (a-„,,a-„,+ —,5„)(e-„,Xe'-„,, ) .
k s,s'

(18)

This is a genera1 expression, in which the unit-

polarization vectors e k, may be chosen arbitrarily,

subject to the conditions (4). If we choose e z i and

Fk, to represent orthogonal states of right and

left circular polarization, then

X e k
=—E$lc5gg ($,$ =+1)

where x—:k/k. This choice of e i, , immediately

allows Eq. (18) to be reduced to the simpler form

A A A

L=J —S,
it follows that the orbital angular momentum L is a
constant of the motion only in the weaker sense im-

plied by Eq. (13).

IV. TOTAL ANGULAR MOMENTUM
OF A MONOCHROMATIC PLANE WAVE

We consider a state in which the only occupied
modes are of the type k,s=1 and k,s=2. This
corresponds to a plane wave with wave vector k,
but of arbitrary polarization. If the state is pure, it
must be expressible as a linear superposition of
Fock states of the form

where the tOJ signifies that all other modes are
empty. If the modes k, 1 and k, 2 happen to corre-
spond to right and left circular polarizations, it fol-

lows from Eq. (20) that the expectation value of S
in the state

~

n „ i,n k 2, I 0] }is given by
S= gita(n k, —n-„,),

k

(20)

which is diagonal in photon number states. The
spin angular momentum is therefore expressible in
terms of the difference between the number of right

=fix(n k i nk 2}, (21)—



3432 D. LENSTRA AND L. MANDEL 26

and this points in the direction of k and is nonzero
if n k iQn k z. However, the expectation of the k

component of the total angular momentum J in the
same state is always zero. Indeed, it vanishes in any
plane-wave state that is expressible as a linear su-

perposition of states of the type
I
n k i,n k i, IO] &.

In order to show this we now calculate the matrix
element of J ( rp, t }between two such states.

With the help of Eq. (6) and the mode expansions
(2) and (3) we have

& IOj n'k, q n'k, i I~(( ro t) Ink, i "k,i ]

=—roX & IOI n'-k, z n'k, i I
P Ink, i n k, »I I &

' 1/2 1/2
1 fico'+, X X

&t . &to],n'k, i n'k, i lak', 'ak", "I k, l k, 2 Io1&

X[e-„, , X( k"Xe „„,„)]„f, dxir expIi[( k'+k" } r (co'+co—")t]I+c.c.

——, & IOl n'k z, n'k i I
a k, , a k,„+ak„,„ak, & I

n k i, n k i, IO] & [e k .X( k"X e k„,„)]„

X f,d x r expIi[( k' —k").r —(co' —co")t]J+c.c.

The expression (7) for P allows us to evaluate the
first term immediately. In the remaining terms we
arrange the operators in normal order, whereupon it
is apparent that the only nonvanishing contribu-
tions to the double sums come from terms with
k'=k"=k. We also observe that the last integral
vanishes by symmetry when k '=k ", whereas the
first integral reduces to the form

f,d x( rXk )exp[2i( k r cot)],—

and this also vanishes by symmetry. We finally ob-
tain

& IoI n'k, i n'k, i I
J(ro t) Ink, i nk, i I I &

= —( rpXfik)(n k, + n-k i)5„„, 5„

and it follows from this that the corresponding

matrix element for the k component of J( rp, t) is

always zero. The expectation value of k. J ( rp, t)
in any monochromatic plane-wave state, therefore,
must vanish also.

This result may seem surprising at first because

of the possible nonzero expectation of k S given by

Eq. (21), but too much physical significance should
not be attached to it. Any measurement of the an-
gular momentum with a detector of finite size
necessarily disturbs the field in such a way that an-
gular momentum can be absorbed from the field
and transferred to the detector. This point has been
discussed in some detail in Ref. 1.

(22)

V. COMMUTATION RELATIONS BETWEEN J ( 10 f) AND FIELD VECTORS

ln a free field, any one of the important electromagnetic fields, such as E( r, t), 8 ( r, t), A ( r, t), can be
given a mode expansion of the general form

F( r, t)= &&i g f(co)a k, e k, exp[i( k r —cot)]+H.c.—:V( r, t)+V ( r, t) .
k,s

(23)

Here F stands for any one of the vectors, f(co ) is some slowly varying function of co =ck, and V ( r, t) is the

positive frequency part of F( r, t). We shall now establish the commutation relation between J ( rp tp)

and V( r, t).
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We start by evaluating certain c-number commutators that are needed below. From the mode expansions
and the commutation relations between a k, and a k. , we have immediately

[V (r, t),E„(r ', tp)]

, g g f(co)
1/2

[a z „ak, ](ez, )m(e'z, , )„exp[i(k.r —k'. r cot—+co'tp)]
6'p

—l

L 3 g f(co)
k, s

g f(co)
k

' 1/2

t

(ek, ) (e*-„,)„exp{i[k (r —r )—co(t —tp)]I

1/2

(&mn —Km"n }eXP{1 ["(r —r ) —CO(t —to) ll (24)

after making use of the tensor relation

g(&k, , ) (& z, )„=5 „K— (25)

Similarly we may show that
' 1/2

[V (r, t),B„(r', tp)]= 3 g f(co)
L, e 2Ep

EmnpKpeXP{i[k (r —r ) —CO(t —tp)] j . (26)

We now apply these results to the calculation of the commutator of V(r, t) with J (rp, tp). By making use of

the commutation relations between E and B vectors, we first express J ( rp tp) given by Eq. (5) in the form

A A
J„(ro,to)=ep d r'(rl rol)[E (r—to)Bl(r to) Fl(r ', to)B—„(r ', tp)]+C,

L 3

where the symbol C represents a c number. We then have from Eqs. (24), (26), and (27), with the help of the
mode expansions (2) and (3),

[V (r, t),J„(ro~to)]

g g f (co)(coco')' f d r'(rl' rot)exP{ i[—k (r r) co. (t ——tp)]—J
2 L5/2 L 3

k k', s'

X {a -„...exp[i( k'r —co'tp)]+a -„,exp[ —i( k'r —co'to }]I

X [ (&mn Km K„)(K—X ~ k, )l + &mll, Kl ( e k, , )„

(&ml KmKl)(K X ~/(' t')n +mnpKp(& k' t')11 (28)

For simplicity we have taken e k, to be real in this expansion.
+ t

The summations over k can be simplified. Each of the four volume integrals in Eq. (28) has the structure

J,d r'gg(k)(r t
—rol)exp{i[k (r —r )+k'r ]I,

k

whereg(k) is of the form

g(k) =Vcof(co}exp[ ico(t to)]F—, — (29)

where the factor F represents I or K~ 01 /c Kn ol' Km Kl. It can be shown (see Appendix A) that in all four cases

(30)d r'gg(k)(r trot)exp{i[k (r —r )+ k'r ]]=I. exp(ik' r) i g(k')+—g(k')(rt rot)—L3
k ak'I
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provided that r does not lie on the boundary of I. . This allows us to simplify Eq. (28). After some rather

lengthy, but essentials straightforward, manipulation and rearrangement of the remaining terms, and evalua-

tion of the sum over k', s', we arrive at the result

[V (r, t), J„( ro, to)]=i vari & „~V&(r,t) &„—@(r& rp—i) V (r, t)m (31)

provided that r does not lie on the boundary of the normalization volume. /here is no corresponding restric-
tion on rc. We shall now apply this result to a rotational transformation of V( r, t).

VI. TOTAL ANGULAR MOMENTUM AND ISOTROPY OF THE FIELD

We consider the following infinitesimal unitary transformation of the vector operator V(r, t) to some new

operator:

V '=exp[i J (rp, ro)'58/i']V(r, t)exp[ —i J (ro, to) 58/A], (32)

where 58 is a small vector angle. By expanding to the first order in 58, we obtain

V' =V (r, t)+ —[ J( rotQ), V (r, t)]58„,n» m

and with the help of Eq. (31), after making a cyclic permutation of the indices in the last terin, we can write

V' =V (r, t)+E „~58 V&(r, r) —E&& (58(t—i ppi') V (i' t) .
Br&

Hence, to the first order in 50, we have the vector relation
A

V =V(r, t)+58XV(r, t) —[58X(r—ro)] V V(r, t)=(1+58X)V(r—58X(r —ro), t) . (33)

V =RV(R 'r, t), (34)

where R is the infinitesimal rotation matrix corre-
sponding to the rotation 58 about ro.

V' is a new vector operator that is obtained from
the old one by rotating the position vector r that la-
bels the operator backwards through 60 about the
point ro and then rotating the vector operator for-
ward through 68. This relation shows explicitly
that the total angular momentum about ro is the
generator of rotation about ro. ' Since the electric

field E, the magnetic field B, the vector potential A,
etc., are all expressible as linear combinations of an

operator of the type V with V, it follows that a
similar transformation law must hold for any of the
field vectors. Equation (33) can also be rewritten in
the symbolic form

In the statistical description of fluctuating elec-
tromagnetic fields one often encounters correlation

functions among V and V operators, such as

I ""—= ( Vi (ri, ti) VJ(r2, tq)),
I' ' '=( V~(ri, ti)VJ(r2, ti)

X &J(&p, t2)+'(ri ti)),
etc., which can be used to identify certain statistical
symmetry properties of the field. For example, if
all correlations are invariant under time translation,
then the field is stationary in time, and if all corre-
lations are invariant under space translation, then
the field is spatially homogeneous. In a similar
way, we may identify an electromagnetic field as
being statistically isotropic about ro if all correla-
tions are invariant under rotation about ro, or, more
explicitly, if

(35)Z, , . Z, , (V,', (Z-'r„r, ) . .
V, (~-', t ))=(&;;( &, ri)

With the help of Eqs. (32) and (34) we can reexpress this isotropy condition for any infinitesimal rotation 58
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in the alternate form

I =Trf pexp[i J(rp tp} 58/fi]V; ( ri, t, )

Xexp[ i J—(rp tp) 58lfi] exp[i J(rp, tp) 58/R]V; (r, t )exp[ —i J(rp, tp) 58/A']],

where P is the density operator of the free field. By making a cyclic permutation of the last unitary operator
we obtain the condition

I =TrIexp[ —i J(rp, tp).58/i'']pexp[i J(rp, tp) 58/i']V; (r&,ti). V; (r, t )J (36)

and, if this relation is to be independent of 58, we
must have

[p J(rp tp}]=0 (37)

for isotropy. The density operator, therefore, has to
commute with the total angular momentum about

rp if the field is to be isotropic about rp.
In the special case in which the field is also spa-

tially homogeneous, it must be isotropic about every
point if it is isotropic about any one point. The
reason is that

[p,H] =0=[P,P], (40)

so that the field is both stationary and homogene-

ous. If J were strictly a constant of the motion, so

that

where H is the total energy, E is Boltzmann's con-
stant, and T is the absolute temperature. In this
case it is clear by inspection that

[P,P]=0 (3g) [ J(rp), H]=0,
for a homogeneous field, and according to Eq. (6)
the total angular momentum about one point r~
differs from the total angular momentum about

another point r2 by (ri —r2)XP. It follows that if

P commutes withP and J(ri, t}, it must also com-

mute with J(r2, t}, etc. However, isotropy cannot
be expected to hold in the strict sense when the field
lies within a cube and obeys periodic boundary con-
ditions.

An example of this difficulty is provided by
blackbody radiation for which the density operator
takes the form

P=exp( —H /KT) / Tr [exp( H /KT)]—
=g [ I —exp( fico/KT)] exp( n—p, fico/KT), —

k,s

(39}

then from Eq. (39) we would have

[p, J(rp)]=0, (4l)

and the radiation field would also be strictly iso-
tropic about every point. However, as we have

seen, J is not a constant of the motion in the strict
sense so that one would not expect the field to be
strictly isotropic either. However, once the discrete
set of modes is replaced by a continuum and sums
over modes become integrals, the field can exhibit
isotropy in the strict sense.

As an example, we consider the second rank
correlation tensors of blackbody radiation. From
the mode expansions (2) and (3) and the form (39)
of the density operator, one can readily show that

( ) ( ) g l co(5'j k'kjlk )
(E; (ri, ti)Ej (ri, t2))=,g expIi[k. (ri —ri) co(t2 —ti)]] . —2' L i [exp(fico/KT) —I]

(42)

The stationarity and homogeneity of the field are exhibited by the fact that the correlation tensor depends only
on the differences t2 ti and Fi—r i, resp—ectively. However, the sum over k does not strictly satisfy Eq. (35),
and the field is therefore not isotropic in the strict sense. But if we allow L to become infinite, and replace the
sum by an integral, we obtain
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P.
( )

P.
( q ) (rt 1 $(5(j ktkj /k )

2

(E; (r),t()Ej (r2, t2))=,f d'k expIi[k (rg —r)) —~(t2 —t) )]j,2' (27&)3 [exp(flu/ET) 1]—
J

(43)

which does satisfy Eq. (3S) exactly. The field is therefore isotropic, despite the fact that the density operator )o

does not commute with the total angular momentum in the strict sense. This illustrates the somewhat subtle
incongruities that can result from the use of box quantization with periodic boundary conditions.
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APPENDIX: PROOF OF AN INTEGRAL RELATION

We consider the functions encountered in Eq. (28),

6—= g f,d r'g(k)(r' t—rM}exp(ik r)exp[i(k' —k).r '],
k

= g f,d r'g(k)r texpIi[k r+(k' —k) r']] Lrotg(k—')exp(ik' r),
k

(Al)

where g(k) has the form

g( k ) =v cof(co)exp[ i(o(t t—o)]F, — (A2)

where F represents 1 or ar or a )rt or a~~„. For notational simplicity, and without loss of generality, we as-
sume that the index I corresponds to the x component, and we integrate with respect to y' and z'. Then

6+L3xog(k')exp(t'k' r) =L gg(k„, k~, k,' )exp[i(k~y+k, 'z)]

(1/2)L
)& f dx'exp(ik„x )exp[i(k„' —k„)x']x' . (A3)

Before performing the integration, we expand g(k„,k~, k,
'
) as a power series in k„about the origin in the form

g(k„,ky', k,')= g —,g"(O,ky, kg )k„' .
s=0

Then Eq. (A3) can be written

6+L xog( k')exp(i k' r }

(A4)

—,g"'(O, ky', k,' )exp[i(ky'y+k, 'z)]
s=O S' l

=L g —g "(O,kr', k,
'

)exp[i(k~y +k,'z)]-
s=0 l

=L g g")(O,k—r', k,' )exp[i(k~y+k, 'z)]-
s=0 l

(1/2)Lf dx'x' exp(ik„'x' ) g exp[ik„(x —x')]
Ic„

(&/2)Lf dx'x' exp(ik„'x' ) g 5(x —x' —NL)
dx

S
d xexp(ik„'x )

dx

oo

=L g —,g "(O,kr', k,
'

)exp[i (k~y+k, 'z}](xk„"—isk„'' ")exp(ik„'x) .
s=0 s! (A5)

We have made use of the 5-function representation of the sum over k„ in the second line and, subsequently,
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we have assumed that xQ —,L in order to ensure that only the term N =0 makes a contribution. With the help

of Eq. (A4) we now perform the summation over s, and obtain

t) k'
G+L xog(k')exp(ik'. r)=L xg(k')exp(ik'. r) —iL exp(ik'. r)

ak.'

or, in the original notation,

. t)g(k')G=L i — +(rt rQI)g—(k) exp(ik'. r) .
BkI'

This is the relation that was called Eq. (30) in the main text.

(A6)
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