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We develop an expansion for the resonance Raman line shape of a three-level system

~

a },
~

b },and
~
c } in an arbitrary strong radiation field, being perturbed by dephasing

collisions with foreign gas particles. The microscopic information relevant to the line

broadening is expresssed in terms of a hierarchy of n-time correlation functions of the
transition dipole operator (n =2,4,6, . . .). To lowest order (n =2} the spectrum is ex-
pressed in terms of the three ordinary line-shape functions corresponding to the
ab, bc, and ac transitions. The present theory is not restricted to the impact limit and,
depending on the collision time scale, may yield very different results from the well-

known impact spectra. Explicit calculations of the predicted spectra are presented for a
model system.

I. INTRODUCTION

In this work we extend the methods used in Ref.
I to treat resonance Raman scattering (RRS} of ar-
bitrarily strong coherent radiation from an atomic
(molecular) system undergoing collisions with
structureless perturbers (foreign gas broadening).
The term RRS is used for the case in which the fi-
nal state of the atom (after the scattering of radia-
tion) is different from the initial one. If the initial
and final atomic states are the same, the process is
commonly referred to as resonance fluorescence
(RF). In the presence of dephasing collisions the
two processes exhibit similar features in the weak-
field case, ' ' i.e., both spectra have a two-peak
structure due to a coherent component (Raman in

RRS, Rayleigh in RF) and an incoherent one
(redistribution, hot luminescence). In the strong-
field case, the collisionally broadened RF spectrum
develops a third peak reflecting the fact that a
coherent description of RF involves transitions be-
tween the states of a four-level system" (in the
dressed-atom picture) while RRS is always con-
fined to a three-level system. ' ' In addition to
the fundamental interest in the study of radiation-

matter interactions, RRS spectra have also some
practical implications in view of the recent work
on optically pumped electronic transition lasers
(OPEL}. ' In the OPEL, a pump laser is tuned
close to resonance with an electronic transition in a
diatomic molecule (I2, Na2, S2, etc.) and lasing oc-
curs on RRS-type transitions to excited vibrational
levels of the electronic ground state. Foreign gas
broadening plays a particularly important role in
the case of alkali dimer OPEL (since the presence
of foreign perturbers is necessary for the operation
of the heat pipe). For this reason and since the
RRS problem is simpler (strong field RRS is a
three-level problem whereas strong field RF is a
four-level problem), we shall concentrate here on
the derivation of the RRS spectrum. The exten-
sion to the RF case can be carried out using the
methods of this work. "'

The purpose of this work is to establish a uni-
fied framework for the treatment of RRS spectra,
valid for arbitrary detunings from resonance (both
of the incident and the scattered radiation field
modes) and for arbitrary intensities of the incident
radiation. The microscopic information content of
RRS spectra is shown to increase with the incident
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laser intensity (the contribution of higher-order di-

pole correlation functions becomes more prominent
at higher intensities). In Sec. II we present the
Hamiltonian for the atom plus bath plus field sys-

tern and introduce the level (Ti) relaxation matrix
for a closed three-level system. In Sec. III we give
the expression for the non-Markovian RRS line

shape, valid for arbitrary field strengths. The
derivation is given in Appendix A. The line shape
is then expanded in powers of the coupling coeffi-
cient associated with the incident radiation. A
quasi-Markovian spectrum is obtained (see Appen-
dix B for details of the derivation) by retaining the
contributions due to two-time correlation functions

only, thus generalizing the impact limit expres-
sions. ' The results are then discussed in Sec. IV
where we also present some numerical calculations
for a model system.

II. MODEL HAMILTONIAN

Consider a three-level system (
I
a &,

I

b &,
I
c & )

interacting with a bath of foreign perturbers, with

a strong, single-mode radiation field (laser frequen-

cy coL) and with a scattered radiation field mode

(frequency co~) (Fig. 1). We assume that the inter-
level spacings are large compared to all the other
parameters in the problem. Therefore, both
collision-induced initial (and final) correlations and
deviations from the rotating-wave approximation
are neglected in the following. In addition, we as-
sume that the perturbers have only diagonal (de-

phasing) interactions with the system; no relaxation
of population (Ti) is induced by the collisions.
The total Hamiltonian for the system plus bath

plus both radiation field modes is

H =Hp+ V,

where

Ho= Iu &[~ I+H, (QB)]& uI + Ib&Hb(QB)&b
I

bg ——cog —(Eb —E, ) . (4)

The system-radiation coupling can be separated
into two parts:

V= VL+ Vg,

Here, the dipole interaction with the laser field is
given by

VL, =pI. (
I

tt & & b
I
+

I
b & & tt

I ),
and the interaction with the scattered (detected)
photons is

Vs=ps( Ib&&c I+ Ic&&b
I

)

(6)

pL being the Rabi frequency associated with the
laser transition (a~b transition dipole moment
times the laser field amplitude}, and ps is the cou-
pling coefficient for the scattered mode [the b~
transition dipole moment times the scattered field
amplitude (cos/20)'~, where 0 is the normaliza-
tion volume].

In order to specify the system-bath interaction,
we take the system particle to be stationary in a
macroscopic spherical box of volume 0, together
with N perturbers. Furthermore, we make the as-
sumption that the perturbers do not interact with
the radiation field or with each other, so that the
Hamiltonians H„Hb, and H, are additive in sin-
gle perturber contributions, i.e.,

Hi(Qs)= gH;„(Qs ) (i =a,b, c)

+
I
c&[i4+H, (Qa)]&c I

.

The Hamiltonians H, (Qs), Hb(Qa}, and H, (Qs)
contain the bath degrees of freedom (including the
bath-system couplings). The detunings from the
corresponding transitions (see Fig. l) are

~L L (Eb Ea )

and

with

la)

FKl. 1. RRS in the three-level (
I
a ),

I
b ), I

c)) sys-
tem. The laser and the scattered frequencies are coL and
co&, respectively. The corresponding frequency detun-
ings are denoted by hL and d ~.

1

2M2M„(}2Qs

Here, V;(Qs ) are the adiabatic potentials for in-

teraction of the vth perturber coordinate Qs with
V
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the system in state
I
i ) (nonadiabatic contributions

that can cause transitions between the levels of the
system, have been neglected).

The eigenstates of H„Hb, and H, are denoted

I
aa),

I bP), and
I cy) with eigenvalues E, Ep,

and E&, respectively. Since the above Hamiltoni-
ans are separable in the perturber coordinates, their
eigenstates are products of single-particle states,

(oct &

Icy )

aa = a a„

I
b&& =

I
b & II I &.&

V

Icr&= lc& II lr. &,

(10a)

(10b)

(10c)

FIG. 2. Energy diagram for the system plus bath
states. To each state of the system (

I
a ), I

b ),
I
c )) cor-

responds an appropriate manifold of bath eigenstates
(

I
a),

I P ), I y), respectively).

where

and the eigenvalues satisfy (Fig. 2)
L =[H, ]+I (14)

and

E =gE

Ea= XE~„

(I la)

(11b)

is the Liouville operator. Here L is the T& relaxa-
tion matrix. We assume that the three-level system
is closed under relaxation which proceeds only
downwards on the energy scale, i.e., L is a 3 X 3
matrix in the space of level populations,

rb
E»= gE» (11c) L = — 'Ycb 'Vc 0 (15)

A box normalization is adopted for the eigenstates,
so that

(a„la„')=5 (12a}

(12b)

and

(r. I r'& =b~ . (12c)

In addition to the Hamiltonian in Eq. (I) we postu-
late the existence of an independent T~ relaxation
mechanism (due to spontaneous emission or due to
a coupling with another bath with a short correla-
tion time) so that the system can reach a steady
state in the presence of radiation. This is neces-

sary for the definition of a spectral line shape in a
strong field.

The time evolution of the entire (system plus
bath plus laser and scattered field modes) density
matrix p is given by the Liouville equation

—r.b

where the rows and columns are labeled in decreas-

ing order on the energy scale (b,c,a).
The level (T&) relaxation rates for the levels

I
b)

and
I
c ) are given by yb and y„respectively, and

we assumed y, =0 (
I
a ) being the ground state of

the system). The b~c and b~a cross-relaxation
rates ycb and y,b satisfy

Xcb + Yab Vb (16)

We assume that initially (at t + —ao } the bath and
the system are uncorrelated, " i.e.,

p( —~)=paps0 0

where

(17)

ps ——la)(a I,
and the bath is a canonical equilibrium

p~
——exp( —H, /kT)/Trz exp( —H, /kT), (19)

dp
dt

= —iLp, (13) Tr~ being the trace over the bath degrees of free-
dom.

III. STRONG-FIELD RRS LINE SHAPE

We have derived an expansion for the RRS line shape in a strong radiation field using the tetradic scatter-
ing formalism. ' The present expansion is an extension and application of the methods developed recent-
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ly for the studies of relaxation in multiphoton processes. ' ' The derivation is quite lengthy and requires
the introduction of the tetradic notation as well as some auxiliary quantities which do not show up in the fi-
nal expressions. For the sake of clarity in the presentation we have therefore carried all these manipulations

in detail in Appendix A. We shall discuss here the nature of the expansion and present the final results.
Our exact expansion for the RRS line shape I(AL, hz) for the three-level model system of Sec. II, in an ar-

bitrarily strong pump field has the following form:

I(EL,EZ) =@SOLI(EL~EZ) s (20a)

where

I(Ibt, Ibs) =
2

l — Xi(EL )
Pb

1
' ~6(~L ~~$) ~i(~L )P6(~L ~I)'S)+~7(I)'L ~~S)]

Vb

»(~L, ~s) 1+Im X4(&i.,&s) Xi(&L—
,
)

[f (~L, ~S)] ' &2(~—L, ~S) )'b

X [X4(Ib„hs)+X,(L„Ib.s)] (20h)

with

3cb
Xb=rb 1+

3 c
(21)

X, =p', X',"+p,'X';"+ . . (i = l, 2) (22a)

I=PsPs~l~'+PsPr'~J '+ (j =3i4~5)

(22b)

and f„(Ib,L,
—b,s) is defined in Eq. (24) (with a

change of indices).
The functions 7; (i = 1, . . . , 7) contain the in-

teraction with the external field to an arbitrary or-
der (all orders in pL). The functions 7& and X2 are
of zeroth order in pz, the functions X3, X4, and X5
are of first order in pz, and X6 and X7 are of
second order in pz (the line shape is proportional
to the scattered intensity, i.e., to ps). Hence, they
can be expanded in powers of pL.

I

of the line shape when the field strength is in-

creased (already in the weak-field limit, four-time

correlation functions should be introduced)' .
Thus, in principle, the information content of the
RRS experiments increases with the applied field
strength. However, although exact formal expres-
sions for the X s are given in Appendix A, their
evaluation in terms of n-time correlation functions
(n & 2) is quite tedious and will not be attempted
here.

In the following we consider only the contribu-
tion of the two-time correlation functions X,'

' to
the RRS line shape. This is done by truncating
the expansions (22) and retaining only the leading
term. Consequently, we shall be able to express
the RRS spectrum in terms of the three ordinary
line-shape functions f,b(Ib), fb, (b ), and f (4) of
the present model. Let us introduce the line-shape
function corresponding to the ab transition f,b(d).
The unified theory of spectral broadening gives us
the following exact expression for the absorption
line shape I(h) from a to b (Refs. 31 and 33):

+k PS+k +PSPL+k +
(22c)

I~b(Ib )= f~b(Ib )
—1

(23)

The expansion (22) is exact and, in general, the X,'"'
(i =1,2, . . . , 7; n =2,4, . . . ) terms involve n-time
correlation functions of the dipole operator and
therefore knowledge of successively higher-order
correlation functions is needed for the calculation f,'b(&) if,'b(&)—, — (24)

where

CO 'Va+'Ybf„(a)= i dr exp —snr—
0 2

t—g b(&)0
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and where f' and f" are the real and the ima-

ginary parts of the line-shape function f which

satisfy the Kramers-Kronig relations:

f,'b(i3. )=—J dh' , f'b(i3)
(25)

and

g (r)= ——nyP(a) ~aa~cy)
~0

X [exp(ia&r r) —1] . (27c)

The line-shape function f is normalized such

that

f f,'b(A)dh=~. (26)

To lowest order in the expansion (22) we then have

(see Appendix B)

The line-broadening function g,b(h) is given by

g,b(r)= ——QQP(a)
~

(aa ~bP) ~'0
)& [exp(ice~, r) I]—. (27a)

X'i ' 2f,'b(i3—.—L ),

~2 ~3 =fa (i3s)(2) (2)

&'4"=f.b(AC ),

(28a)

(28b)

(28c)
Here the summation is over the single-particle
states ~a„), ~P„) defined in Sec. II,
co~——Ep —E is the energy difference of these

v ~v

states, and N/0 is the number density of per-

turbers, 0 being the volume of the system.
Similarly we may define the line-shape functions

fb, (b, ) and f„(ib,) by siinply interchanging indices.
We then have the additional line-broadening func-

tions gbc(v) and g (~), i.e.,

&5"= f.b(i3L —) fb. (i3s»— (28d)

X6 O (28e)

»'"= 2fi" (~s—) (28f)

Upon substitution of Eqs. (28) in (20) we finally

get 32

gb, (r) = ——0 QP(a)
~

(ca
~
bP)

~

'
0

X [exp(icoii )—I], (27b)
I

I (EL,hg ) =pgpl I(hl, hg ),
where

(29a)

I(hl, hg) =
4pL

, f'b(i3L, )
3b

X . f b(ii., )fb,'(ii,s)+Im
7b [f:.(~L i3s)fb (i3s)] —'+VL

2pl
fab(~L )+ fab(i3'L, )fb (i3s)

Vb
(29b)

Xcb
Xb=rb &+

3 c
(29c)

(30)exp[ g,b(r) ]=ex—p( I,br—), —

where I,b is the proper dephasing rate for the ab
transition. The ab line-shape function f,b(b ) then
assumes the form

Equation (29) is our final result and expresses
the RRS spectrum in terms of f,b, fb„and f~. In
the impact (Markovian) limit we set

f.b(is)= ~
1

5+iI,b
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where

I,b ———,(y, +yb)+~, b (32)

Similar expressions hold for fb, and f~ with the

proper dephasing rates I b, and I, respectively,
i.e.,

(33a)

and

is the tota1 dephasing rate of the ab transition. Us-

ing Eq. (24) and (31) we have

f,'b(&) =
5 +I,b

and

fa (ib)=
~

1

+1

f„(&)= 1

~+&I„

(34)

(35)

(33b) Upon substitution of Eqs. (31), (34), and (35) into

Eq. (29) we obtain the strong-field Markov result':

1 (6$ EL +i I „—)(21',b/yb —I)+5 $+i(I;,+I; )
I(hj, h&) = 2 2 2

Im+I,b+4p I,b/yb (5$+irb, )(6$ hr, +—ii'„}—yL,
(36)

IV. DISCUSSION

—1
jflL ((rc (37)

i.e., although the field can be strong enough to sat-
urate the ab transition (if pL )—,Qybl, b), the
period (pL, ') of the associated (on-resonance) Rabi
oscillation is much longer than the collision time
(r, ) and hence, only single-photon absorption can
occur during the collision with the perturber. In
this approximation only the lowest-order terms
(gg ') in the expansion of the X s contribute to the
RRS spectrum which is thus completely deter-
mined by the two-time correlation functions

(g,b,g,b„g,). A similar result (valid only in the

We have derived a formal expression [Eq. (20)]
for the collision-broadened RRS line shape, that is
valid for arbitrary field strengths (iiL) and detun-

ings (AL, hq). The line shape was then expanded
in terms of the X,'"' (i =1,2, . . . , 7; n =2,4,6, . . . )

functions [Eq. (22)]. In Appendix B we show that
the 7'; ' functions can be expressed in terms of La-
place transforms of two-time correlation functions
of the transition-dipole operators (in the interaction
picture with respect to H, +Hb+H, }. Similarly,
the X,'"' (n & 2) functions are related to n-time

correlation functions. ' We would like to point out
that since higher-order correlation functions appear
with higher powers of the field strength (pL, ) and

the time integrations contribute powers of the
correlation time r, (usually associated with the
duration of a single collision}, the expansion (22) is
actually an expansion in the dimensionless parame-
ter pL, r, .

We have considered the medium-field strength
case, defined by the condition

g (r)=0 .

g(r) was taken from the stochastic line-shape
theory of Kubo, i.e.,

$2
g (r) = [exp( —Ar) —1+Ar] .

A

(38b)

(39)

I

medium-field limit) was recently obtained for the
resonance fluorescence spectrum in a two-level sys-
tem. ' The advantage of the present approach is
that the evaluation of the corrections (due to
higher-order correlation functions) to the line

shape is straightforward though somewhat tedious
[using Eqs. (20), (A20), and (22) and expanding the
denominator in Eq. (A7) in the radiative interac-
tion]. A further advantage of the present method
is that since the interactions with the laser and the
scattered modes are treated on the same footing, it
does not incorporate the fluctuation regression ap-
proximation which is perfectly valid in the Mar-
kovian limit" but is not expected to hold when
non-Markovian effects are significant. A recent
application of this theory had led to the erroneous
conclusion that the information content of fluores-
cence spectra is the same in the weak- and strong-
field cases. '

We have performed some numerical calculations
of Eq. (29). For the sake of simplicity we have as-
sumed that levels

~

a) and ~c) have identical in-

teractions with the bath (for instance, when they
are different vibrational levels of the ground elec-
tronic state and

~

b ) belongs to an excited elec-
tronic state). As a result V, =V, in Eq. (9) and we

get

(38a)
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exp[ g,b—(r)] =—exp( I',—br), (40a)

Here 5 is a measure of the interaction strength re-
sponsible for the line broadening, whereas ~, =A
is roughly the duration of a collision. The nature
of the ordinary line-shape function [Eqs. (23) and
(24)] is governed by the dimensionless parameter
K=A/5. When K» 1 we get the impact limit,
[Eq. (30)],

ponent arises naturally from the frequency depen-
dence of the actual line shape f,'b(h).

Figure 4 shows the variation of the RRS spectra
for resonance pumping (EL ——0) with the pumping
intensity. As in Fig. 3 the right (K=10) column is
in the impact limit and the left (K=0.1) column is
in the static limit. The strong-field limit is ob-
tained whenever the generalized Rabi frequency

where
8=(EL +4pL )' (43)

r.b =r~ =5'/A,

r.,=0.
(40b)

(40 )

f,b(h) assumes in this case a simple Lorentzian
form and the Raman spectrum reduces to Eq. (36).
When K&&1 we get the static limit

exp[ g,b(r—)]=exp( —{i r /2), (41)

and f,'b(b ) [Eq. (24)] reduces to the Voigt profile
(a convolution of a Gaussian with width 5 and a
Lorentzian with width (y, +yb)I2). We have cal-
culated I(EL,hs) using K=10 (impact) and K=0. 1

(static) line profiles for f,b{h).
In Fig. 3 we show the weak-field (p, L

——0) pro-
files for both cases. At pL ——0 we see two com-
ponents: a narrow (Raman) component at hs ——EL
and a broad (redistribution) component at hs ——0.
The 5 and A parameters for the K=10 and K=0. 1

lines are chosen so that f,'b {6 ) has the same full
width at half maximum (FWHM). As EL is de-
tuned, the ratio of integrated intensities of the
redistribution and Raman components does not
change in the impact limit s =10 (right column)
and is equal to 2I ~/yb. This may be easily seen

by setting pL ——0 in the impact equation (36) re-

sulting in the well-known expression

2 2

I (EL.s~S )
PL,Ps

~L+~'b

2I., r„
X 5(4s —4g)+

b QS2+

(42)

where we have further set y, =y, =0. In the other
extreme K=0. 1 (left column) we see how the redis-
tribution term gradually disappears. This may be
interpreted by saying the I,b is actually frequency
dependent I,b(EL ), and it vanishes at large detun-

ings, where the impact limit fails. ' In the present
formulation we do not need to invoke this argu-
ment and the vanishing of the redistribution com-

is the largest parameter in the problem (except for
the inverse duration of a collision). The spectrum
separates in this case into two (non-Lorentzian)
peaks centered at

As———
2 (AL +8) . (44)
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In the weak-field limit, the hs+' peak reduces to
the coherent Raman component (around hs ——hL )

and the hs ' gives the incoherent redistribution
component (around hs ——0). This gradual change
is shown in Fig. 4 as we move from bottom (strong
field) to the top and is common to the impact and
nonimpact lines (right and left panels). The differ-
ence between the impact and nonimpact lines is in
the shape of the two peaks. We note further that
the two equal components when pL is large are
much narrower in the static (K=0.1) case. This
may be again interpreted by invoking the frequen-

cy dependence of I"b,(h) which exists at large de-
tunings in this case but is absent, by assumption, in
the impact (K=10) case.

Figures 5 and 6 show the variation of the RRS
spectra with the detuning of the pump field for
finite intensities pL ——20 and pL ——40, respectively.
We note that as AL increases we need a stronger

pL in order to achieve the asymptotic behavior
mentioned above. Thus a pz ——20 field is "strong"
for EL ——0 (upper panels in Fig. 5) and the spectra
are split into two equal components. The same
field for EL ——40 (lower panel) is weak and the two
components are not equal neither in their intensity
nor in their width. We also note that the lines are
narrower in the nonimpact (K=0.1) case. Finally
we note that the two components are roughly equal
in magnitude in the impact case but a dramatic
change occurs for the nonimpact lines where the
redistribution component disappears with the de-

tuning.
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FIG. 3. Resonance Remen spectra [Eq. (29)] at zero field pq ——0. y, =O, yq= 1,y, =0.5.y,q ——0. The «=10 lines

were calculated using 5=100 and A=1000, whereas the ~=0.1 lines were calculated using 5=8.49 and A=0. 849, so
that the f~(d. ) has the same width in both cases. Note that the ratio of intensities of the Raman and the redistribution

terms does not change with the detuning in the impact {x=10}limit, whereas in the ~=0.1 case the redistribution com-
ponent vanishes at large detunings.
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FIG. 4. Saturation behavior of the RRS spectrum for pL,
——0, 1.5, 3, and 20. The pump field is tuned on resonance

EL, ——0. Other parameters are the same as in Fig. 3. Note that the two components in the strong field are much
broader in the impact (~=10) limit than is the static (x =0.1) case.
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P=[ I«»««l+ I
bb»«bb I+ I«»««l

+ I ca»«ca I+ I
ac»«ac I]PBTrB (A4)

and its complementary projection operator

APPENDIX A =1—P. (A5)

Using the tetradic scattering formalism, ' '

the RRS spectrum for arbitrary field strength is

given by

I(hz, hI ) = —iTrs «cc
I
S (0)

I p( —m }»,

The spectrum in Eq. (Al) is given by matrix ele-

ments of PW(0)P. Now, for any projection opera-
tor P we have

PW(co)P =R (co)+PM(a))PS (a))PR (a)), (A6)

with
(Al)

where
I
cc » is a shorthand notation for the state

I
cc;1,1,» containing a scattered mode photon,

and W(co) is the tetradic scattering matrix,
and

R(cv)=PvP+Pvg QuP,
1

(A7)

1
W(cp)=v+v v .

co —L
(A2)

8 (co)=
co —Lp —L

(A8)

Here, L is the total Liouvillian defined in Eq. (14)
and v is the tetradic interaction operator corre-

sponding to V [see Eq. (5)], i.e.,

where Lp ——[Hp, ].
Solving Eq. (A6) for PWP we get

PW(a))P =R (co)
1

1 PS (cv)—PR (cp)
v=[V, ].

We define the following tetradic projection
operator ':

(A3)
The operator W(co) and hence also R (co), may con-
tain the interaction vz to all orders. However,
W(cv) must be of second order in v„ i.e.,

«cc IP~(cp)Pl aa&&= &&cc IR'"(cv), , laa&&
co —P8' (co)PR (m)

1+« I ()p, (ii laa

where R' ' is of order u„R'" is of order u„and R ' ' does not contain any u, operators.
Denoting

~gb;cd «ab
I
~(0)

I
cd &I

for any tetradic operator W(cv}, we collect the nonvanishing contributions to the line shape, i.e.,

(Alo)

(A11)

T

(P~P) R (2) R (2)

1 —PÃ PR' ' .„' 1 —PP PR' '
bb;aa

+2iIm R,', .'
1

1 —PS' PR'"
oc;aa

aa;aa

(A12)

The last matrix element in the above equation can be further simplified since it can be expanded to first or-
der in R"' (the higher-order terms will be of order v, and will not contribute to the line shape), giving

1

1 —PS oPR (') [(P9' P)„, ] ' —R' .' '
1 PS PR' '—+R (i)

1 —PS PR' '
aa;aa bb;aa

(A13)

In deriving Eq. (A13) we have used the assumption that relaxation does not couple "populations" (
I
ii »,

with i =a,b, c) to "coherences" (
I ji», i', with ij =a,b,c), i.e., that all relaxation rates can be identified as
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belonging to the T] or the T2 type. In this case,

(P9' PR' ') ~=. (P9' P) . R~ (A14)

and Eq. (A13) follows.
We still have to invert the (3 X 3) matrix 1 P—9' PR'oi in the population space. Using Eqs. (AS} and (15),

we have

PS (co)P=
co+iyb
—&ycb

0 0

N+l y 0 (A15)

—i(yb —y b) —iy, a)

where the rows and columns are labeled by bb, cc, and aa (in decreasing order on the energy scale).
Note that the radiative coupling posesses the following symmetry:

UL, I
uu » = —

UL, I
bb » =pL, (

I
ub » I

bu » ) .

Applying this relation to the definition of R (co) in Eq. (A7), we obtain

R~' ~{co.}=Rbb'bb(co.}= R~',—bb{co)= Rbb', ~—(m},

and since UL does not couple Iaa» to Icc», the R' ' matrix is given by

1 0 —1

R' '(co) =R~'.Oa(a)) 0 0 0
—1 0 1

{A16)

{A17)

(A18)

Inversion of the 3 X 3 matrix 1 P9'sPR '0'—is straightforward (the limit co-+0 should be taken after forming
the product P9' PR' ') and gives

[1—P9' (0)PR' '(0)]

yb

.R( )
aa;oa ycb

yb yc

(0)
y,b

—7Roo

yc yb

—iR' '
ycb

yb yc

—2iR(0
1—

yb

~ (0)
oo;oa

~ (0)
ycb —)Roo.oa

yc yb

~ (0)
Oa;OO1—

(A19)

X,(EL, }= iR' '—
+2(EL,bS) =R' .'

x,(aL,aS)=R,",.'„,
&4(~L ~S)=R~ ~
&5(~L ~S)=R" bb

~6(~L s ~S ) ~Rcc;oa
(2)

g7( kL s kS )= —iRcc;bb s

(A20a}

(A20b)

(A20c}

(A20d)

(A20e)

(A20f)

(A20g)

with yb given by Eq. (21).
Substituting the appropriate matrix elements into

Eqs. (A12) and (A13), and introducing the notation

f~(hl —bg}=(P9' (0}P} {A21}

we obtain the RRS line shape for arbitrary field
strengths [Eq. (30}]. However, the actual calcula-
tion of the X s involves inverting the matrix
co QLQ, i.e., taking—into account the contributions
from all the possible ways in which the bath can
be excited. Owing to the complicated structure of
the Q space we did not proceed to evaluate the
XI"'s (n &4).

APPENDIX B

Terms involving 7'; ' and higher orders in the ex-
pansion (22) contain integrals over n-time correla-
tion functions (with n & 4) resulting in increasing
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powers of pl ~„where v, is the correlation time
usually associated with the duration of a single col-
lision. Hence, if the external field is not too
strong, i.e., if the condition pL r, && 1 is satisfied,
we can consider only the X,' '

(i = 1, . . . , 7) terms
in the expansion (22). In this case, the operator R
[Eq. (A7)] can be written as

R (co) =PuP +PuQ
1 ~p . (Bla)

~—QLOQ —QLQ

Since the interaction v satisfies

and

X6' ——0,

g 7
——2 Im / bc .bc

(B2f)

(B2g)

The functions Sb, .bc and S,b.,b can be
represented in terms of their Laplace transforms

0 00 ~p
lim —i d~ 8b, .bc(r) exp(i co~—e~)

co,6~0

(B4a)
PvP =0, (B1b)

R(co)=PV 9' (co)VP,

with 9 (co) defined in Eq. (AS).
Using Eqs. (22) and (A20) we obtain

pLX'&
' ———i (Pu I.8 (0)vt. P )««

(Blc)

~ / ~0 c~p= —l (Vaa;ab ~ ab; ab Vab; aa +V«.~ u ~ ~V~ «)
=2pL Im9+b;zb (B2a)

where the Liouvillian conjugation symmetry im-

plying

and within the space spanned by the states
~

bc )),
~

cb)),
~
ab)), and ~ba)), Q can be replaced by the

unit operator, we can write

and

0 00 ~p
+ab;ab —— lim —i d~ tab;ab(+) exp(~+& 67 )

C9, 6~0

(B4b)

and

&b, ;b =f» (~S)

0
+ab;ab =fab(~L ) ~

(Bsa)

(Bsb)

The 8 (r) functions can be obtained by inspection
of Eqs. (19), (32), and (33) in Ref. 10 giving

b; d()= ba;dc(

has been used. In a similar way we obtain

(2) 0
+2 +bc;bc s

(B3)

(B2b)

with f,b and fb, defined in Eqs. (24) (with a
change of indices). The function (PS P)«.«ap-
pearing in Eq. (A13) can be obtained in a similar
manner, resulting in

(2) 0
+3 +bc'bc s (B2c) (P+ P)ac;ac =fac ( ~L ~s ) ~ (B5c)

(2) 0
+4 +ab;ab s

+5 (+ab;ab+ bc;bc) s

(2) o o

(B2d)

(B2e)

with f„defi nedin (24). Substitution of Eqs. (B2)
and (B5) into Eq. (20) gives the generalized, quasi-
Markovian line shape [Eq. (29)].
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