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Dipole autocorrelation function for molecular pressure broadening:
A quantum theory which satisfies the fluctuation-dissipation theorem
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The dipole autocorrelation function for spectral line broadening is treated in a quantum

theory which rigorously satisfies the fluctuation-dissipation theorem on a microscopic level.
The basic approximation in the theory is the binary-collision approximation. In the present

paper, the two-body interaction is decomposed into one part which commutes with the
internal coordinates and another part which does not. The theory, as developed, is ap-
propriate for broadening mechanisms for which the noncommuting term may be treated
within the framework of perturbation theory, while the commuting term is to be treated ex-

actly. The theory gives, at long times, a result for the dipole autocorrelation function con-
sistent with the well-known impact approximation. At short times, an autocorrelation
function of Gaussian form, with renormalization of the initial-state occupancy is obtained.
It is found that the qualitative features discussed above are unaltered in higher-order per-
turbation theory. The results are consistent with the requirement that all time derivatives
of the autocorrelation function at t =0 exist. This further satisfies the requirement that all
moments of the line-shape function in the frequency domain exist, hence that the line-

shape function decays "exponentially" sufficiently far in the wings.

I. INTRODUCTION

In the calculation of molecular pressure broaden-
ing, extensive use has been made of the autocorrela-
tion function' for the dipole moment operator in
the time domain. Using this method, the power
spectrum for absorbed or emitted radiation is ob-
tained from the Fourier transform of the autocorre-
lation function. This result follows from the quan-
tum analog of the Wiener-Khintchine theorem' for
classical correlation functions. In spite of the
diverse formulations ' which may be found in the
literature, it appears that certain aspects of the
theory remain incomplete or have not been ade-

quately discussed.
If one is interested in details of the line shape

over the full extent of the spectral transition, then it
is not sufficient to consider times comparable to the
time between collisions. Rather, in this case, one
must also consider contributions to the autocorrela-
tion function associated with times as small, or
smaller, than the duration of collision. However,

any rigorous treatment for small times must cer-
tainly satisfy the fluctuation-dissipation theorem
(FDT)." 's The FDT (also known as detailed
balance) has been incorporated into a number of

essentially phenomenological theories, ' ' using
the Egelstaff-Schofield ' complex-time transfor-
mation. These theories force the FDT to be valid
on a line-by-line basis, using an autocorrelation
function involving a number of adjustable parame-
ters, typically a time between collisions ~, and a
quantity that may be associated with a duration of
collision ~~. To our knowledge, no microscopic for-
mulation which satisfies the FDT has been present-
ed in the literature. In this paper we provide such a
formulation. The present theory will also provide
an explicit microscopic description for the short-
time behavior of the autocorrelation function, and
for the transition to the long-time regime for which
the impact approximation is generally considered to
be valid. These two aspects have remained unclear
in most previous formulations.

In the present paper, the only essential approxi-
mation is the binary collision approximation. For
problems involving atmospheric densities this ap-
pears to be justified from experimental observations
of the density dependence of half widths and far-
wing absorption.

Also, throughout most sections of this paper, for
simplicity of notation and discussion, we shall
neglect line-coupling ' effects. However, in
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Appendix B we present the general result within the
binary-collision approximation which rigorously in-

cludes line-coupling contributions. Calculations
based on this more general formalism will undoubt-

edly be difficult, but should be tractable.
In the present formulation we shall separate the

interaction Hamiltonian into two parts. The
rigorous distinction between these two parts is that
one commutes with the internal coordinates of the
molecules while the second does not. We shall thus
refer to these as "commuting" and "noncommut-
ing" interaction terms, respectively. In molecular
pressure broadening these interactions have some-

times been denoted" as "isotropic" and "an-
isotropic"; however, these terms are unnecessarily
restrictive and may lead to confusion. For example,
in atomic spectral broadening one also may consider
adiabatic, electronic state-dependent (but angle-

independent) interactions in which V;;(R) and

Vff (R) may be significantly different. Similar in-

teractions have been discussed for molecular spec-

tra. For the molecular case of primary concern

in this paper, we follow a procedure of treating the

commuting interactions exactly, while discussing

the noncommuting interactions in perturbation

theory. For certain problems in atomic spectral

broadening, there may be other preferred pro-
cedures for treating the noncommuting interactions.

Within the above approximations we shall show,

at small times, that the autocorrelation function for
each line is of Gaussian form. This implies that all

time derivatives exist at t =0; hence all spectral mo-
ments' ' ' of the line-shape function must also ex-

ist. This further implies that the line-shape func-

tion decays in some "exponential" fashion suffi-

ciently far in the wings. The transition to the long-

time impact regime will also be examined.

Finally, we might also mention that there are

clearly other ways of proceeding, which, if pursued

carefully, should lead to a theory which satisfies the
FTD. We refer, in particular, to the finite-

temperature perturbation theory, with associated

graphical methods, or the double-time
Green's-function technique. We have chosen an

approach which, within the binary-collision approx-
imation, dispenses with the many-body aspect in a
particularly simple fashion. It would, no doubt, be

clumsy to attempt to go beyond the binary-collision

approximation using the present formalism.

4~ ~rad2

a(co) = X"(to ),
3c

(2.1)

%cog"(a)) =tanh
2

(2.2a)

( l e
—tiara) I —

icoty(t)—~ 2~%
(2.2b)

=f 2 ge '"'[4(t)—4( —t)l. (2.2c)

In these equations, n„sis the number density of ra-

diating molecules, 13=(keT) ', and P(t) is the au-

tocorrelation function given by

y(t) =Tr[p(H) p(0) p (t)],

P( t) =T—r[p(H) p, (0) p ( —t)]

=Tr[p(H) p(t) .p(0)],

(2.3a)

(2.3b)

(2.3c)

where p (t) is the Heisenberg operator

p (t)=exp(iHt /i') p (0)exp( iHt /fi)— (2.4)

and

p(H)=e ~ /Tr(e ~ ) (2.5a)

ttH/Z— (2.5b)

is the canonical density matrix. The Hamiltonian

H is for a system consisting of one radiating (ab-

sorbing) molecule and Nz perturbers with which it

may interact.
The equivalence of formulas (2.2a) —(2.2c) is con-

tained in the time-domain statement' of the FDT,
i.e.,

p( t) =p(t+ip—A) . (2.6)

This result is readily proven from Eqs.
(2.3a) —(2.3c) using cyclic invariance and the fact

that exp[+(iHt/iri)] commute with p(H); Eq. (2.6)

must also be consistent with the relation

II. GENERAL THEORY

We shall write the absorption coefficient (cm ')

in the form'

p( —t) =[/(t)]*,
which guarantees that a(co ) is real.

From Eqs. (2.3a)—(2.3c) we may write

(2.7)
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P(t) =Z 'Tr[ p exp(iHt/A') p exp[( —iH/A')(t —iPA')] I,
p( t—) =p(t +ipse)

=Z 'TrI exp[(iH/R)(t +i'm%)]p exp( iH—t/A) p, ] .

(2.8a)

(2.8b)

In what follows it will be convenient to decom-
pose the Hamiltonian H according to

exp(iHt/A) = U (t)exp(iHpt/fi), (2.10b)

H =Hp+ V, (2.9)

where Hp contains the unperturbed energies of the
molecules along with that part of the intermolecular
interaction which commutes with the internal coor-
dinates. Thus V is taken to contain the noncom-
muting perturbing forces. [See the discussion fol-
lowing Eq. (3.3) of Sec. III where this breakup is ex-

plicitly utilized. ]
Now in Eqs. (2.8a) and (2.8b) we introduce the

time-development operator U(t) defined by

exp( —iHt /h') =exp( iH pt /fi)—U(t), (2.10a)

or, more generally, for complex time z,

exp( iHz/A—) =exp( iH pz/—fi) U (z) (2. 11a)

with adjoint relation

exp(iHz~/I) = Ut(z)exp(iHpz*/fi) . (2.11b)

From the above relations, one readily sees that U(t)
is unitary for real t. Making use of these defini-
tions, we obtain

and

P(t)=v Tr[p(Hp)U(t i13A)iJ, U (t—) exp(iHpt/R)p exp( iHpt/A)]—

p( t) =p(t +ip—R)

(2.12a)

where p(Hp) =e

Zp Tr(e ')—PHD

Tr(e-t'~) '

=v Tr[p(Hp)exp(iHpt/fi)iJ, exp( iHpt/—fi)U(t) p U (t iPfi)], —
—pHO —pHO'/Tr(e ') is the unperturbed density matrix, and where v is the ratio

(2.12b)

(2.13}

From Eq. (2.12b) it is clear, in a trivial fashion, that the FDT is still satisfied at this point. However, there
are ways of rewriting all of these equations which make identifications far less obvious. For example, if we let
t~ t in Eq. (2.12a), w—e obtain

P( —t) =v Tr[p(Hp) U( t i13fi)p U ( ——t) exp(—iHpt/A)p exp(i—Hpt/h)] . (2.14)

The equivalence of Eqs. (2.12b) and (2.14) is now
not trivial, and it must be obtained from various
identities which we will presently derive. An even
more subtle problem concerns the following point.
One does not obtain a correct expression for
P(t +iPfi} by simply replacing t by (t +iPA) in the
right-hand side of Eq. (2.12a). The reason is that in
the U (t) operator of Eq. (2.12a), the two operations
of complex-time translation t~t +iPfi and of tak-
ing the Hermitian adjoint do not commute. We
shall show that the correct procedure is to eliminate &(exp( iHpz~/R) . — (2.16)

1

the adjoint operation, and then to perform the
complex-time translation.

The basic identity which we shall need is ob-
tained as follows: in Eq. (2.11a) we replace z by
—z* and obtain

exp(iHz~/fi) =exp(iHpz~/A') U( —z~) . (2.15)

We now equate Eqs. (2.11b) and (2.15) and obtain

Ut(z) =exp(iHpz~/A) U( —z*)
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Some useful special cases for real t are

U (t) =exp(iHpt/fi) U( t—)

)(exp( iH—pt /A'),

U ( —t) =exp( iH—pt/fi) U(t)

(2.17a)

(2.17b)

(2.17c)
I

X exp(iHpt/fi),

U(t) =exp(iHpt/fi) U ( —t) exp( iH—ptlfi) .

The equivalence of Eqs. (2.12b) and (2.14) for
P( t—) can readily be established by starting from
Eq. (2;12b), making use of Eq. (2.16) with
z =t ipA, inserting Eq. (2.17c) for U(t), and final-
ly using cyclic invariance of the trace expression.

Next we return to the problem of correctly ob-
taining p(t+ipA) from p(t) S.tarting from Eq.
(2.12a), we make use of Eq. (2.17a) to eliminate the
adjoint operation. This converts Eq. (2.12a) to read

P(t) =v Tr[P(Hp)U(t iPfi)—P exP(iHpt/A') U( —t)P, exP( iHpt/—fi)] .

The complex time translation t ~t +ipfi then gives

(2.18)

p(t +ipfi) =v Tr[p(Hp) U(t) p, .exp[iHp(t +ipse')/A'] U( t i p—fi)iJ,—exp[ —iHp(t +ipse')/R] I . (2.19)

Now inserting Eq. (2.17c) for U(t), Eq. (2.19) sim-

plifies to give our previous expression (2.14) for

p(t+ipA')=p( —t) .

More generally, for complex I;, we write

z
U(z') = 1 ——' f V(z') U(z')dz

i o
(2.218)

with

U(t) = I f V—(t—') U(t')«',

l'

U'(t) =1+ f U—'(t') V (t')dt'
0

(2.20a)

(2.20b)

V(t) =exp(iHpt/fi) V exp( iH pt/&—) ~

I

%e have discussed the above points in some de-

tail because we will need to make use of similar ma-

nipulations to verify that the FDT is satisfied at
later stages of the formulation. For later purposes,
it will also prove convenient to introduce the in-

tegral equations for the U(t) operators. With the
boundary condition U(0)=1, one obtains the in-

tegral equations

with

V(z')=exp(iHpz'/A) V exp( iHpz'/A), —

(2.21b)

where the integration can be taken over any path in
the complex z' plane where the integrand is analyt-
1c.

To conclude this section, it is interesting to com-
pare Eq. (2.12a) for P(t) with the result one obtains
in an analogous theory which does not satisfy the
FDT. In such a theory, which ignores so-called
"back reaction, " p(H) is approximated by the un-
perturbed density p(Hp) and leads to the result

P(t)=Tr[p(Hp)U(t)p U (t) exp(iHpt/fi)p exp( iHpt/fi)] . — (2.22)

Comparison of Eqs. (2.12a) and (2.22) shows that in the more complete theory, U(t) is replaced by U(t ipfi)—
and a normalization factor v =Zp/Z is introduced.

III. BINARY-COLLISION
AND UNCOUPLED-LINE APPROXIMATIONS

In this section, we shall assume low or atmos-
pheric densities, and hence we make the binary-
collision approximation. For clarity and ease of
presentation we shall also ignore line-coupling con-
tributions. The complete generalization of the

theory to include line-coupling effects is presented
in Appendix B. To facilitate these approximations,
it is convenient to separate out the internal states of
the radiating molecule in the expression for Ho.
Thus we write

Ho ——Hgl +Ho,0 (3.1)

where H~l contains only the internal coordinates of
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the radiating molecule. Then Ho contains all the
rest of the unperturbed Hamiltonian, i.e., the inter-
nal coordinates of all perturbers, the translational
coordinates of all molecules (including the radiator),
and the commuting interactions between the radia-
tor and perturbers. The unperturbed density matrix
then factors as

p(Ho) =p(Hgt)p(Ho) .

The operator p(Ko) can also be further factored;
however, it is convenient not to use this at present.

We denote the eigenstates of Httt by I jm&,
where m is the magnetic quantum number and
where j stands for all other quantum numbers

necessary to specify the internal state. Now in Eq.
(2.12a) we take the trace over p(H~t) and find

with

P(t)=v
~ ~ t ~ et I IJ.,J Jf Jf mf )alt. mf mf

p(e. , )exp[(i/A')(e. , —e., )t] &j mt
I p I jfmf & &jfmf I p I

J'i' m'
&

&&Tr[p(Ho)&j mt I
U(t ipfi) Ij—;m;&&j~mf I

U (t)jIfmf &], (3.2)

—Pe

p(e. , )=e
Jt g (2j+ 1)e (3.3)

In obtaining the above result from Eq. (2.12a), we have used the fact that

exp(iHot/R) p exp( —iHot/A') =exp(iH~t t /A') p exp( iHttt t/h)—,

because the remainder of the unperturbed Hamiltonian (Ho) commutes with the internal coordinates of the ra-
diator, and hence also with p. Comparison of Eq. (3.2) with the analogous result derived from Eq. (2.22)
which does not satisfy the FDT,

X X
~ ot t I

Jt,J,Jf Jf mt. Nit Nlf mf

p(e')exp[(t/&)(e' —e')t]&j mi I p I jfmf &
'

&jjmf I p Ij/mi' &

x Tr[p(Ho) &ji ~(
I
U(t) Ij tmt & &j fmf I

U (t) Ijj mj &] (3.4)

again exhibits two differences: (a) The factor of
v=Zo/Zin Eq. (3.2) and (b) U(t)~U(t iPfi). —

At this point, we shall make the uncoupled-line
approximation, jf ——jf and j =j;. This is really not
necessary and is done largely for simplicity of dis-
cussion. The reader is referred to Appendix 8 for
the generalization to include line coupling. Addi-
tionally, in a separate publication one of the present
authors (R.W.D.) will present a somewhat simpli-
fied approach which is meant to be applicable only
in the far wings. This T-matrix formulation is car-
ried out in the frequency domain, it satisfies the
FDT, and it correctly includes all possible line-
coupling effects.

If we now apply the uncoupled-line approxima-
I

&& C t(t)exp[(i/A')(ej ej )t], — (3.5)

where the reduced matrix elements satisfy the sym-

metry relation

(2jf+1) I &Jf lit llj & I

'

=(2J +1) I &j;lit lljf & I

and where C;t(t) is a correlation function given by

tion to Eq. (3.2) and then make use of the Wigner-
Eckhart theorem for the p matrix elements, we ob-
tain

0 «) =v 2 p«J,. )(2J,. +1) I &1 llvlljf & I'

1

(2j;+1) I I
m;, m;, mf, mf, m

jflmfm Ijflj m )(jflmfm I/fly;'m )'

XTr[p(Ho)& j m'
I
U(t —tp&)

I jtmt &&jfmf I
U (t) Ijfmf'&] . (3.7)

Before proceeding to make the binary-collision approximation, it is interesting to note the normalization
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properties of Eqs. (3.5) and (3.7). First we note that C;t(0)+1. Rather, from Eq. (3.7), we obtain

Cif(0)= . g Tr[p(Hp}&jimi
I

U( iP—&)
I jim' &]

1

(2j;+1) i™i

X g (jflmfm ljflj;m;)(jflmfm ljflj;m ) .
mf, m

Performing the sum over mf, m in Eq. (3.8) simply produces a factor of 5 „andleads to
m;, m;'

1Cif(0)=Ci(0)= . XTr[p(Hp}(jimi I
U( i~Pi)

I jimi)]2j;+1

Although this does not equal unity, we can write

C;i(t) =C;(0)C;i(t)

or

C;i(t)
Cit(t}=

C (0),
then C;i(0) =1, and we can rewrite Eq. (3.5) as

0 «}=gP«, ) I &j; Ill Iljf & I
'exp[« f&}(e, ef )t—]c,,.(t),

(3.8)

(3.9)

(3.10)

(3.11)

(3.12}

where

p(~, )=vp(e, }(&j;+.1)—C;(0) .,

We now show that p(ei ) is simply a renormalized initial-state occupancy and, in particular, that

g p(e, . )=1 .

(3.13)

(3.14)

To prove this, we combine Eqs. (3.9), (3.13), and (3.14) to give

g p(ei ) =v g p(ei )Tr[p(H p)(j;m;
I

U( iPA)
I
j—;m; ) ]

=v Tr[p(Hp) U( —iPA)], (3.15)

where the trace is now over the comp/etc unperturbed density matrix. However, it may readily be established
that

(3.16)

from which the result (3.14) immediately follows.
Now the binary-collision approximation to Eq. (3.7) is simply

Cif(t} [elf(t}]

where Ni is the number of perturbers and

(3.17)

q;t(t) = 1

(2j;+1)
m;, m, mf, mf', m

jf lmf m
Ijf lj 'm }{jf 1mf m

Ijf lj mi}'
XTr[ps(Hp}(j m'

I
Us(t —4&) Ij'm') &jfmf I

Us(t) Ijfmf &] . (3.18)
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In the expression (3.18), the subscript S on the p and
U operators denotes that these operators now corre-
spond to a single radiator and perturber.

One next invokes the same argument used by
Baranger and others. Namely, one assumes
that q;f(t) has the form

1
q;f(t)= 1+ I';f—(t)0 (3.19a)

np
1+ F)f(t)

P
(3.19b)

where 0 is the normalization volume and n& is the
perturber density. Then in the limit of large Nf,
Eqs. (3.17) and (3.19) yield

or

C f(t) =exp[npF~f(t)] (3.20a)

C;f(t) =expINf [q f(t) l]I—. (3.20b)

U (t) =1+Ws(t), (3.21a)

In order to justify the form in Eqs. (3.19), we can
begin by noting from analogy with Eqs. (2.20) and
(2.21) that the Us operators in Eq. (3.18) can be
written in the form

qff( t) =q;f(t +—iP It) (3.24)

The details of this proof are carried out in Appen-
dix A. We also remark that in the uncoupled-line
and binary-collision approximations, the reality
condition, Eq. (2.7), is satisfied provided

t —i'
Ws(t i—Pfi) =——

Pi
Vs(&') Us(&')d&' ~

(3.22c)
Then in Eq. (3.18), the term in the product of the
U's, which is independent of time, may readily be
shown to sum to unity which justifies the first term
in Eq. (3.19a). The volume dependence of the
second term in Eq. (3.19a) will be established at a
later stage.

It is important, after having made the
uncoupled-line and binary-collision approximations,
to be able to demonstrate that the FDT is still
rigorously satisfied. The proof that this is, indeed,
the case is given in Appendix A. Briefly, the proof
consists of first showing that the FDT is satisfied
provided

Cff( t) —Cjf(t +iPIt) (3.23)

(note the exchange of indices i and fl. In our
binary-collision approximation (3.20b), the condi-
tion (3.23) is clearly satisfied provided we can show

Us(t tPA) =1+W—s(t iP&»—

where

i
W (t)= JUs(t') &~(—t')«',S g 0

(3.21b)

(3.22a)

(3.22b)

C'f(t) =C'f( t)

i.e., if

q';f(t) =q;f( t) . —

This relation can be proven using manipulations
similar to those found in Appendix A.

Returning to Eq. (3.18) we can make use of Eqs.
(3.22) to write

[q;f(t) 1]=—1
(2j;+1) f I

m, ,m,-,m&, m&, m

(jt Imam I jt Ij;m;)(j~ 1m''m
I j~lj;m )

&& ITr[Ps(Ho)&j;m;
I
Ws(t iPfi)

I j;m;&]5—
my, my

+Tr[Ps(~o) &jim' I
Ws(t)

I jimj &]&, ,„,.

+Tr[ps(Ii'o) &j.m'
I
Ws« —ip+)

I jm & &h™JI Ws(t)
Ijj™y&]]

(3.25)

Once again, we can compare this to the result one obtains from Eqs. (2.22) and (3.4) which do not satisfy
the FDT. In the simpler theory, Ws(t —ipiri) is replaced by Ws(t) in the first and third terms of Eqs. (3.25).
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We also remark that the first two terms in Eq.
(3.25) correspond to [S(b)],„„,in Anderson
theory, ' while the last term corresponds to
Anderson's [S(b)];„„„.In graphical perturbation
theory the two types of terms correspond to
self-energy and vertex corrections, respectively.

IV. INVESTIGATION
OP TIME DEPENDENCE IN LOW-ORDER

PERTURBATION THEORY

In this section we- shall discuss the long- and
short-time behavior of the autocorrelation function
within the context of perturbation theory, specifi-
cally up to second order in the noncommuting in-
teractions. One can, of course, extend these pro-
cedures to higher order; however, for detailed calcu-
lations the Clebsch-Gordan algebra rapidly becomes
difficult.

It is important, in the present context, to demand
that the commuting part of the intermolecular po-
tential be treated essentially exactly. This potential,
which might be taken as a Lennard-Jones or Morse
interaction, will contain a hard-core repulsive part
which cannot, in general, be treated using perturba-
tive procedures. This repulsive potential, in addi-
tion to providing the correct collision kinematics
(e.g., curved versus straight-line trajectories} also
prevents singularities from occurring in a perturba-
tive treatment. It should be stressed, however, that
this statement does not imply that the perturbative
treatment necessarily converges. Although the use
of realistic collision trajectories (through the in-
clusion of the isotropic potential) may be expected
to improve convergence, it does not assure conver-
gence. Thus, it may still be necessary in certain
cases to employ some procedure to eliminate un-

physical contributions, i.e., a procedure analogous
to the Anderson-type cutoff.

We also remark that we have studied the time
dependence of the present theory in higher-order
perturbation theory, and we find the qualitative
features (particularly the very short- and long-time
behavior) to be unaltered. In addition, it appears
that the FDT is satisfied order by order in perturba-
tion theory, and hence the validity of this important
result is not compromised by the perturbative tech-
nique.

In this section, in order to provide a more simpli-
fied account, we shall treat the internal states of
both the radiator and perturber as nondegenerate,
i.e., we shall ignore the (2j+ 1)—fold degeneracy in
the m indices. This also means that we shall
suppress the Clebsch-Gordan coefficients and the m

summations in Eqs. (3.18) and (3.25) and shall set
factors of (2j+ 1) equal to unity. These details can
easily be retained, but are important only for nu-

merical calculations, which will not be attempted in
this paper. As a final simplification in notation, we
shall also drop the subscripts S on the p„U+,8'z,
and V~ operators which appear in Eqs.
(3.18)—(3.25), understanding that these operators
now refer to a single radiator and perturber.

We shall begin by considering the second term in
Eq. (3.25},which we now simplify to read

Kf(t) Tr[p(HO)(Jf I
W'(t)

I Jf &] (4.1)

This term enters in an identical fashion in both the
theory which satisfies the FDT, and the one which
does not. However, before considering this term in
detail, we briefly remark on the other two terms of
Eq. (3.25), which we also simplify as

K;(t)=Tr[p(Ho) (J; I
W(t ipA—)

I J; )],
K,t(t)=Tr[p(HO)(j;

I
W(t —t'p&)

I j;)

&«Jf I
w (t}

I Jf &] .

(4.2)

(4.3)

Concerning Eq. (4.2), at large times (
I
t

I
&ppfi)

this term can be approximated by

K~(t) =Tr[p(HO)(J;
I
W(t)

I j; )] (4.4)

K;(0)=Tr[p(HO ) (J';
I

W( —lpR)
I j; ) ] (4.5)

and, as discussed in Sec. III, leads to a renormaliza-
tion of the initial-state occupancy. The discussion
of Eq. (4.3) is somewhat more complicated and will
be given separately.

In order to perform the trace in Eq. (4.1) we need
the resolution of the identity operator in terms of
the product states of Ho. This can be written

I
Jf'J'4 i, &(Jf'J'4 k I

=1 (4 6)

with

I JjJ'& i, & =
I Jj &

I
J'&

I g i, &, (4.7)

where
I jj ) denotes an internal state of the radiator,

I
J') denotes an internal state of the perturber, and

I g i, , ) is an eigenstate of the Hamiltonian

and the discussion in this regime is essentially iden-
tical to that which we present for Kf(t} at large t.
At very small times, K;(t) approaches the finite
constant
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o +V'
Hrso= — + Vo(r) .

2m
(4.8) ~ Jk=~j+~J+~kJf f (4.10)

$2+2
+ Vo(r}

2771
(4.9}

For unbound states
I g k ) can be taken as any suit-

ably normalized set of continuum eigenstates, and

ez flak /——2m Howe. ver, if Vo(r) leads to bound

states, sums over
I fk ) implicitly contain a sum

over the bound states. The unperturbed energy as-
sociated with a state

I jfJg-„)can then be written

In Eq. (4.8), V =V„with r =ri —r2, the relative

coordinate;

m =mim2/(mi+m2),

the reduced mass; and Vo(r) is the commuting pair
potential. Since p, Vo, and V do not depend on the
center-of-mass coordinate R of the pair, it can be
seen that the translational motion of the center of
mass plays no role in the subsequent theory. We
thus have

If we now evaluate Eq. (4.1) in first-order pertur-
bation theory using Eq. (3.22b}, we obtain

p(eV) =e " g e
Jl

(4.12}

The expression (4.11) is seen to be a linear function
of t without any approximations. We note, howev-
er, that Ef '(t} is pure imaginary and it therefore
contributes a phase shift, rather than damping, to
the autocorrelation function C;r(t). It can also be
shown, for multipole interactions, that Ef"(t) van-
ishes when a sum over magnetic quantum numbers
is performed (which is suppressed here). In what
follows, we shall therefore neglect these first-order
phase shifts.

We next evaluate Ef(t} in second-order perturba-
tion theory and find

Ef '(t)=
~ Xp«i}p«k)&jf~&k I

V
I Jfj&v&

J, k (4.1 1)
with

(4.13)

f(t)=
C~ —6'p

where, for simplicity
I
cr ):

IjfJ4' «) I p) =—
I JfI 4 k, ), and

exp[ —(i/R)(e etr )t] 1——
t —I'.A

6'~ —Ep
(4.14)

l
[co pt —sin(co pt)],

. CO&p

(4.15)

where co &=(e e&)ifi. In this se—cond form it is
immediately clear that the real part of f(t) is an
even function of t, while the imaginary part is odd.
Also, from Eqs. (4.13) and (4.15), we see that the
real part of Kf '(t) is always negative (gives damp-
ing}.

l

An alternative and useful form for the f(t) function
1s

f(t) = 2 [1 cos(co trt)]—
1

N~p

The time dependence of Ef '(t) for long and short
times can now be deduced from a study of the f(t)
function. First we note that f(t} is a perfectly
well-behaved function when (e~ —etr)~0. By ex-
panding the exponential in Eq. (4.14), we find

f(t)=—,t', (4.16)

(e —ep}~0 .

Furthermore it is clear that the above result is
precisely what we get in the small-time limit t —+0.
Hence, for short times,

2

~f '(t)=—,g p(ej)p(eg} g I &JfJf k I
V

I jfI 0 g ' ~tl
'

2A Jk j' J'k'l Jf ~

(4.17)

Thus, as t~0, E' '(t} is a real, quadratic function of time and from Eq. (3.20b) it leads to a correlation func-
tion of Gaussian form.
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In order to examine the long-time behavior, we make use of the identities '

[1—cos(co itt}]
lim =n5(a)~p)

~

t (,
I tI ~co

1 . 1
lim i [a) pt —sin(a) pt)] = t 9'

)
~oo Q) p CO

Hence the long-time limit of Kf '(t) is given by

(4.18)

(4.19)

X p«J)v(~~) I &if~4~ I I'lij~'4~ & I'+ (4.20)

while the imaginary parts subtract. This is also
familiar from the impact theory.

A second item that can be disposed of at this
point is justification of the normalization volume
dependence in the second term of Eq. (3.19a), i.e.,
we now show that Kf '(t), as given by Eqs. (4.17)
and (4.20}, is correctly proportional to 1/Q. To see
this we rewrite Eq. (4.12) as

The above result is identical to the impact ap-
proximation ' in second-order perturbation
theory. The appearance of ~t

~
in the damping

term is also familiar in the impact theory. If one
assumes Eq. (4.20) to be valid for all times, includ-

ing the neighborhood of t =0, the factor
~

t
~

leads
to singularities in the derivatives of C;f(t) at t =0.
This immediately implies that the higher-order mo-
ments' of the line-shape function [the Fourier
transform of C;f(t)] do not exist in the impact
theory. As we have seen froin Eq. (4.17}, the
correct damping of C;r(t) at small t is Gaussian,
which implies that all moments of the line-shape
function are well defined and finite. In the frequen-

cy domain, these results imply that the extreme far
wings must decay in some exponential fashion,
rather than the simple (co —rof;) 2 decay predicted

by the impact theory.
For intermediate times, it is clear that the time

dependence of K/~ '(t} is complicated, and it will

probably need to be extracted numerically. A rough
criterion for the intermediate-time region is
&ai &&t=l, where &co~ii& is some average energy
difference. For a situation in which A'&co ~ &=k~ T,
we estimate the transition region to occur at times
of order

1 k
k (4.21)

In the limit of large Q,

and the remaining factor of 1/Q in Eq. (4.21) turns
out to give the expected 1/Q volume dependence of
Kf '(t). To complete the proof, we note that if

~ P z & is a continuum wave function, it will contain
a normalization factor of I/v Q, while bound-state
wave functions are normalized independent of Q.
Then in Eqs. (4.17) and (4.20), if

~ fg & and
~ g g, &

are both continuum states, the square of the matrix
element yields a factor of 1/Q . This is just what is
needed to turn the k, k ' sums into integrals. Like-
wise, one sees that the volume dependence is correct
for bound~free, and bound —bound matrix ele-
ments.

%'e next consider the more complicated quantity
K;r(t) as given by Eq. (4.3). It is also interesting to
compare this with the quantity

t=A'/ksT =PA'=2. 6X10 ' sec,

K r(t)=Tr[p(HO)&ii
I

W(t) ~ii &&if ~

W'(t} lif &]

(4.22}

for T =296 K. It is then clear that this is precisely
the range where the difference between W(t ipfi)—
and W(t) begins to be important in the K; (t) term.

Before going on, we remark that the long-time
behavior of the term K '(t) [with
W(t —ipse)=W(t)] can be obtained from Eq. (4.20)
with the substitutions jf~j;, jf'~j, and with the
imaginary term in Eq. (4.20) changing sign. This
implies that the real parts of K '(t) and Kf '(t) add
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which obtains in the analogous theory where the FDT is not satisfied, and which differs from Eq. (4.3) in
t~t —iPA' in the W(t) operator. Regarding both Eqs. (4.3) and (4.22), we remark that if one confines the
analysis to second-order perturbation theory, there are a number of interesting cases where E;f and E;f vanish.
This happens for linear and asymmetric rotor (radiating) molecules for the case of dipole-dipole or dipole-
quadrupole interactions, because one obtains diagonal reduced matrix elements of the radiator s dipole mo-
ment operator. These results are also familiar from the Anderson theory, ' i.e., [S(b)];„„«makesno contri-
bution in such cases.

We note from Eqs. (4.3) and (4.22) that K;t(t) and K;t(t) are already at least of second order in V. Then, to
second order, evaluation of the formulas for large t gives

2 2 p(~. )p(~k)&J J4» I
V

I j J'4k &&JfJ'4k
I

V
I
JfJP-k&

J, k J', k'

X m.5(e~-k —e~, -k, ) . (4.23)

This is, again, the impact result, and K",t'(t) subtracts from the damping given by the K '(t) and Kf '(t)
terms.

Next, for short times, Eq. (4.22) evaluates to give

2

KIt"«)=—g Q p(e~)p(~k)&xtJP»
I
VIJtJ'4k &&JfJ'0k

I VlafJO» &

J, k J', k'
(4.24)

This term is quadratic in time and subtracts from the damping given by Kf' '(t) Howe. ver, at very short times
we should consider, instead of K;t(t), the function K;t(t) which satisfies the FDT. Its small-time limit is

2

Kif '(t)= g g p(e~)p(~ k )[exp[P@~~k —~~ k )]+1I &j J4 k I
v

Ij J'4
k & &jfJ'4

k I
v IjfJ4 k &

J, k J', k'

g p(e~)p(e-k) [exp[pit(coJ-k —co~, k, )]—1]it 1

+J, k J', k' Jk J'k '

&&I J4» IVI' J'4k &&JfJ'&k IVIJfJ&k& (4.25)

We note, that although Kit '(t) contains a term linear in t, this term corresponds to a phase shift rather than
damping. Hence, we again find that the damping occurs quadratically at small t. Finally, for completeness,
we quote the general results for K;'t '(t) and K '(t) in second-order perturbation theory:

exp[(i/fi)(ezkeJ k ,)t], —1—
K'r"(t)= —g g p«~)p«k)&JtJP» I VlztJ'0k &&zfJ'0»

I VlzfJW» &

J, k J', k' J'7k' J k

exp[(i lit)(ez k
—ez, k, )(t

ipse')]

—1—
X

J7k J'7k '
(4.26)

The long-time ( I
t

I
»Ph') limit [Eq. (4.23)] is obtained from this formula by again using the identity (4.18).

The short-time limit leads directly to Eq. (4.25). For K '(t), we find

K;"'( )= ——gp(eg)p(ek) g I &JJQ» I
Vlj J'gk, & I'f(t)

J, k j.',J', k'

exp[(i/fi)(e~ @it )(t ilafi) ] 1—— —
f(t) = (t ipA')+ i irt-

(e —
gati) (e —

gati )
(4.28)
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Cjf(t)= 1 +Nz [qjf(t) 1]— (4.29)

The first term above leads to a delta function at the
line center, and the second term gives an approxi-
mation to the far-wing line shape which is linear in
the perturber density. Although the above approxi-
mation has something to do with "small times, " it
is really more of an expansion in density rather than
in time.

V. DISCUSSION

Within the binary-collision and uncoupled-line
approximations, we have derived an expression for
the dipole autocorrelation function which rigorous-

ly satisfies the fluctuation-dissipation theorem. We
have shown how these results go into the impact
theory at large times. For short times we have
found that C;r(t) is damped in a Gaussian fashion.
Although our analysis in Sec. IV was confined to
second-order perturbation theory for the noncom-
muting interaction, by going to third order, we can
easily convince ourselves that the above behavior is
completely general, and only the details are altered
in higher-order perturbation theory. These results
imply that the line-shape function in the frequency
domain must decay in some exponential fashion
sufficiently far in the wings.

and where e~=e. jz and ep—=e, ,-„,. It is not dif-
j,.J k J J'k'

ficult to show explicitly that our second-order result
for [q;f(t) 1]—, as obtained from Eqs. (4.13), (4.27),
and (4.26), satisfies the FDT, and it appears that the
FDT is satisfied order by order in perturbation
theory.

We conclude this section with one strong word of
caution, namely, that one cannot obtain the far-
wing line shape by Fourier transformation of the
small-time behavior as given, for example, by Eq.
(4.17). To be more specific, we note from Eq. (4.17)
that the small-time behavior of the autocorrelation
function Cjr(t) is essentially Gaussian. If one
Fourier transforms the Gaussian, the result is, of
course, a Gaussian line-shape function. But this ex-

pression leads to a totally spurious dependence of
the absorption coefficient on the perturber density.
It is known from experiment, at low densities, that
the absorption coefficient in the far wings is pro-
portional to the product of the radiator and per-
turber densities. Furthermore, it is apparent where
the correct dependence on the perturber density
comes from; namely, it arises when the exponential
in Eq. (3.20b) is well approximated by

Although we have refrained from labeling the
present formulation as a "unified" theory, we be-
lieve that it qualifies as such. One reason that we
have avoided the above label is that most authors of
unified treatments are content to show that their
formulation goes into the impact limit at large
times, and for small times takes the form of the
quasistatic or statistical theory.

We have shown that the present theory, indeed,
does reduce to the impact approximation at large
times. However, it is clear that the small-time limit
of the present formulation is not equivalent to the
statistical theory.

It is convenient to recognize, from a theoretical
viewpoint, three regions of a spectral line

(equivalently, there are three characteristic times of
interest): (a) the line center region

~

b.co
~

r, (1,
where r, is the time between collisions (impact re-

gion), (b) the region near
~

bra
~

rd-l, where rd is
the duration of collision, and (c) the region

~

fi Leo
~
P ) 1, where the requirements of the FTD

are important. Although, at low densities, we ex-

pect the present formalism to have validity in all

three regions, the very short-time behavior which

we have explicitly discussed refers primarily to re-

gion (c), and this limit is clearly not equivalent to
the usual quasistatic or statistical theory. Once

again, however, we caution that one cannot obtain
the far-wing line shape by simply Fourier
transforming the small-time limit of the autocorre-
lation function.

Although our main discussion has not specifical-

ly included line-coupling contributions, it is known

that this approach may be inadequate for certain
situations. To our knowledge, most previous treat-
ments of spectral broadening which have included

line-coupling contributions have been formulated
within the framework of the impact approximation,
e.g., the work of Baranger, Kolb and Griem, Ben-

Reuven, Gordon, ' Rosenkranz, Lam, and

Smith. In the pressure regime below 1 atm, a
great deal of effort has focused on the spectrum of
02 at 60 GHz. For this case, line-coupling effects
are observed at pressures as low as 200 Torr.
Effects of line coupling on spectral bands have been

reported for other molecules, but for pressure re-

gimes greater than 1 atm for which case other as-

sumptions of the present theory, e.g., the binary-
collision approximation, may not be satisfied.

Within the impact approximation, the situation
concerning the effect of line coupling on the wings
seems clear; namely, the result is to narrow the
band, thus decreasing the wing absorption. This re-

sults from a certain interference between the indivi-
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dual lines which comprise the band, and is related
to the phenomenon of motional narrowing. 56 s7

Ari extension of the present theory to include line

coupling is presented in Appendix B. Calculations
based on this generalization will be difficult, but
should remain tractable.

We would also like to remark on the relevance of
the present theory to experimental data. It is true
that accurate measurements of far-wing line shapes
are difficult and often ambiguous, however, some
do exist and they are of considerable interest for
communications applications. One example is the
measurements of Benedict et al. s ' for CO2
beyond the R-branch band head at 2380 cm
These authors have determined that the far-wing
absorption is indeed exponential, as required by the
existence of all spectral moments.

A second example is the measurements of
Burch of the H20 "continuum" absorption in the
1000 cm ' and 2500 cm ' "window" spectral re-
gions. In the case of H20, other absorption
inechanisms have been postulated; however, it is im-

portant to study far-wing absorption before inter-
preting the contribution of more complicated ab-

sorption processes.
An area where a generalization of our present

method would appear to be useful is the problem of
collision-induced ' absorption. These spectra are
known to be asymmetric, and the a i'0 plays an im-

portant role in the interpretation of the line shapes.
Most previous treatments of this problem have in-

cluded detailed balance only on a phenomenological
level.

Although our formulation has been completely
quantum mechanical, this does not appear to pre-
clude the use of semiclassical methods. In particu-
lar, the eigenstates

l lt z & of the isotropic Hamil-

tonian (4.8) might be chosen to be time-independent
WKB wave functions. We hope to explore this and
other computational possibilities in a future publi-
cation.
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APPENDIX A: PROOF THAT THE FDT IS SATISFIED IN THE BINARY-COLLISION
AND UNCOUPLED-LINE APPROXIMATIONS

The first step in the proof is to show, for an uncoupled-line approximation of the form Eq. (3.5), that a suf-
ficient condition for the FDT to be satisfied is

Cf;( t) =C;t(t—+ipfi) . (Al)

The above relation applies to any uncoupled-line approximation and is not limited to the binary-collision case.
Now, starting from Eq. (3.5), we have

0'( —t) =vg p(ej )(2j +1) I &j;lip lljf & I
'exp[ —(i~(ej —e )t]C t( —t) .

JI )f
(A2)

We next interchange names of the dummy variables i~~f, and make use of the symmetry relation (3.6) for the
reduced matrix elements. This gives

p( t)=vg p(ej. )(2j—;+1) l &j;llplljf & l exp[(i/A)(e~ ej. )t]Cf;—( t) . —
~ ~

(A3)

Retaining this result we next obtain, from Eq. (3.5), the result

f(t+ip~)=vg p(&;. )(21 +I) I &j I lp lljf & I
'

)&exp[(iliii)(ej —ej )(t +ipfi)]C;t(t

+ipse)

~ (A4)

From Eq. (3.3) we note that
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p(ez }exp[—p(ez —ez )]. =p(ez } .

This gives

4(t+ip&) =vg p(ej }(2j +1}I &jillplljf & I exp[(il&)«j Ej )t]C t(t+ip&)
Jt r&f

(A5)

(A6)

Comparing Eqs. (A3) and (A6) we see that a sufficient condition for the FDT theorem [Eq. (2.6)] to be satis-
fied is just Eq. (Al). It is then clear, in our binary-collision approximation (3.20b), that (Al) is satisfied, pro-
vided that we can show

qfj ( t}=—q;t(t +ipfi) (A7)

To prove the above result, we start from Eq. (3.18) and construct qf;( t). T—o carry this out, we let t~ t, —
j;~~jf, and it is also convenient to make the following changes in the dummy m-summation indices:

I I r 1

mf~mg p mf ~my p mI ~mf y m)~mf p m + m

This leads to the result

(A8)

1
qf;( t)=-

2Jf+ 1
m, ,m, mf, mf, m

(J lm; —m
I j;1jfmf )(J; lm; —m

Ij; ljfmf )

XTr[ps(Ho}&jfmf
I

Us( —t ip&) Ij—fmf'&&j m'
I

Us( —t} Ij m &] .

We next make use of the symmetry properties ' of Clebsch-Gordan coefficients to obtain the identity

(2 +1)
(j;1m —m Ij;1Jfmj )(j;lmt —m Ij;ljfmf)= . (jflmfm ljflj;m;)(jflmfm ljflj;m }.

2JI+1

Upon inserting this result into Eq. (A9), we obtain

(A9)

(A10)

1

(2j;+1)q;( t)=-
m;, m, m&, m~, m

(jflmfm I jflj;m;}(jflmfm ljflj;m }

XTr[ps(Ho }&Jfmf I
&s( —t ip&)

I Jfm—f & & Jrm& I
Us( —t}

I Jgmg &] .

Retaining this result, we now want to compute q;t(t

+ipse),

starting from Eq. (3.18) for q;t(t). Recalling our

discussion in Sec. II, we have to be careful in performing this exercise. In particular, we have to eliminate the

adjoint operation in Eq. (3.18) before making the complex-time translation t +t +ipse Thus—, w. e make use of
Eq. (2.17a) to write

&jfmf I
Us(t) Ijfmf & = &jfmf I

exp(iHo«&)Us( —t)exp( —iHotll)
Ijfmf &

=exp('Ho'l" }&jfmf I Us( —t)
Ijfmf &exp( iHotl&) .

Now inserting (A12) into Eq. (3.18), and then letting t~t +ipfi, we find

(A12)

qg(t +ipfi) = 1

2j, +1 I I
m;, m;, m&, m&, m

(jflmfm Ijflj m )(jflmfm Ijflj rn )

XTr[ps(Ho)& j;m I
Us(t)

I j;m;&

Xexp[(iHo/A')(t+ipA)]&jfrnf
I

Us( —t ipse) ljfm—f &

XexP[( iHolh)(t+iPA')—]I . (A13)



3392 R. W. DAVIES, R. H. TIPPING, AND S. A. CLOUGH 26

Application of cyclic invariance turns the trace in Eq. (A13) into

Tr I exP( iH—ot/A)&jtmt I
Us(t) ljtm; &exP(iHot/A'}Ps(Ho}& jfmf I

Us( t—i—PR) Ijfmf & L
.

%e then note that

exP( iK—otlk)&jism« I
Us(t) l jism; &exP(iHot/A')= &jm I

exP( —iHot/fi)Us(t)exP(iHot/A') lj m; &

=&J,m,
'

I
Vs~( t—)

I jtm, &,

(A14)

(A15)

where we have made use of Eq. (2.17b) in the last step. Inserting (A15) into (A14) yields a further
transformed trace:

Tr[&j,m'
I

Us( —t} IJ«mt&ps(Ho}&jymf I
Us'( t 4+ Ijfmf &]

=Tr[ps(Ho)&jf'mf
I

Us( —t —'&+) Ijfmj &&jtm«'
I
Us( ')

I
jtm—t &] (~ 16)

Upon inserting (A16) into (A13), we find

q;t(t +ipse) = 1

2j;+1
;,m;, mf, mt, m

(jflmfm Ijflj;m;)(j~lmj m Ijflj;m )

&&Tr[ps(Ho)&jfmf
I

Us( —t —+&) Ijfmf'&

&& &j m«
I

Us( t)
I
j—im; &] . (A17)

The above result is seen to be identical to Eq. (Al 1) for qf;( t) This—co.mpletes the proof.

APPENDIX B: GENERALIZATION TO INCLUDE LINE COUPLING WITHIN
THE BINARY-COLLISION APPROXIMATION

We start from Eq. (3.2}, and apply the Wigner-Eckhart (WE) theorem to the p, matrix elements. We use
symmetry properties ' of the Clebsch-Gordan coefficients, and with the reduced matrix elements defined by
the relation (WE theorem}

&j mt I p I jfmf &=&j ll)Mlljf & g e (jflmfm I jfljm»
m =0, +1

(x+iy ) (x iy )—eo=Z e E'+i =—

we invoke the symmetry property of reduced matrix elements

1/2

&Jf lit Iili' &=(—»' ' ., &jt Ils lljf &'
2jf'+ 1

This produces the result

j 'm'
I p Ijfmf & &jj mf I p I j m

=&jllplljf&&j'llplljj& g (Jflmfm ljflj m }(jj lmfm ljj lj m ). ''
m =0, +1

(132)

(B3)

Inserting this relation into Eq. (3.2) yields

p(t)=v X, p(e')(2j +1}&jllplljf &&jf Ill lljf & exp[(i/A)(e. , —e., )tlc,", ff'(t),
~ ot o ~ )

Jg«J( «Jf«Jf

(B4)
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where the correlation function C (t) is given by

(jflmfm Ijflj m )(j'f mfm Ijf'lj mt )

XTr[p(Ho) &jt' mt'
I
U(t t'f3&—)

I jtmt & &jfmf I
U (t)

Ijfmf & ] .

These results are still exact, and it is clear that they reduce precisely to Eqs. (3.5) and (3.7) in the uncoupled-
line approximation (where one simply setsj =j; and jf =jf). Now one can follow exactly the same route tak-
en in Eqs. (3.17) through (3.20b), and one finds that within the binary-collision approximation the correlation
function C(t) is given by

C;;.ff (t) =expINy[qt'j. ff'(t) —1]I,
where Nz is the number of perturbers, and with

jflmfm ljf lj m )(jf m'j 'm Ijf lj m'
XTr[ps(IIo)&j'm'

I
Us(t —+~) Ij m &&I'fmf

I
Us(t) II'fmf &] .

(B7)

In this last equation, the subscripts S on p and the U's denote that these operators now refer to a single radia-
tor and perturber.
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