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The theory of photon-number statistics in resonance fluorescence is treated, starting with
the general formula for the emission probability of n photons during a given time interval
T. The results fully confirm formerly obtained results by Cook that were based on the
theory of atomic motion in a traveling wave. General expressions for the factorial mo-
ments are derived and explicit results for.the mean and the variance are given. It is expli-
citly shown that the distribution function tends to a Gaussian when T becomes much larger
than the natural lifetime of the excited atom. The speed of convergence towards the
Gaussian is found to be typically slow, that is, the third normalized central moment (or the
skewness) is proportional to T ' . However, numerical results illustrate that the overall
features of the distribution function are already well represented by a Gaussian when T is
larger than a few natural lifetimes only, at least if the intensity of the exciting field is not
too small and its detuning is not too large.

I. INTRODUCTION

Let p(n, T) be the probability that n photons
(n=0, 1,2, . . .) are emitted in a given time (the
counting time T, T~0) by a two-level atom when

the atom is driven by a coherent monochromatic
electromagnetic field. The first attempt to calculate

p (n, T) was made by Mandel. '
By staining from the

general formula for p (n, T), explicit expressions for
the first few moments of the distribution function
were derived, which confirmed that, due to the anti-
bunching in time of the fluorescent photons, sub-

Poissonian statistics are to be expected. Further-
more, explicit expressions for the distribution func-
tion in case of resonant excitation were obtained in
the limiting cases of very small and very large
counting time (as compared to the natural lifetime
of the excited atom). In the latter case the result is
expressed in a rather cumbersome infinite series.

An important step forward towards the complete
calculation of p(n, T) was made by Cook, who ob-
tained a simple analytical expression for the La-
place transform (with respect to T ) of the generat-
ing function

G(z, T)= g z "p(n, T),
n=0

which enabled him to derive explicit, though gen-
erally rather cumbersome, exact expressions for
p (n, T}. However, Cook's derivation is based on the

theory of atomic motion in a traveling wave 5 and
it is therefore of interest to investigate whether the
same results can be derived by starting with the
general formula for the probability that n photons
are emitted, without introducing atomic motion.
Indeed, we will present here such a derivation
which has the advantage of being more directly re-
lated to the theory of resonance fluorescence, rather
than to the theory of atomic motion in a traveling
wave.

We will derive general expressions for the factori-
al moments and, from these, obtain more explicit
results for the mean and the variance, especially for
the case in which the counting time T is a few times

larger than the lifetime of the excited atom. Furth-
ermore, by studying the behavior of the generating
function for large T, we will show that the distribu-
tion function p(n, T ) becomes more and more
Gaussian with increasing T, in agreement with the
central limit theorem. The speed of convergence to-
wards the Gaussian will be shown to depend strong-

ly on the frequency detuning and the intensity of
the exciting field. Some numerical examples will be
given which indicate that, as long as the intensity of
the exciting field is not too small and the detuning
is not too large, the values of p (n, T} for
n =0, 1,2, . . . are already quite accurately given by
(2n tr )

'r exp[ (n —(n)—) /2o ], when T is only a
few times larger than the natural lifetime and where
the mean (n ) and the variance cr are given by sim-

ple expressions.
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II. CALCULATION OF THE GENERATING FUNCTION

Following Mandel, ' our starting point is the formula for the probability that n photons are emitted during
the time interval from t =0 to t =T,

p(n, )T= (W: I dt I(() exp —J dt 1(t) (2)

where S is the time-ordering symbol;:: stands for normal ordering; ( ) means the expectation value for the
total state of atom plus field; and I(t) is the operator for the total flux expressed in units of photons per
second (the caret will be used to indicate symbols that represent operators rather than c numbers). According
to (1), the generating function can be expressed as

G(z, T)= g f dt& f dt2 f Ck»(~I(t, )I(t2) I(t»):),
n=0

where it is to be understood that the term with n =0 is equal to 1. Since

(3)

T Tf dt, f Ck, f dt„(a:I(t, )I(h, ) I(t„):)

=n. f dt„ f dt„, . f dt, (a:I(t„)I(t„&) I(t, ):), (4)

we can rewrite (3) as

G(z, T)= g (z —1) f dt„ f dt„& . . f dt&(a:I(t„)I(t„&) I(t~):) .
n=0

(5)

On the right-hand side of (5} the quantity
(a:I(t»)I(t» &)

. I(t&):) can be interpreted as the
joint probability density of photon emissions at the
successive times t j,t2, . . .,t„. Therefore, this quanti-

ty is equal to the probability density for a photon
emission at time t~ multiplied by the conditional
probability density for an emission at time t2, given
that there has been one at t &, multiplied by the con-
ditional probability density for an emission at t3,
given that there has been one at t2, etc. The dif-
ferential probability density for an emission at t& is
equal to (I(t&)), and this depends on the state of
the atom at t=0. As the atom returns to the
ground state immediately after each emission, the
conditional probability density for a photon emis-
sion at t2, given that there has been one at t~, is

given by (I(t2)),, G, where ( ), .G means that the

expectation value must be evaluated for the case
that the atom is in the ground state at t&. For a
monochromatic coherent field we have

(I(t, ) ~, .G=(I(t2 —t~) ~p G .

If we introduce the dimensionless functions
(t &0),

f(t) = (I(h) ) /2P;

fp(t) —= (I(t) )p.G /2P

(p is half the Einstein coefficient for the transition),
then we can write (5), in view of the above-given re-
marks, as

G(z, T)= 1+2p(z —1) f dt f(t)+ g (2p) "(z—1)"
n=2

n '2
)& f dt» f Ck» )

' ' ' f dh]fp(t» —t» ])fp(t» 1
—t» 2)

' ' ' fp(t2 —t})f(h] ) ~ (g)

A powerful method in dealing with the multiple in-

tegrations on the right-hand side (rhs) of (8) is the
Laplace transformation technique. For any func-
tion h(t} we denote its Laplace transform with
respect to t by

h(s) = f dt h(t)e (9)

G(z, s)= 1/s+2P(z —1)f(s)/s

+ g [2P(z —1)]"f()(s)"-'f(s)/s .
n=2

(10)

l

After taking the Laplace transform with respect to
T of both sides of (8) and using some elementary
properties of Laplace transforms, we obtain
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The summation on the rhs of (10) can easily be per-
formed and the resulting expression can be written
as

from the general expression for the Laplace
transform of (I(t)) derived by Kimble and Man-
del. In fact, we find

1+2P(z —1)[f(s ) —fp(s) ]
G(z, s) =

s[1—2P(z —1)fp(s)]

Expressions for f(s) and fp(s) can be extracted where

y(s)

1+
(s+2P)[(s+P)'+b, ']

(12)

(R3(0))+—, 1 Q (b, (0))e'&
y= ——+

2s s+2P 2 P 1 i8— s+P(1+i8) s+2P

(b (0))e-'~
1+i8

1 1

s +P(1—i 8) s +2P
{13)

Let us explain the meaning of all the symbols ap-
pearing in (12) and (13). Q is the Rabi frequency,
characterizing the strength of the exciting field; b, is
the detuning frequency, i.e., the difference between
the field frequency and the atomic resonance fre-
quency; Ri(t) is half the population difference

Af
operator for the two-level atom; b, (t) and b, (t) are
the slow time-varying atomic raising and lowering
operators; tI} is the phase of the exciting field at
t =0 and 8 =b /P.

The expression for fp(s) ls obtained from (12) by
substituting the ground-state expectation value for
y(s), i.e., y(s)= —1/2s. After substitution of the
thus obtained expressions for f(s) and fp(s) in the
rhs of (11), the final result can be written in the
simple form

205
Q' +P2' +2k'

2QP
Q +213 +26

0
Wp= —1Q'+ 2P'+ 2i),'

(17)

whereas, if the atom is in the ground state at t =0,

Qp=Up=0, wp= —1 . (18)

It can easily be verified that (14), although written
here in a slightly different form, is completely
identical to Cook's results [(i.e., Eq. (21) of Ref. 3)].

I

If the atom is in a stationary state already at t =0,
then we have [see Ref. 7, Eqs. (42) and (43)]

G(z,s)= D(s)+P(z —1)B(s)
sD(s) PQ (z —1){s+—P)

where

D(s)=s3+4Ps +(5P +Q +b, )s

+P(Q +2@ +28, ),
B(s)=(w +p1)( +sP) UpQ(s+—P)

+u pQb, + (wp+ 1)b.

(14)

(15)

III. CALCULATION OF THE MEAN
AND THE VARIANCE

(n")= G(z, T) i,

The rth factorial moment (n (n —1)
(n r+1))—:—(n"), can be obtained from the gen-
erating function by

In (15), up, up, and wp describe the initial state of
the atom at the beginning of the counting time in-
terval, i.e., at t =0,

Using (14) we find for the Laplace transform of the
rth factorial moment (r ) 1):

up ——2Im [(b,(0))e '&],

vp ——2 Re [(b,(0) )e '~ ],
wp =2(R 3(0))

r!I3B(s)[PQ (s+P)]"

+ r![13Q (s+P)]'
s~+'D(s

By inverse Laplace transformation we find

.(20)
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(„) d" ' PB(s)[PQ (s+P)]" 'e'
ds" D (s)'

d" [PQ (s+P)]"e'
ds' D(s)' $=0

3 dr-1
+r

) dS

PB($)[PQ'($+P)]" '
+ [PQ'( $+P)l", , ;s T

s "D(s)" rlD( )r $=$
(21)

where s &, s2, and s3 are the three roots of the cubic equation

D(s):s+—4ps +(Sp +Q +5 )s+p(Q +2p +2k )=0. (22)

General expressions for s ~, s2, and s3, can be found in Kimble and Mandel [Eqs. (55a) and (55b) of Ref. 7].
We recall that one of the roots is real while the two remaining roots are the complex conjugates of each other.
Furthermore, it can easily be shown that the real part of any of the roots is always smaller than or at most
equal to —p. It follows from this that if T is one order of magnitude larger than 1/p, the last term in the rhs

of (21) is already very small, because of the exponent exp(s; T). We conclude that for, say, T & 5/p the factori-
al moments are given by the first two terms in the rhs of (21) only.

General expressions for the mean (n &=(n"'& and the variance o =(n &
—(n & =(n' '&+(n& —(n &

can be obtained by using (21). The results are
r

( &

p[B(0)+Q ] 2 2 d e'
D(0) ds D(s), 0

PB(s; ) PQ (s;+P)

I ] Sp S& Sj S& Sk S Si S S Sk
r

CT
2 2p'Q'[B(o)+Q ] 2 3Q2 d B($)+2Q' sT+2 Q- e

D(0)' ds D(s)' $=0

d2 sT
Q4

ds D ($)

(23)

3

+2+
d

p Q B(s)(s+p) p Q (s+p),T

$ (s —sJ) ($ —sk) s (s —$1) ($ —sk)2 2 2 3 2 2
$ =$.

+(n &
—(n &', (24)

where Iij,kI is a permutation of I 1,2, 3 I. For T & 5/p we can neglect the terms in (23) and (24) that involve
the exponential factors exp (s; T). In that case we find after performing the differentiations and substituting
for D(s),

B(0) Q (3P —b ) Q PT
Q2+ 2p2+ 2g2 ( Q2+ 2p2+ 2g2)2 Q2+ 2p2+ 2g2

B(0) 2B(0)Q (5P +Q +5 ) 2PQ B'(0)—B(0)
~2+ 2p2+2g2 (Q2+2p2+2g2)3 (O2+2p2+2g2)2

Q4(SQ2+44p2+4g2) SQ4(.Sp2+ Q2+ g2)2

( Q2+ 2p2+ 2g2)3 (Q2+ 2p2+ 2+2)4

Q
1

2Q (3p2 —52)
Q2+ 2p2+ 2g2 (Q 2+2p 2+ 2g2) 2

Q(3P —b, )

(Q'+2P'+26, ')'

(25)

(26)

As these expressions are valid for T & S/p as well as for arbitrary detuning, they extend earlier results ob-
tained by Mandel' and by Cook.

For values of T & 5/p we must add to the right-hand sides of (25) and (26), respectively, the corresponding
terms proportional to the exponentials. These terms, however, appear to be representable by relatively simple
expressions in the case of zero detuning (b =0) only, namely, in that case we have

s& ———p; s2 —— 3p/2+i—pQ'; s3 —— 3p/2 i pQ', — —

where

Q'—=(Q'/P' ——,
' )'" .

(27)
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For the mean we find

(n)= 8(0) 3Q P Q PT
Q2+ 2P2 ( Q2+ 2P2)2 Q2+ 2P2

+

3 PB(0) PQ (10P /4 —Q ) e ~ ~ sin(PQ'T)
Q2+2P2 (Q2+2P2)2 13Q'

+ + ' e '~ ~ cos(PQ'T),
—8(0) 3Q P2

Q2+ 2P2 (Q2+ 2P2)2

where 8 (0) is here given by [see (15), with b, =0]

8(0)=P[( lap + 1 )P—UpQ]

Note that if the atom was in the steady state at t =0, (29) reduces to the simple result

( )
Q 13T

Q +2P

(29)

(30)

(31)

An explicit general expression for the variance cr when b, =0 can also be derived. However, as already sug-

gested by (26), this expression is very complicated, except when the atom is in the steady state at t =0. In this
latter case the variance reads

2Q4132(7P2 Q2)
0 + I—

( Q2+ 2P2)4

6QP Q13T
(Q2+2P2)2 Q2+2P2

g 4' —Q
e 3~ ~ 2(7P —Q )cos(Q'PT)+9, sin(Q'PT)

( Q2+ 2P2)4 Q'

Our results (31) and (32) fully agree with Mandel. '

(32)

IV. GAUSSIAN BEHAVIOR
OF THE PHOTON NUMBER DISTRIBUTION

FOR LARGE COUNTING TIMES

x„= (n =0, 1,2, . . . ) .
n —(n)

0
(33}

According to (25) and (26) both the mean (n)
and the variance o are proportional to T for
T~ 00. A powerful method for studying the
behavior of the distribution function for large T is
then the investigation of the probability distribution
function of the normalized variable

As 0. is proportional to T' for T~ Do, the
behavior of K(y, T) for T~ap is clearly related to
the behavior of G(z, T) for z~1 and T~oo.
Therefore, we will first focus our attention on
6 (z, T) for z~ 1 and large T.

We recall that for T larger than 5/))3, the behavior

of G(z, T) is governed by the pole of G(z,s) which

lies closest to s=0. From (14) we see that this pole
is in s =0 when z= 1, but for z+1 the pole will shift

away from 0. In fact, we can expand the position sp

of the pole in increasing powers of z —1, i.e.,

In particular, we will study the behavior for T—+ ao

of the corresponding cumulant generating function

(m)( 1)rn

m=1
(36)

K(y T)=ln g e '" " ' p(n, T}
n=0

L

(34)
The expansion coefficients s' ' can be found by

equating the denominator of (14) with s =sp 'to

zero. For the first three coefficients we find
which is related to the formerly introduced generat-

ing function G(z, T) by

K(y, T)= —(n)y/o+ln[G(e"~, T)] . (35)
))) PQ

Q'+2P2+2b, 2
(37a)
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(37b)

(37c)
I

PQ s"'—(5P'+Q'+b, ')( "')'
P(Q2+2P2+2b, 2)

—PQ (3P —6 )

(Q'+2P2+262)3

S
PQ2 (2) 2(5P2 Q2 g2) (i) (2) 4P( (i))3

P(Q2+2P2+2b, 2)

The expression for G(z, T) when T & 5/P is given
by the residue of G(z,s)exp(ST} in s =so. Hence,
using (14), we find

D (so )+PB(so )(z —1 ) ~oTG(z, T)= $0

D (so)+soD'(so) PQ—(z —1)

(T & 5/P), (38)

which can be written as

G(z, T)= 1+ g A(k)(z —1)" exp g s(~)(z —1) T
k=1 m=1

where the coefficients A (k) are given by (k= 1,2,3, . . .)

D (so )+PB(so )(z —1)
A (k)=

k' dz D(so)+soD'(so) PQ (z——1)

The first twoA(k) are

B(0) Q (3P —b, )

Q2+ 2P2+ 2g2 ( Q2+ 2P2+ 2g2)2

Q [PB'(0}+B(0)] 2Q (5P +Q +5 )B(0) Q (23P —b, —2Q P2 —2Q2&2 —26P2b2)

(Q2+2P2+ 2+2)2 (Q2+2P2+ 2+2)3 (Q2+ 2P2+2/2)4

(39)

(40)

(4la)

By substitution of (39) in (35) we find for the cumulant generating function

(41b)

E(y, T)= —(n }ylo+T g s' '(es 1)"+l—n 1+ g A (k)(e"~~—1)k
k=1 k=1

and by consistently expanding this in increasing powers of y/o, we obtain

E(y, T)= [s( )T+A(1)—(n}]y o/' +2I[s(')+2s( )]T+A(1)+2A(2)—A(1) I(y/cr}

+ —, I [s'"+6s' '+6s' ']T+A (1)+6A (2)+6A (3)—3A(1) —6A (1)A (2)+2A (1) I(y/o } +

{42)

(43)

or,

E(y, T)= ,y +O(T ' ),— (44)

(45)lim E(y, T)= —,yT~ Oo

This proves that for large counting times T the nor-
malized quantity (n (n })/o (n =—0, 1,2, . . . ) is
distributed as a Gaussian with zero mean and unit
variance. Therefore, p (n, T) satisfies

lim p(n, T)= e-'"-'"""
T~ aa 0' 2)r

where {n ) and n are given by (25) and (26), respec-

It can easily be verified, by using (37a) (37b), (41a),
(41b), {25),and (26), that (43) can be written as

tively. This asymptotic Gaussian behavior of
p (n, T) was earlier found by Cook, by using the ex-
plicit form of the distribution function, but only for
the special case 6=0, Q=P. We have shown here
that it is true for all values of detuning and for all
intensities of the exciting field. Moreover, it is in-
teresting to note that the precise nature of the two-
photon correlation function was not important in
the derivation of the result. In fact, we would like
to point out that a probability distribution function
of the form (2) will always tend to a Gaussian for
times much larger than the typical correlation time,
at least if the correlations die out exponentially.

This can best be argued by referring to (11),
which can also be written as
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1+(z —1)[I(s)—Io(s)]
G(z,s)=

s —(z —1 )sIp(s )
(47)

where I and Io are the Laplace transforms of (I(t) )
and (I(t})p.G, respectively. Introducing the corre-
lation function A,(t}by writing

(I(t) )O.G
——R [1+A(t)], (48)

where R =(I( oo }) is the steady-state photon-
emission rate, we have

Io(s) =R/s +RA(s} . (49)

G(z, T)-exp R(z —1)+R (z —1) f dt A(t)

We will now assume that A,(s} has a Taylor expan-
sion around s=0, which is certainly the case if A,(t)
goes exponentially to zero for t~a(). In that case
we can write

I,(s)=R/s+R f, dr A,(r)

+R f Chrk, (t}s+ (50)
0

The pole of G(z,s) which governs the large T
behavior of G (z, t) can now be expressed as

s() —R (z —1)+R (z —1) f dt A(t)+ . (51)

Therefore, for large T we find

+O(1/T) . (54)

The third cumulant is closely related to the skew-
ness, i.e., the third normalized central moment,
namely,

terval into N identical intervals of length T), where

T] is still much larger than the correlation time
(which is of the order of 1/P in resonance fluores-
cence). The photon numbers emitted during each
subinterval are then almost identically distributed,
with mean p(T) ) and variance cr(T) ), and almost
statistically independent. The central limit
theorem, if applicable, then tells us that p (n, T) is
given by a Gaussian with mean (T/T) )p(T) ) and
variance (T/T) )o(T) ) . Since both p(T() and
o(T)) were found to be proportional to T( for
large T), this agrees with (46) and (53). However,
though the central limit theorem leads to the
correct result, it does not give any insight into the
speed of convergence of p (n, T) towards the Gauss-
ian, whereas our derivation certainly does. For in-
stance, it follows from (43) that for T~ oo the kth
cumulant is proportional to (T ) '/2. In partic-
ular, the slowest decreasing cumulant is the third, .
for which we can write according to (43)

s'"+6$ '+6s' ' 1

6( (1)+2 (2))3/2 ~T

or

+ 0 ~ ~ (52) n —n
6K (55)

ln[G(e, T)]=RTx+ , RT 1+2R f—dtA(t) x

+ 0 ~ ~ (53)

Thus, p(n, T) tends to a Gaussian with mean RT
and variance RT[1+2Rf dt A(t)] for T~ oo.

0
As a matter of course, these results are also ob-

tained after application of the central limit theorem.
Namely, for large T we can divide the counting in-

T3

and by substitution of (37a) —(37c)

Therefore, adopting the skewness as a measure for
the deviation of the actual distribution function
p(n, T) from its asymptotic Gaussian form, the typ-
ical time scale T3 connected with the speed of con-
vergence is, in view of (54), given by

(s(')+6s( )+6s( ))

(s(1)+2s(2))3 (56)

[(Q2+ 2P2 ( 2+2)4 6Q2(3P2 +2)(Q2+ 2P2+ 2+2)2+ 6Q4( 16P4 Q2P2 Q2+2 16P2+2)]2

P3 (57)
Q2( Q2+ 2P2+ 2g2)( Q4+ 4P4+ 4g4 2Q2P2+ 6Q2g2+ gP2g2 )3

As long as Q & P and b, &P, PT3 is of order uni-

ty, indicating that the skewness is already smaller
than 0.3 for T &10/P. For Q «P, however,
PT3-2(P +6 )/Q, indic. ating that the conver-
gence will be very slow. Indeed, this corresponds to
the case in which, due to the small intensity of the
exciting field, the probability that two successive

I

photon emissions are correlated becomes very small,
which implies that p(n, T) tends to a Poissonian
with mean equal to Q PT/2(P +6 ). In order that
this Poissonian becomes Gaussian, the mean must
be much larger than 1, or, PT »2(P +6 )/Q, in
agreement with the aforementioned estimate.

The other known Poissonian limit case occurs
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Gaussian. At a closer look, however, the figures
show that the convergence towards the Gaussian is
rather slow indeed: even for PT=50, the exact dis-
tribution function is seen to be slightly skewed to
the left, which is directly related to the slow conver-
gence of the third cumulant [e.g., (54)] to zero.
This is also illustrated in Fig. 2, where the quantity
v'PTK3 has been plotted versus PT. For large PT
this quantity is seen to approach the theoretically

1

predicted value of —,.

V. CONCLUSION

We have theoretically investigated the statistics
of photons emitted by a single two-level atom when

the atoN is driven by a coherent monochromatic
electromagnetic field, which is nearly at resonance
with the atomic transition. Our approach was

based on the general formula for the emission pro-
bability of n photons during a given time interval

and our results confirm earlier obtained results by
Cook, whose treatment, however, is based on the
theory of atomic motion in a traveling wave. We
have presented general expressions for the factorial
moments and from these we have deduced more ex-

plicit expressions for the mean and the variance,
with emphasis on the case in which the counting
time T is a few times larger than the lifetime of the
excited atom. Furthermore, we have investigated
the behavior of the photon distribution function for
T larger than the lifetime of the excited atom and
we have explicitly shown that the distribution func-
tion tends to a Gaussian for T~ oo. Although the
speed of convergence was found to be typically
slow, i.e., the third cumulant (which indicates the
skewness) was proportional to T '~, numerical re-
sults illustrate that the overall features of the distri-
bution function are already well represented by a
Gaussian for T & 1/P, at least if the intensity of the
exciting field is not too small and its detuning fre-
quency is not too large.
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