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Expressions for the incoherent-scattering function and the inelastic-scattering cross-
section differential with respect to the solid angle for detection of scattered x rays from
atomic, molecular, and condensed-matter targets are derived in the relativistic impulse ap-
proximation for Compton scattering. It is shown that the incoherent-scattering functions,
defined as an integral over Compton profiles, can be computed easily by means of a
“linear” approximation. Numerical results for Al, Fe, and Pb are compared with available
experimental values and with the Waller-Hartree theory.

I. INTRODUCTION

Among the various types of interactions of x and
y rays with matter, the incoherent (Compton)
scattering is the dominant mode of interaction in
the energy region 5 MeV down to a few keV. The
knowledge of the incoherent-scattering function is,
for example, important to understand the small-
angle inelastic scattering of charged particles and
the production of bremsstrahlung and of positron-
electron pairs in the field of electrons.! Further-
more, data on differential and integral incoherent-
scattering cross sections are essential in calculating
radiation attenuation, transport and energy deposi-
tion in medical physics, reactor shielding, industrial
radiography, and in a variety of other areas in addi-
tion to x-ray crystallography.?

The incoherent scattering from free electrons is
accurately described by the Klein-Nishina (KN)
theory.® Departures from the KN theory occur in
situations where the photon energies are comparable
with the binding energies of the inner-shell electrons
of the target. The observed incoherent-scattering
cross section per unit solid angle, (do /d€)’ ) con, can
be expressed in terms of the KN cross section
dogn/dQ’ as
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where S(0,0,Z) is the incoherent-scattering func-
tion; O is the scattering angle, and o the energy of
the incident photon (throughout the article we use
#i=1 and ¢ =1 if not stated otherwise). Z is the
atomic number of the scatterer. The magnitude of
S(w,0,Z) is taken to be a measure of electron bind-
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ing. To calculate the incoherent-scattering func-
tion, the most successful and tractable model up to
now, at least for light atoms, seems to be the one
worked out by Waller and Hartree* in 1929. A
state-of-the art compilation of the incoherent-
scattering functions and photon-scattering cross
sections for atoms has been given by Hubbell et al.?
Some more recent work is given in Refs. 5—8 and
references therein. Under the assumption, which is
usually made, that the energy of the incident pho-
ton is much larger than all of possible electronic ex-
citation energies, the Waller-Hartree theory gives
the incoherent-scattering function

S(w>6,z): z (¢0 I exP[ia'(?m—?n)] | ¢0>
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where d is the momentum transferred during the
collision, T, the instantaneous position of the mth
electron, and ¢, the total ground-state wave func-
tion. In the Hartree-Fock approximation for
closed-shell systems Eq. (2) reduces to

S(0,0,2)=Z— 3, |{ty | expliG-T) |9, ) |,

’ 3)

where 1, refers to the occupied orbitals. As indi-
cated the Waller-Hartree (WH) theory is quite an
approximate one. For example, the momentum
transfer is taken to be independent of the final-
photon energy, which is set equal to the initial ener-
gy. A summation over all final states is carried out,

>, expliq-Ty,)
m
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even in the case that they are not energetically pos-
sible. In addition to the simplifying assumptions
made in the derivation it is a nonrelativistic theory.
It is usually assumed, however, that the “correct”
relativistic result for the differential cross section
can be factored as in Eq. (1). It is therefore of in-
terest to approach the evaluation of the incoherent-
scattering function and the differential cross section
in a different fashion. We shall do so here by a
direct integration of Compton profiles. For this
purpose we will choose a relativistic formulation.
The resulting expressions for (do/dQ’')jon are
noteworthy. For the first, the factorization in Eq.
(1) appears naturally. For the second, the expres-
sion for S(w,0,Z) turns out to be of such a simple
form that it may be evaluated by means of a pocket
calculator or on “the back of an envelope.” In view
of the computational difficulties associated with the
Waller-Hartree theory this result is pleasing, partic-
ularly in the context of very heavy elements and/or
complex materials.

During the last decade there has been consider-
able progress in the field of Compton scattering
aiming at high-precision measurements of Compton
profiles and determinations of momentum densi-
ties.’ In this type of experiment the angular and en-
ergy dependence of the Compton-scattered radiation
is usually interpreted in the impulse approximation
(IA).>!° In this approximation it is assumed that in-
itially bound electrons are scattered into plane-wave
states and that the binding energy of the initial elec-
trons can be ignored in comparison with the energy
transferred by the photons. Furthermore, only the
A2 term is retained in the electron-photon interac-
tion part of the Hamiltonian. These simplifications
result in the nonrelativistic expression for the
double-differential cross section

d’o

1+cos%(6)
do'dQ)’

2
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where m is the electron mass, ry its classical radius,
and o' the energy of photon scattered into solid an-
gle element dQ’. The function J(p,) is the Comp-
ton profile

J(p,)=2m fi:,i dp pp(p) , (5)

where p(p) is the momentum distribution of the
scatterer before collision and p, is the projection of
the momentum P of the initial electron on the
scattering vector . With the additional constraint
that an excitation can only take place when the en-
ergy transfer is larger than the ionization energy of
the electron shell being excited, an integration of

Eq. (4) over the final-photon energy yields the non-
relativistic expression for (do/dQ')jpcon. This
route, which we will follow here, is not new. The
possibility of calculation inelastic-x-ray-scattering
functions by direct integration over theoretical
Compton profiles has been discussed by, e.g., Cur-
rat, DeCiccio, and Weiss,!! Mendelsohn and
Biggs,12 Pattison, Manninen, Felsteiner, and Coop-
er,’® Bloch and Mendelsohn,'* and Cox.!* Here we
wish to extend previous work by using a relativistic
formulation of IA (Sec. II). We also wish to
demonstrate that incoherent-scattering functions
may be calculated in a very simple way using a
“linear approximation” (Sec. III). As a consequence
only a knowledge of J(0) for the different orbitals is
required. Values of J(0) are available in the form
of extensive tables'® (1 <Z <102). In Sec. IV nu-
merical results for Al, Fe, and Pb are discussed.
Section V contains a brief summary.

As mentioned, the impulse approximation, as
well as the Waller-Hartree theory, involves some
rather drastic, simplifying assumptions. Therefore,
the two approaches have their own specific limita-
tions. IA refers to large transfers of energy and
momentum. For example, close to excitation
thresholds and in situations of small scattering an-
gles one should therefore expect deviations from the
simple IA in the form of many-body effects, final-
state effects like in extended x-ray absorption fine
structure (EXAFS), etc. Although such limitations
of the IA should be kept in mind, it turns out, as
will be discussed in the following sections, that IA
is of sufficient accuracy for a number of applica-
tions. In particular we have here radiology in mind.
Of course, there are cases for which the present ap-
proach is too coarse grained, like, for example,
small-angle scattering experiments aiming at the de-
tailed effects of electron correlation.

II. RELATIVISTIC DERIVATION
OF THE COMPTON CROSS SECTION, d’%¢ /dw’dQ’

The theory for Compton scattering of photons
from a system of electrons is well known. In partic-
ular the relativistic Klein-Nishina theory,> which
treats collisions between a photon and a free elec-
tron at rest, is well established and frequently used.
Using the total cross section for the scattering of a
photon from a free electron an approximate expres-
sion for scattering from bound electrons may be ob-
tained.!”!® The derivation is outlined below.

Consider the case of two colliding, monoenergetic
beams of relativistic electrons and photons. Let the
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momenta and energies of the electrons, before and
after collision, be (BE) and (P',E’), respectively.
Corresponding photon states are ( (K,) and (K ",0").
The total cross section is then®

1

a=m2r(2) f d3k'd3p m

X(K,K')

X8(P+K—B'—K")

XS8(E+w—E' —o'), (6)
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Equation (6) refers to the case of two colliding
beams. It therefore contains a flux factor K /Ew.
The polarization of the photon is not observed in
the experiment. In the case of an electron at rest
Eq. (6) reduces to the Klein-Nishina theory. For
the flux factor one then has K/Ew —1, i.e., for a
stationary target the flux factor equals the velocity
of light. The derivation of Eq. (6) is based on
second-order relativistic perturbation theory. As
compared to a nonrelatlvxstxc treatment no clear

distinction between A% and P P A terms appear. One
|

3327
should rather say that p ‘A terms are imbedded in
Eq. (6).

Consider now the case of an electron occupying a
bound state with energy E; and wave function ;
before the scattering takes place. The momentum
distribution of the initial state is

p(B)=|¥:(B)|?, (10)

where 9;(p) is the momentum transform of ¥;(r).
For lighter elements it suffices to use the nonrela-
tivistic transform

— 1 =
¢;(p)=W fdre

For heavier elements the corresponding relativistic
transform may be required. If several electron
states are occupied the momentum distribution is

p(B)=3 |4:(5)|*. (12)

The probability that the momentum of an electron
falls in the interval (B,P+dP) is p(B)d B /n if p(B)
is normalized to the number of electrons per atom,
n. For a system at rest the mean value of P is zero.
We may therefore say that p(P) describes a station-
ary wave packet of free-electron states. If we now
assume that the energy transfer at the collision pro-
cess is much larger than the binding energy we may
ignore it. The scattering is therefore the same as
for free particles, but weighted by the probability
that a certain plane-wave state appears in the wave
packet. We may therefore write

—IB Ty 7). (11)

2,2
o= [ dkdpdp P RK KIS (5 +K '~ K B(E +o—E'—a'), (13)

EE'w

where we have replaced the flux factor K/Ew by ¢ =1 as the wave packet is stationary. E and E’ are to be in-

terpreted as relativistic free-particle energies.

The double-differential cross section with respect to @’ and solid angle Q' for the outgoing photon is ob-
tained by a differentiation of Eq. (13) with respect to ®’ and Q' and integration over p',!”!®

dlc  mirie’ X(KK)

do'dQ’ f d’pp EE

In principle this expression may be used for the cal-
culation of cross sections. It turns out, however,
that X(K,K') is a slowly varying function. Equa-
tion (14) may therefore be simplified to'®

d’c rom’o’
do'dQ’ ~ 20 | K—K'|(m?4+p})"
X X(R,R")J(p;) , (15)
where

—Z—08E+o—

—w'). (14)
- |K—k'| =[0?+(0")?—200'cosf]/?  (16)
and

= [coco’(l—cos@):m(co—co')] . 17

[K—K']

Here p, is the projection of the momentum of the
initial electron on the scattering vector ¢ =k'—k,
i, p,=P'q/q. The arguments R and R’ in the
factor X are given by
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R=o[(m*+p}))'”
+(@—w'cosO)p,/ | K'—K |1, (18)
R'=R —ww'(1—cosf) . (19)

Finally, J(p,) is the Compton profile defined in Eq.
(5). Equation (15) is to be compared with Eq. (4); it
may be referred to as the relativistic version of the
impulse approximation described in the Introduc-
tion.

In the IA the double-differential cross section re-
flects the momentum distribution in a very simple
way. For this reason Compton scattering is fre-
quently used for studying electron states in atoms,
molecules, and solids.® For a convenient compar-
ison with theory experimental results are usually
presented in the form of Compton profiles.
Presently both experimental and theoretical
methods have reached a high degree of precision.

In summary we may ascribe the following roles
to the different factors appearing in the expression
for the double-differential cross section, Eq. (15);
J(p,) gives rise to a broadening of the Compton line
because of the motion of the electrons before col-
lision and X /(m?2+p2)!/? reflects relativistic effects
at the scattering process. It is illuminating to make
the following simplifications. If relativistic effects
are less important, as, e.g., at relatively low-energy
and momentum transfers, we may put p, =0 in the
relativistic factor. The function X(R,R’) then
reduces to a Klein-Nishina type of expression:

)

'

Kn="2+2 _sin%0) . (20)
@

We thus obtain the simplified expression for the
double-differential cross section:

réme’
kN 2| K—K'|

d’c
do'dQ’

X_KNJ(pz) .21
w

This expression may be simplified one step further
by expanding Xgn. Retaining only first-order
terms (@ /m) one then obtains the nonrelativistic
result in Eq. (4). The power of the factor (o'/®) in
Eq. (21) is of some interest, as discussed in Ref. 8.
In the original work of Waller and Hartree* the
same factor raised to power 2 appears, while Comp-
ton and Allison’ suggested that the factor should be
(@'/®)>. The factor (w'/w)® appears in a deriva-
tion based on classical radiation theory while the
factor (w'/w)?* is commonly found in treatments of
x-ray scattering by free electrons. In the case of
bound states the flux factor must be chosen ap-
propriately, as discussed above. As a result the fac-

tor (w'/w) in Eq. (21) follows unambiguously.

IA, as described here, differs considerably from
the Waller-Hartree theory described in the Intro-
duction. Provided that both schemes are accurate
Eq. (15) [alternatively Egs. (21) and (4)] should, if
integrated over w’, give results in close agreement
with the WH theory for the incoherent-scattering
functions S(w,0,Z).

III. DERIVATION OF (do/dQ’)incon AND S(0,0,Z)

The cross section per solid angle is defined as

, d’o
= [ do Tk (22)

do

aqy’
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where either Eq. (15) or Eq. (21) is to be used. For
most purposes it appears, however, that the numeri-
cal difference between these two expressions is
small. In the case of aluminum, for example, the
difference is less than 0.1% at 6 =90" and o =60
keV. In the following we may therefore use the
simplified expression in Eq. (21). Explicit numeri-
cal calculations also show that the factor Xy
varies very slowly over energy interval of interest.
We may therefore replace o’ in the expression for
Xgn by the Compton line [p, =0 in Eq. (17)]

w,=mo /[o(l—cosf)+m] . (23)

The integration over o’ (or p,) in Eq. (22) may now
be drastically simplified if we in a similar way put
p,=0 in the relation [cf. Egs. (17) and (23)]

mo —p o' —w cosf
o, 7 |K—K'| o

do'=|K—K'|

(24)

If we now assume that all electrons may be excited,
i.e., (0w —') >>(ionization energies I;), we obtain by
using the normalization of p(p) and by putting
o'=w, in the remaining factors the simple result

2

2
nry | ®
do | M09 | o | OB gl
aQ’ |, 2 @ 0, o
(25)
ie, the familar Klein-Nishina expression

dog,/dQ’ (times n). In obtaining this expression
we have extended the p, integration to (— o0, + o),
which introduces a negligible error. A direct nu-
merical integration of Eq. (21) over ' confirms
that Eq. (25) is of very high accuracy, provided that
all electrons indeed are excitable.



26 INCOHERENT-X-RAY-SCATTERING FUNCTIONS AND CROSS. ..

In the case wherein the excitation process is con-
strained because of (w —w') <I; one may argue for
an approximate expression for (do/dQ');pcon in the
following way. If the occupied orbitals are 1;(r) the
Compton profile is

oce

J(p)=>Ji(p;), (26)

where J;(p,) is the contribution from each orbital.
If we now define

ni(pi,max)= f

pi,max

o dszi(pz) ’ 27

where p; . is the highest p, value for which an
electron in orbital i can be excited (the K shell, etc.),
we obtain

do dogn

o’ |~ |an’ [Ei‘.ni(pf,max)], (28)
ie.,

S(a)’eaz)= 2 ni(pi,max) . (29)

Equation (28) expresses the desired factorization of
(do/dQ')ipeon into a  photon-electron scattering
part, dogn/dQ’, and a target scattering function
S(w,0,Z) as discussed in the Introduction. In de-
fining n; we have once more extended the integra-
tion over p, to — w. Since J(p,)—0 sufficiently
fast as |p, | — o the resulting error is small. The
expression for P; ., follows from Egs. (16) and (17)
by putting 0'=w — 1,

o(w —1I;)(1—cosf)—mlI;
[20(0 —I;)(1—cos@)+12]'7*

Since the orbitals 1;(7) are normalized to one it
follows that

+
[ dpditp)=1. (31)

(30)

DPimax=

Because J;(p,) > 0 the functions 7;(p; nax) are mono-
tonously increasing and 0 <n; <1. Values less than
one tell that the excitation process is limited by the
condition (w—w')>1I;. As a consequence the
incoherent-scattering function S(w,0,Z) drops
below its full value Z.  The Compton profiles are
symmetric around p, =0. From the normalization,
Eq. (31), it then follows that n,~(0)=%. The general
shape of n; is illustrated in Fig. 1 which shows the
case of the 1s and 3p states in lead.

The simple dependence of n; and p; 1., as shown
in Fig. 1, suggests that a “linear” approximation
may be useful, i.e.,
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FIG. 1. Functions n5(z) and n3,(z) in the case of lead.
Full drawn curves refer to a numerical integration of Eq.
(27) using relativistic Compton profiles (Ref. 16). Dashed
straight lines refer to the “linear” approximation, Eq.
(32). The more loosely bound the electron, the more ac-
curate the linear approximation.

17 pi,maxZ %JI(O)
ni(pi,max): %+Ji(0)pi,max’ lpi,max| < %JI(O)
07 pi,maxS —-%J,(O) .

(32)

This simple approximation of »; brings the compu-
tation of incoherent-scattering functions to a trivial
level. The accuracy of the linear approximation
will be investigated in the following section.

IV. NUMERICAL RESULTS FOR Al, Fe, AND Pb

The electronic configuration of Al is 1s%2522p®
plus three valence electrons per atom. For the me-
tallic state we assume that the valence electrons
form a noninteracting, uniform electron gas.

The contribution to the incoherent-scattering
function from the core electrons has been obtained
by a numerical integration,

occ w—Ii
S core = 2 fO dw,Ji(Pz) (33)

using relation (17) and Compton profiles evaluated
from the analytical, nonrelativistic Hartree-Fock
wave functions of Clementi and Roetti.?° For the
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free electron gas, however, we do not have to resort
to Compton profiles. The contribution from the
valence electrons is already avalailable in the litera-
ture?! as

3q/4pr—q°/16p}, if 0<q <2pg

Sva=2Z
al val 1, lqu2PF

(34)
where pg is the Fermi momentum and Z,, the
valency. Equation (34) takes into account that an
electron can only be scattered to states above the
Fermi level. As a consequence S,,;—0 as g—0.
Numerical results for the total incoherent-scattering
function, S plus S, are shown in Fig. 2 togeth-
er with available experimental results for various
incident-photon energies. Results according to the
Waller-Hartree theory for nonrelativistic atomic Al
are also shown in Fig. 2.2 In the calculations we
have tried different incident-photon energies, name-
ly those given in Fig. 2. In all cases we have, how-
ever, found the dependence on @ numerically insig-
nificant. As in the Waller-Hartree theory one is
therefore, in practice, dealing with the “universal”
function S(x,Z) where x =sin(6 /2)/A with A equal
to the wavelength associated with an incoming pho-
ton. The agreement between present and experi-
mental results is, according to Fig. 2, satisfactory.
The agreement with the Waller-Hartree theory is
also remarkable in view of the basically different
approaches made in the two theories. The
discrepancy below x ~0.25 may be traced to the
different representations of the valence states, rath-
er than to differences in the two theories. As men-
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tioned Cromer’s*? calculation refers to atomic Al.
As a check we have therefore used the present linear
approximation for atomic Al. A result close to that
of Cromer is then found also for x <0.25. In the
present case a free electron gas is, however, more
realistic. As a consequence we also achieve a better
agreement with experiments in the region of low-x
values. Figure 2 shows the results of the simple
“linear” approximation in Eq. (28) applied to the
core states. Considering the simplicity of this ap-
proximation we find the agreement with experi-
ments satisfactory.

The linear approximation appears sufficiently ac-
curate for a number of applications. To illustrate
this point further we have also applied it to Fe and
Pb. In order to compare more easily with the atom-
ic calculations of Cromer,”> using the Waller-
Hartree theory, we have chosen atomic states as
well. Values of incident-photon energies are listed
in Figs. 3 and 4. Figure 3 shows the results for
Fe3d®s? In the calculations we have used the
nonrelativistic values for J;(0) tabulated by Biggs
et al.'® Tt is remarkable that the difference between
the present results and the Waller-Hartree theory is
at most ~2%. Unfortunately, experimental values
do not give much of a guidance. Accurate measure-
ments would be welcome.

Atomic Pb6s26p? is illustrated in Fig. 4. In this
case the tabulated values for J;(0) are extracted
from relativistic calculations.'® The numerical
differences from the nonrelativistic Waller-Hartree
theory? are too small to be displayed. As for Fe,

C T T T T
8y
12— —
[ |
i MW—"—%‘ ]
0.8— —]
S(x,2) | 2 ]
p4
B L present (full calc.) |
- MEASUREMENTS: ~ _____ present 1
0.4— o 17.5 keV (Ref.23) (linear approx.)  _|
/ o 805keV(Ref.24) e Waller- Hartree
A a 280 keV (Ref.25) (Ref. 22)
o, v 17.5 keV (Ref 26) N
4 x 662 and 1115 keV(Ref.27) —
| | | | 1 | 1 I 1 | ]
0 04 0.8 1.2 16 20

x, sin(6/2)/\(A)

FIG. 2. Comparison of present calculations for metallic Al with available experiments (Refs. 23—27) and with nonre-
lativistic Hartree-Fock calculated S (x,Z) values (Ref. 22) for atomic Al. Energies refer to incident-photon energies.
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LA T T T T T .1 ]
26pg N
] 11 |
THEORY: 7
present (linear approx.)
------------ Waller-Hartree (Ref.22)
MEASUREMENTS:
o 662 keV (Ref.28) 7
a 280 keV (Ref. 25) _
N NN U W TN NN (N NN Y TN N I INUN N N BN |
0 6 12 18 24 30 36

x, sin(6/2)/A(A)

FIG. 3. Comparison of present calculations for atomic Fe 3d ®4s? with available experiments (Refs. 25 and 28) and with
nonrelativistic Hartree-Fock calculated S (x,Z) values (Ref. 22).

experiments give poor guidance. The case of Pb has
also been supplemented by a full numerical integra-
tion of the relativistic Compton profiles given in
Ref. 16, assuming both an atomic state and a metal-
lic state with the four valence electrons forming a
free gas. The results are numerically indistinguish-
able from the linear approximation and the Waller-
Hartree theory. The close agreement between the

linear approximation and a full integration of the
Compton profiles is perhaps less surprising for a
heavy element like lead. Figure 1 indicates that the
errors made in the linear approximation more or
less average to zero when the number of electrons is
very large. The linear approximation is, of course,
most useful in this context. The close agreement
with the Waller-Hartree theory is, however, more of

1.2 T T T T T T T I
82py,

: 1 T T - %TTTTT

_ﬁﬁé?? f ﬁﬁ I

0.8— —

Sx.2) x# THEORY:
2254 *{l — (present & Ref.22)

0.4 MEASUREMENTS: ~
o 280keV (Ref.25)
o 662 keV (Ref.29)

x 279,322, 662 and 1115 keV(Ref.5) 7

1 | | | 1 | ] |
0 20 40 60 80

x, sin(6/2)/ A (A)

FIG. 4. Comparison of present calculations for atomic Pb 6s%6p? with available experiments (Refs. 5, 25, and 29) and
with nonrelativistic Hartree-Fock calculated S (x,Z) values (Ref. 22). The linear approximation is numerically not distin-
guishable from a full integration of the Compton profiles or the Waller-Hartree theory. The choice of an atomic or me-
tallic electronic configuration does not make a significant numerical difference either.




3332 R. RIBBERFORS AND K.-F. BERGGREN 26

a surprise. Considering the numerically cumber-
some nature of the Waller-Hartree theory it is pleas-
ing to find that the accuracy of the elementary
linear approximation seems to increase with Z.

In all cases investigated here we have found good
agreement with the results of Cromer?” based on the
Waller-Hartree theory. As already indicated there
is no a priori reason to expect this to be the case,
since the basic assumptions made in the two
theories are indeed different. Bloch and Mendel-
sohn'® have, however, given a rather different pic-
ture. For a hydrogenic system the incoherent-
scattering functions can be evaluated exactly using
the correct eigensolutions uniquely available for
such a system. At high-momentum transfer Bloch
and Mendelsohn find for L-shell electrons that the
Waller-Hartree theory and the integrated impulse
approximation both agree well with exact results.
At low-momentum transfer and for heavier ele-
ments the Waller-Hartree theory is, however, quite
inaccurate for L-shell electrons. In the case of Cr
the error is, e.g., 50% at an incident-photon energy
of ~17 keV and 6=170°. At the same time the in-
tegrated impulse approximation was found to per-
form much better, suggesting that this scheme
could be used to obtain more accurate incoherent-
scattering functions. In the present calculations we
do not recover this kind of large discrepancy. A
reason for this seems to be that we are not restrict-
ing ourselves to only the most tightly bound states.
When a summation over all states is performed er-
rors associated with the deep states become much
less important. Also, there seem to be some prob-
lems with applying results for a hydrogenic system
to cases like Fe and Pb, for which the final states
are not the hydrogenic continuum states. If, how-
ever, one would come across cases for which the
Waller-Hartree theory and the integrated impulse
approximation would yield different results, the re-
sults of Bloch and Mendelsohn suggest that the
latter method is to be favored.

V. BRIEF SUMMARY

With the use of a relativistic formulation of the
impulse-approximation  expressions for  the

incoherent-scattering function and the cross-section
differential with respect to the scattered solid angle
for an unpolarized x-ray source have been derived
by an integration over Compton profiles. It has
been shown to a high accuracy that the inelastic
cross section can be factored into the Klein-Nishina
cross section times the incoherent-scattering func-
tion. Numerical results for Al, Fe, and Pb have
been found to compare well with available experi-
mental results and with calculations based on the
Waller-Hartree theory. The close agreement with
the Waller-Hartree theory is not to be expected a
priori. As shown by Bloch and Mendelsohn'* the
Waller-Hartree theory for individual, tightly bound
states may, in fact, be in error. When a summation
over all states is performed, however, such errors
become less important as suggested by the present
calculations. In the case wherein the Waller-
Hartree theory and the integrated impulse approxi-
mation differ, Bloch and Mendelsohn find that the
latter is more accurate.

Explicit numerical calculations have demonstrat-
ed that the integration over Compton profiles may
be replaced by an elementary linear approximation.
This simplification brings the calculation of
coherent-scattering functions to a trival level, or in
level with a pocket calculator. Results for Pb indi-
cate that the accuracy of the linear approximation
increases with the number of electron shells. This
fact appears useful in the context of heavy and
complex materials. Given the simple form of the
differential cross section it also appears straightfor-
ward to calculate total cross sections, energy deposi-
tion, etc. One also notes the close resemblance be-
tween x-ray and high-energy electron scattering.’
Present results suggest that simple expressions for
electron scattering may be developed in an analo-
gous way. The formal resemblance between present
and ionization processes at high-energy proton
bombardments is also suggestive.!
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